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PREFACE 
 
Geomechanics deals with the deformation and failure process in geomaterials, 
which is literally defined as materials found on the surface of the Earth. Soil, rock, 
snow, and ice are typical geomaterials. Although in a broader sense in engineering 
mechanics geomaterials also include concrete, it will not be included explicitly in 
the discussion in this book. Ice and snow will not be covered either. 
  A general review article on geomechanics was given by Rudnicki (2000). 
There are at least two review articles using the title “Analytical methods in 
Geomechanics” (Booker, 1991; Selvadurai, 2007), and the name of the journal 
International Journal of Numerical and Analytical Methods in Geomechanics also 
includes Analytical Methods in Geomechanics. However, to date there has been no 
book devoted exclusively to such methods. Although numerical methods and tools 
(such as finite element method or distinct element method) have been widely 
adopted to solve practical problems in geomechanics, as Dr. Evert Hoek put it, 
“The answers (from the numerical methods) are only as good as the input 
information” (Hoek, 1986). In view of this, a sign that read “It is the duty of an 
engineer to judge soundly rather than to compute accurately” was put on the top of 
Dr. Hoek’s computer (Hoek, 1986). Analytical solutions can often provide the 
order of magnitude of the solution and provide insight into the behavior and trend 
of the solutions in terms of the main controlling parameters of the problem, and 
thus they can provide the basis of “sound judgment.”   
 In addition, although powerful numerical tools have been developed in the 
last few decades, it is not possible, and in many circumstances not particularly 
desirable, to conduct a full-scale investigation using finite element models, 
incorporating all fine details of geometric, materials, and loading conditions 
(Booker, 1991). In view of the uncertainties of the input data to finite element 
programs, analytical methods still have an important and valuable role to play in 
geomechanics.   
 Although Professor Y.H. Pao classified “Geomechanics” under “Earth 
Science” in his review article “Applied Mechanics in Science and Engineering” 
(Table 7 of Pao, 1998), we would rather consider it a multidisciplinary field 
encompassing both geophysics and civil engineering. Many postgraduate students 
and researchers who engage in geomechanics research are from different 
backgrounds, including geologists, seismologists, mining engineers, geophysicists, 
mathematicians, mechanical engineers, and civil engineers. Without a proper 
training in engineering mechanics or geomechanics, very often they find the 
terminology and mechanics techniques used in geomechanics journals or books 
incomprehensible. I am a civil engineer by training, with a master’s degree in 
structural engineering. Under the supervision of Prof. John Rudnicki, my Ph.D. 
was, however, in theoretical and applied mechanics at Northwestern University, 
with a thesis related to bifurcation, localization, and inelastic deformation of 
pressure-sensitive dilatant materials (i.e., geomaterials). As a graduate student 
working in geomechanics, I had to take or sit in on a lot of fundamental courses in 
applied mathematics and mechanics before I could take on geomechanics research. 
If there had been a comprehensive book of the mathematical theory on 
geomaterials, I would have picked up the subject much more quickly. 
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 I found that my graduate students are facing problems similar to those that I 
faced as a Ph.D. student. That is, the traditional bachelor’s degree in engineering 
does not prepare them for geomechanics studies or for conducting geomechanics 
research. What makes the situation worse, however, is that there is no single 
textbook that covers the fundamentals of geomechanics, including tensor analysis, 
elasticity (essential to soils, rocks, and concrete), plasticity (essential to soils and 
rocks), fracture mechanics (essential to rocks and concrete) and viscoelasticity 
(essential to both soils and rocks), poroelasticity and wave propagation and 
dynamics, and puts them in the proper perspective relevant to the deformation 
behavior of geomaterials.  
 With this group of potential readers in mind, this book is written for 
scientists and engineers who have had some exposure to engineering mathematics 
and strength of materials. The text covers major topics in tensor analysis, elasticity 
(both 2-D and 3-D), plasticity, fracture mechanics, viscoelasticity, poroelasticity, 
and dynamics that are relevant to the modeling of geomaterials.  
 The text was developed and expanded from my course notes for a course 
called Analytic Methods in Geomechanics offered to graduate students at The 
Hong Kong Polytechnic University starting from 1995, under the encouragement 
of Prof. J.M. Ko, then the head of the Department of Civil & Structural 
Engineering (now Department of Civil & Environmental Engineering). I 
determined coverage of elasticity, plasticity, viscoelasticity, and fracture 
mechanics in such a way that selected topics are directly related to geomechanics, 
compared to typical textbooks. This book expands substantially and evolves from 
those lecture notes. Some contents and sections are of a more advanced nature and 
should provide useful reference material for researchers engaged in solving solid 
mechanics or geomechanics problems.  
 Chapter 1 summarizes the elements of tensor analysis, especially in dyadic 
forms. This constitutes an elegant basis for later chapters, especially dealing with 
messy analysis on polar cylindrical and spherical coordinates. Familiarity with 
materials in Chapter 1 will also help students to learn different branches of 
continuum mechanics. After a general discussion on the theory of elasticity and 
elastic dislocation theory in Chapter 2, Chapter 3 introduces the use of complex 
variable technique in solving two-dimensional elasticity problems. The treatise by 
Muskhelishvili on complex variable technique for solving 2-D problems is not 
easily accessible by engineering students and is not covered in most graduate 
courses. Chapter 3 serves as an introduction to this useful and powerful tool. In 
particular, complex variable technique has been found extremely useful in solving 
crack problems.  
 Although real geomaterials are three dimensional in nature, most graduate 
courses on elasticity only deal with 2-D analysis and do not include 3-D problems 
in their syllabi. I believe that 3-D elasticity is an important topic in geomechanics. 
Chapter 4 focuses on the methods of solution for three-dimensional elasticity. 
Solutions to be discussed include the Boussinesq solution, the Kelvin solution, and 
the Mindlin solution. These are three-dimensional solutions of fundamental 
importance in geomechanics. These solutions are discussed in detail. Muki’s 
formalism with the Hankel transform is also discussed. 
 Chapter 5 introduces the framework of plasticity theory, with particular 
reference to the Rudnicki�Rice model for rocks and Cam-clay model for soils. The 
last few sections in Chapter 5 introduce the use of Helmholtz free energy in 
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relating macroscopic deformation with microscopic damages using the internal 
variable approach of J.R. Rice and give an introduction to viscoplasticity. These 
topics are not covered in most plasticity books. Chapter 6 gives an overall 
introduction to fracture mechanics, including the use of J-integral on slope failure 
and earthquake energy release rate, and superposition technique involving 
fundamental solution in terms of the Westergaard stress function. The chapter 
concludes with discussions on continuum damage mechanics and microcrack 
models. Chapter 7 summarizes the essence of viscoelasticity and its application to 
geomechanics through the steam stimulation problem in oil sand extract. Chapter 8 
discusses the use of displacement functions in poroelasticity. The constitutive 
forms of Biot’s theory put forward by Rice and Cleary (1976) and by Rudnicki 
(1985, 1986) are discussed in detail. The use of the Laplace transform and the 
Hankel transform are included. The fundamental point force and point fluid source 
solutions are covered in detail. Chapter 9 covers the basics of wave propagations 
in half-spaces or layered half-spaces, as well as in viscoelastic and elastic-plastic 
solids. Essential results of dynamic fracture mechanics are summarized and serve 
as an introduction to dynamic fracture. A section on soil dynamics concludes the 
chapter. Brief biographies of about 70 selected mechanicians, scientists, and 
engineers whose works are used or described in the book are included to give brief 
historical developments of the mechanics and geomechanics topics covered in the 
book. Readers should find some of their scientific stories inspiring. 
 I have tried to keep the length of this book to an optimum such that I can 
strike a balance between breadth and depth, and between details and conciseness. 
In doing so, technical details have been kept to a minimum and therefore further 
readings are recommended for each chapter. To prevent this book project from 
becoming a never-ending endeavor, I had to stop somewhere and topics had to be 
selective. Suggestions are, however, welcome if some readers think that some 
important topics have been omitted.  
 I am indebted to many former professors, students, colleagues, friends, and 
authors, as interactions with them have shaped my thoughts and choices in writing 
this book either directly or indirectly. Chapter 1 was clearly influenced by the 
writing of E.L. Malvern and by the teaching of Continuum Mechanics of J.W. 
Rudnicki. Chapter 2 was influenced by the teachings of K.K. Koo, P. Karasudhi, J. 
Dundurs, J.W. Rudnicki, L. Keer, B. Moran, T. Mura, and J. Weertman. Chapter 3 
was the result of my collaboration with Y.B. Wang, who is an expert in the 
Muskhelishvili method. My interest in three-dimensional elasticity started with my 
involvement in poroelasticity proposed by my former master’s advisor W. 
Kanaok-Nukulchai and from the reading P. Karasudhi, A. Cheng, M. Cleary, J.W. 
Rudnicki, and J.R. Rice. This was further reinforced when I worked on diffuse 
mode bifurcations of solid cylinders as part of my doctorate, and vibrations of 
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   CHAPTER ONE 
 

Elementary Tensor Analysis 

1.1 INTRODUCTION 

Continuum mechanics has been very successful in modeling physical phenomena 
in geomaterials, such as rock, soil, and concrete. Elasticity, plasticity, fracture 
mechanics, damage mechanics, viscoelasticity, and poroelasticity all can be 
considered branches of continuum mechanics that have found applications in 
geomechanics. Continuum mechanics, in fact, also includes fluid mechanics, but 
we will not deal with this aspect in this book. In order to understand and apply 
continuum mechanics more efficiently, tensor notation and analysis have been 
developed as the basic mathematical language for communication. This chapter 
deals only with elementary tensor analysis. 
 The physical laws, if they really describe the physical world, should be 
independent of the position and orientation of observers, that is, independent of the 
coordinates used in describing these phenomena. For this reason, physical laws are 
ideally written in tensor equations because tensor equations are invariant under 
coordinate transformation. If a tensor equation holds in one coordinate system, it 
also holds in any other coordinate system in the same reference frame. As we will 
see in later sections, many physical laws (such as the equation of equilibrium) in 
terms of a special coordinate system (such as a cylindrical or a spherical coordinate 
system) can be obtained by simply specializing the tensor equation to its 
component form. This coordinate-invariant property makes tensor analysis a very 
attractive technique for analysis of geomechanics problems. The physical quantities 
involved in the formulation of continuum mechanics, such as displacement, stress, 
strain, and modulus of elasticity, are more conveniently referred to as tensors. 
Mathematically, such tensors can either be expressed in polyadic or indicial forms. 
Tensor has its existence independent of any coordinate system, yet when it is 
specified in a particular coordinate system, it contains certain sets of quantities 
called components, identified by free index (or indices). Nowadays, technical 
papers in geomechanics or continuum mechanics are very often written in terms of 
tensors, taking advantage of their conciseness property. Tensor analysis, therefore, 
becomes a pre-requisite for any graduate student who wants access to the state-of-
the-art information available in journal publications and advanced textbooks. This 
chapter will give a concise treatment of elementary tensor analysis for an 
orthogonal coordinate system, with particular reference to applications in 
geomechanics. 
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1.2 GENERAL TENSORS, CARTESIAN TENSORS, AND TENSOR 
RANK 

Roughly speaking, tensor is a general term used for any physical quantity that may 
involve more than one physical component, all of which have directional sense. 
The term tensor in its modern meaning was introduced by German physicist W. 
Voigt in 1908 (see biography section). For zeroth-rank or zeroth-order tensors, 
there is only one component for a physical quantity, such as temperature and 
pressure; tensors of zeroth rank are normally called scalars, which are independent 
of direction. For first-rank or first-order tensors, there are three physical 
components in three-dimensional space, such as displacement. First-order tensors 
are normally referred to as vectors. For example, the components of a velocity are 
normally written as v1, v2, and v3 along the x1-, x2-, and x3-directions of a Cartesian 
coordinate system, respectively. In this case, vi (i = 1,2,3) represents the physical 
components of the vector v. These tensors are direction dependent, that is, 
components of different magnitude are observed along different directions. For 
second-rank or second-order tensors, there are nine physical components for a 
quantity in three-dimensional domain, such as stress and strain; second-order 
tensors are the most often encountered quantities. Again, all of these nine 
components are direction dependent. (As demonstrated in elementary elasticity 
textbooks, nine independent components are required to describe the stress at a 
point inside a body, although stress symmetry will normally lead to six independent 
components.) In general, for the N-th order tensors, there are 3N components for a 
tensor in three-dimensional domain. For example, a fourth-order tensor has 81 
components (note that a modulus tensor, which relates strains to stresses, is a 
fourth-order tensor). Therefore, tensors can be viewed as a generalization of an 
ordinary vector to incorporate more than one free index or to accommodate a 
quantity having more than three physical components. 
 The use of Riemann geometry (such as used in Einstein’s theory of relativity) 
will not be discussed here. All vectors are assumed to be described in terms of 
Euclidean geometry. 

1.3 A BRIEF REVIEW OF VECTOR ANALYSIS 

Referring to Fig. 1.1, we let e1, e2, and e3 be the unit vectors along x1-, x2-, and x3- 
directions, respectively. Then, it is well known that any vector u in the three-
dimensional Euclidean space can be represented by the following linear 
combination: 

 
3

1 1 2 2 3 3
1

i i i i
i

u u u u u
�

� � � � ��u e e e e e  (1.1) 

where ui is also called indicial notation or index notation of a tensor. As mentioned 
earlier, ui is also the physical component of the vector u; physically, it is the length 
of the vector u projected along the i-th coordinate of the system. In more general 
tensor analysis, as shown in the last part of (1.1), the summation sign � is usually 
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u(u1,u2,u3)

e2

e3

e1

3x

2x

1x

neglected; thus, repeated indices imply summation automatically. This is usually 
referred to as Einstein notation. The index i becomes a dummy index (i.e., it can be 
replaced arbitrarily by j, k, etc.), and it is no longer a free index (i.e., i cannot be set 
to 1, 2, or 3 arbitrarily). 
 For the curvilinear coordinate system, in which the base vectors are not 
necessarily orthogonal and are position dependent, there are two sets of physical 
components: the covariant and contravariant components, depending on whether 
the base vectors or reciprocal base vectors are used. The reciprocal base vectors are 
the orthogonal sets of the original base vectors. The term contravariant implies that 
the coordinate transformation rules for the contravariant tensor components and 
their base vectors are exactly the inverse of one another, while covariant 
components and their base vectors follow the same rule of coordinate 
transformation. When the base vectors are orthogonal (or perpendicular), this is 
called an orthogonal curvilinear coordinate. The tensor analysis for curvilinear 
coordinates is considerably more complicated than those for orthogonal 
coordinates. However, curvilinear coordinates can be very useful because it is 
sometimes more convenient to describe the boundary of a solid in certain 
curvilinear coordinates, such as cylinder and sphere problems. In this book, we will 
not discuss tensor analysis in general curvilinear coordinates, but two orthogonal 
curvilinear coordinates (cylindrical and spherical coordinates) will be discussed in 
Sections 1.7 and 1.8. 
 The addition rules for vectors are both associative and commutative, that is: 
  ( ) ( )� � � � � � � �u v v u u v w u v w , (1.2) 
respectively. The dot product between two vectors u and v, denoted by u	 v, is 
given by: 

 0|cos ( )
 
 �� ��u v = | u | | v  (1.3) 
where 
 is the angle between these two vectors. Since cos
 is always smaller than 
one, thus we have the following Schwarz inequality (Spiegel, 1968): 
  |��| u v |  | u | | v  (1.4) 
The magnitude of a vector �u� is defined as: 
  2 2 2

1 2 3 0 =  =       + +u u u  �| u | u u  (1.5) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.1 The Cartesian coordinates 
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Odd 

Even 

13 

2

and therefore u = 0 if and only if u1 = u2 = u3 = 0. Note that ei	 ej = �ij, where i, j = 1, 
2, 3; and �ij is the Kronecker delta which equals 1 if i = j and 0 if j � i. Therefore, 
if we write 
  1 1 2 2 3 3 1 1 2 2 3 3 = + +  ,      = + +u u u v v vu e e e v e e e  (1.6) 
then the dot product between u and v is clearly 
  • 1 1 2 2 3 3  i iu v u v u v  u v� � � �u  v  (1.7) 
Again, Einstein’s notation for summing over all possible i is implied. The cross 
product of two vectors u and v produces another vector w, which is usually 
denoted by w = u � v. The magnitude of w is defined as: 
  | || | sin (0 / 2)
 
 �� � � � �w u v u v  (1.8) 
In terms of tensor notation, the physical components wi can be given in a right-
handed coordinate system by 
  i ijk j kw e u v�  (1.9) 
where eijk is in fact a third-order tensor called a permutation tensor. Note that the 
summation is done over both indices j and k. The magnitude is either �1, +1 or 0, 
which is determined by the following rules: (1) eijk equals 0 if any two indices are 
equal; (2) eijk equals +1 when i, j, k are 1, 2, 3 or an even permutation of 1, 2, 3; 
and (3) eijk equals �1 when i, j, k are 3, 2, 1, or an odd permutation of 1, 2, 3. The 
definition of even and odd permutation is illustrated in Fig. 1.2. Examples are e123 
= e231 = e312 = 1, e132 = e213 = e321 = �1, and e112 = e221 = e131 = 0, etc. 
Mathematically, we can also write:  

  1 ( )( )( )
2ijke i j j k k i� � � �  (1.10) 

Note, however, that (1.10) is not a tensor equation. 
 For vectors in Euclidean space, the cross products of vectors satisfy the 
following identities: 
  � � �u v = (v u)  (1.11) 
  =� � � � �u (v w) u v u w  (1.12) 
  0�u u =  (1.13) 
  1 2 3 2 3 1 3 1 2, ,� � � � � �e e e e e e e e e  (1.14) 
  ( )k k k� � � �u v = u v u v  (1.15) 
where k is a scalar. 

   Figure 1.2 The odd and even permutations for 1, 2, and 3 in a permutation tensor 
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 The cross product is sometimes easier to remember using the following 
expansion of determinant: 

  

1 2 3

1 2 3

1 2 3

2 3 3 2 1 3 1 1 3 2 1 2 2 1 3( ) ( ) ( )

u u u
v v v
u v u v u v u v u v u v

� �

� � � � � �

e e e
u v

e e e

 (1.16) 

However, the determinant itself can also be written in tensor form: 
  1 2 3det ij i j kijk    eA A A A�  (1.17) 
This can be proved by expanding the permutation tensor explicitly. The following 
e-� identity has been found extremely useful in tensor analysis: 
  ijk irs jr ks js kr  e e � � � �� �  (1.18) 
This is proved in Problem 1.1 below. 

1.4 DYADIC FORM OF SECOND-ORDER TENSORS 

Instead of using physical components, vectors can be denoted by the symbolic or 
Gibbs notation. For example, velocity is sometimes written in terms of a bold-face 
letter as v = v1e1 + v2e2 + v3e3, where ei is the i-th base vector in Cartesian 
coordinates. Similarly, this idea can be extended to second-order tensors. For 
example, stress can be represented by 
  ij i j�� e e�  (1.19) 
where the indicial form is written in terms of Cartesian coordinates. Or more 
explicitly, we have 

  11 1 1 22 2 2 33 3 3 13 1 3 31 3 1 12 1 2

21 2 1 23 2 3 32 3 2

� � � � � �
� � �

� � � � � �

� � �

e e e e e e e e e e e e
e e e e e e

�
 (1.20) 

The symbolic form � is most general and is independent of any coordinate system; 
the indicial form �ij is the physical component corresponding to a particular 
Cartesian coordinate system. Therefore, second order tensors can be written in 
terms of two vectors side-by-side called dyads, such as e1e3. Note that dyads are in 
general not commutative, i.e., e1e3 � e3e1. This dyadic form was proposed by Gibbs 
in the 1880s. A dyadic D, which corresponds to a tensor of order two, may be 
represented as a finite sum of dyads 
  1 1 2 2 3 3 ij i jD� � � �D a b a b a b e e  (1.21) 
which is, however, never unique. The specific form of D depends on the coordinate 
system used; for example, the physical component Dij given in (1.21) refers to a 
particular Cartesian coordinate system. If each of the dyads is interchanged, the 
resulting dyadic is called the conjugate dyadic or transpose of D: 
  1 1 2 2 3 3

T = b a + b a + b aD  (1.22) 
where the superscript T denotes transpose. A second-order tensor is said to be self-
conjugate or symmetric if  
  T�D D  (1.23) 
and antisymmetric if  



6   Analytic Methods in Geomechanics 

  T� �D D  (1.24) 
Any second-order tensor can then be decomposed into symmetric and anti-
symmetric tensors:  

  1 1( ) ( )
2 2

T T� � � � � �D D D D D G H  (1.25) 

where G and H are the symmetric and antisymmetric parts of the tensor D. Note 
that double-transpose will yield the original tensor, i.e.,  
  ( )T T�D D  (1.26) 
The displacement gradient tensor (�u)T is an example of decomposition that we 
often encounter in continuum mechanics. In particular, (�u)T can always be 
decomposed into the strain tensor � and the spin tensor � : 

  1 1( ) [( ) ] [( ) ]
2 2

T T T� � � � � �u u u u u � �� � � � �  (1.27) 

The dot product of a vector v and a second-order tensor D results in another vector 
defined by: 
  1 1 2 2 3 3( ) ( ) ( ) =  + +   =    v D v a b v a b v a b u  (1.28) 
  1 1 2 2 3 3( ) ( ) ( )  +  +       � �D v a b v a b v a b v w  (1.29) 
It is important to note that in general the order of dot product cannot be reversed. The 
role of D in (1.28) and (1.29) can be treated as a mapping or transformation between 
two vector functions (compared to ordinary functions between scalar quantities). This 
also provides a mathematical reason for the introduction of second-order tensors. 
Similarly, the dot product between two second-order tensors can also be defined: 

  1 1 2 2 3 3 1 1 2 2 3 3

1 1 1 1 2 2 2 2 3 3 3 3

( ) ( )
( ) ( ) ( )

  =  

  

� � � �

� � �

D E a b a b a b c d c d c d
b c a d b c a d b c a d

 (1.30) 

As expected, the result G is also a second-order tensor. Cross products v � D and D � v 
can be defined analogous to the cross product between vectors: 
  1 1 2 2 3 3( ) ( ) ( ) = + +   � � � � �v D v a b v a b v a b F  (1.31) 
  1 1 2 2 3 3( ) ( ) ( ) + +  � � � � � �D v a b v a b v a b v G  (1.32) 
The results of these cross products F and G are again second-order tensors. 
 Another important operation between tensors is the double dot product or 
scalar product of two tensors, which is further subdivided into two types. In terms 
of a particular Cartesian coordinate system, we have 

  
1

( ) ( )

( )( )

:  = :

=  =  =
ij i j kl k l

ij kl i k j l ij ij

D E

D E D E � 

D E e e e e

e e e e
 (1.33) 

  
2

( ) ( )

( )( )

  =   

=  =  =
ij kli j k l

ij kl i l j k ij ij

D E
D E D E �

� � � �

� �

D E e e e e

e e e e
 (1.34) 

where �1 and �2 are scalars. For example, strain energy W in an elastic body can be 
written in terms of the scalar product of stress and strain tensors: 
  1 1

2 2
:

V V
W =  dV      dV� �ij ij�� �� �  (1.35) 

where V is the volume of the solid. 
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1.5 DERIVATIVES OF TENSORS 

In general, once a physical quantity, such as stress, is assigned to a tensor, we may 
write, say � = � (x, t) for a stress tensor, where x is the position vector of the point 
of consideration and t is the time of interest. This implies that a tensor may vary 
from point to point and thus represents a tensor field. In symbolic notation, the 
vector differential operator is expressed as �, or as a Cartesian tensor 

  
ix

� �
�
�ie  (1.36) 

Frequently, the partial differentiation with respect to the variable xi is represented by 
the comma-subscript convention, such as 

  ij iji
i, j ij, k ij, j

j k j

v  =  ,    =  ,    = v
x x x

� �
� �

� ��
� � �

 (1.37) 

It is obvious that the partial differentiation may raise the tensor order by one if one 
more free index is added [see the first two examples in (1.37)], but it may also 
decrease the tensor order by one if the partial differentiation makes j a repeated 
index [see the third example in (1.37)]. The following differential operators, which 
appear often in continuum mechanics, are given here for reference: 

  ,grad i i
ix
�� � ��

� � �
� ie e�  (1.38) 

  ,div i iv� �v v�  (1.39) 
  ,curl ijk k jv e v� � � iv e�  (1.40) 

  2
,ii� � �� � �� �  (1.41) 

Note that all the indicial forms are for physical components in the Cartesian coordinate 
system only. A number of identities exist for the differential operator � in the Cartesian 
coordinate system: 
  ( )fg f g g f� �� � �  (1.42) 

  2 2 2( ) 2( ) ( )fg f g f g g f� � � � � �� �  (1.43) 
  ( ) ( )f f f  � �v v v� � �  (1.44) 

  2( )f g f g f g � � �� � � �  (1.45) 
  ( ) 0f� �� �  (1.46) 
  ( ) 0� � � �v  (1.47) 
  (( ) ( )  � � � � �a b a) b a b� � �  (1.48) 
  ( )f f f� � � � �v v v� � �  (1.49) 

  2( ) ( � � � ��v v) v� � � �  (1.50) 

  2� �� � � �  (1.51) 

  2 2 )� �� � � �a a  (1.52) 

  2 2( ) (� �� � �� � �  (1.53) 
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  2 2( ) 2� � �� �a r a + r a�  (1.54) 

  2 2( ) 2� � �� � � �r r�  (1.55) 
  ) ( )� �� �a r a a r�� �  (1.56) 
where r is a position vector. The divergence of a second-order tensor, say �, follows 
closely the definition for a vector field, and the result of such an operation will result in 
a vector field: 

  ,( ) ( )  =  =k ij i j ij i j
kx

� � 
�

�
� e e e e�  (1.57) 

In cylindrical or spherical coordinate systems, the physical components will be more 
complicated since the base vectors change directions with the coordinate variables; 
they will be discussed a bit more in later sections. Analogously, the curls of a second-
order tensor can be obtained by operating with the base vectors: 

  , ,( ) ( ) ( ) = =  i jk j k jk i i j k ilj jk l i k
i

 e
x

� � ��
� � � �

�
� e e e e e e e e�  (1.58) 

So far, we have assumed all coordinates are orthogonal, i.e., the base vectors are 
perpendicular. For curvilinear coordinates, the vector differentiation is much more 
complicated; such an operation will involve the use of Christoffel symbols of the first 
and second kinds (Malvern, 1969). We will not discuss such a complication here. 

1.6 DIVERGENCE AND STOKES THEOREMS 

The formulation of problems in continuum mechanics always makes use of the 
divergence theorem of Gauss and Stokes theorem. The coordinate-invariant forms 
of these theorems in terms of tensors are given in this section without a proof. We 
emphasize that the derivations of these theorems do not put any restriction on the 
material response of the solids, thus these results apply regardless to any solid, 
elastic, plastic, or brittle, as long as the solid can be considered as a continuous 
medium and the variation of the tensor field is smooth. 

1.6.1 Divergence Theorem or Gauss Theorem  

Let V be the volume of a solid bounded by a smooth surface S and let T be a 
second-order tensor field (see Fig. 1.3). The divergence theorem is 
   

S V
dS dV�� �n T T� �� �  (1.59) 

The divergence theorem relates volume integral to surface integral. This equation also 
applies to T being an n-th order tensor (see Segel, 1987). The proof for the ordinary 
divergence theorem can be found in standard textbooks for engineering mathematics 
(Kreyszig, 1996), and its extension for tensors can be found in Mal and Singh (1991) 
and Segel (1987). 
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Figure 1.3 The domain for the divergence theorem 

1.6.2 Stokes Theorem  

Let S be a smooth surface bounded by a simple closed curve C, which does not 
intersect itself, and T be a tensor of arbitrary order. Then, the Stokes theorem states 
that 
  ( )C Sd =   dS �� �T  s T  n�  (1.60) 
where ds is an oriented element on C and n is the unit normal to S at dS along its 
positive curvature (see Fig. 1.4). Stokes theorem relates surface integral to surface 
integral.  
 There is an interesting story on the origin of the Stokes theorem, and a brief 
history is given in the biography of G.G. Stokes at the end of this book. In short, Lord 
Kelvin played a fundamental role in its development, so it is also known as the 
Kelvin�Stokes theorem.  
 
 
 

 
 

Figure 1.4 The domain for the Stokes theorem 
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1.7 SOME FORMULAS IN CYLINDRICAL COORDINATES 

As mentioned previously, the physical components in polar cylindrical coordinates 
are more complicated. In this section, we provide some useful formulas, which 
appear regularly in geomechanical problems. Any position vector r in a Cartesian 
coordinate system can be written in terms of a cylindrical coordinate system (r, �, 
z) as shown in Fig. 1.5: 
  1 1 2 2 3 3 1 2 3cos sin + +   + +x x x r r z� �� �r e e e e e e  (1.61) 
The new set of base vectors in cylindrical coordinates is defined by 

  1=  
� xh�

�

�
�

re  (1.62) 

where 

   = h�
�

�
�

r
x

 (1.63) 

and x� equals r, �, or z. In particular, we have 

 
1

1 1cos sin sin cos

1

2 1 2

3
r

r

z

= = +  ,  = = +  
rh h

  = =
zh

�
�

� � � �
�

� �
�

� �

�
�

r

z

r r
e e e e e e

e e
 (1.64) 

Unlike the base vectors for the Cartesian coordinate system, these base vectors are 
not all constant with the change in coordinates; it can be shown that 

  =  ,    = r
r

�
�� �

��
�

� �

ee e e  (1.65) 

while all other derivatives of the base vectors vanish. For example, the displacement 
gradient tensor can be formulated in dyadic notation as 
 
 
 

 
 

Figure 1.5 Cylindrical coordinates 
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 (1.66) 

In obtaining the above equation, we have already used the coordinate variation of the 
base vectors given in (1.65). This result can readily be used to obtain the strain tensor, 
which is defined as 

  1 ( )
2

� = +u u� �  (1.67) 

Combining (1.66) and (1.67), it is straightforward to see that the physical components 
are 

  1z r r
zz rr

uu u u= ,    = ,    = +
z r r r

�
��� � �

�
�� �

� � �
 (1.68) 

 1 1 1 1 1( ) ( ) ( )
2 2 2

r z r z
r z rz

u u uu u u u= + ,   = + ,    = +� � �r r r r z z r
� � �

� �� �
� �� � � �

�
� � � � � �

(1.69) 

This equations are the same as those obtained by Timoshenko and Goodier (1982), 
starting from the kinematics of compatibility in deformations. Thus, the tensor equation 
(1.67) provides a concise and elegant form for the strain-displacement relation, and 
more importantly it is independent of any coordinate system. 
 Following similar technique in specializing the above tensor equations, the 
following results can be obtained: 

  1 1r z
r

uu uu
r r r z

�

�


�� �
� � � �

� � �
u�  (1.70) 

  1 1( ) ( ) ( ) = +z r z r
r z

u u uu u u u+
r z z r r r r

� � �
�� �

� �� � � �
� � � � �

� � � � � �
u e e e�  (1.71) 

  
2 2 2

2
2 2 2 2

1 1f f f ff  = f  = + + +
r rr r z�


�� � �

�
�� ��

� �  (1.72) 

The three components of the equilibrium equations, �	� = 0, can be written explicitly 
as 

  1 0r rrrr zr  
+ +  +  =

r z r r
� ��� � �� �

�
� �� �

� � �
 (1.73) 

  1 1( ) 0zzz
rzr + +  = 

r r r r
���

�
�

���
� � �

 (1.74) 

  1 2 0r z r + + +   = 
r r z r

�� � � �� � � �
�

� � �

� � �
 (1.75) 

These equations are the same as those obtained by Timoshenko and Goodier (1982) by 
considering force equilibriums along r-, �-, and z-directions for an infinitesimal small 
element. The proof of these equations is given as problems at the end of this chapter. 
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1.8 SOME FORMULAS IN SPHERICAL COORDINATES 

The development of this section follows closely the discussion in the previous 
section. Any position vector r in a Cartesian coordinate system can be written in 
terms of a polar spherical coordinate system (r, � , 
) as shown in Fig. 1.6: 
 1 1 2 2 3 3 1 2 3sin cos sin sin cos = x x x  = r � r � + r �� �� � �r e e e e e e  (1.76) 
The base vectors can again be obtained using (1.62) and (1.63) as 

  
1 2 3

1 2 3

1 2

(sin cos ) (sin sin ) cos
(cos cos ) (cos cos ) sin

sin cos



�


 � 
 � 


 � 
 � 

� �

� � �

� � �

� � �

re e e e
e e e e
e e e

 (1.77) 

The variation of base vectors along coordinate directions is more complicated than 
that for cylindrical coordinates; in particular, the following nonzero terms are 
obtained: 

 
cos  ,

sin cos , sin

  ,      ,       

    

r
r

r
r
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 �


 
 

� �

� ��
� � � �

� � �
� �

� � � �
� �

e ee e e e

e ee e e
 (1.78) 

while all other derivatives of the base vectors vanish. The differential operator in 
spherical polar coordinates is 

  1 1
sinr r r�
 
 �

� �� � �
� � ��  � � �! "

r �e e e�  (1.79) 

Without showing the details here, we quote the following physical components for the 
strain-displacement by specializing (1.67) to the spherical coordinates: 

 1 1cot
sin

r r r
rr

u u uu u u =  + + ,     =  ,    =  +   ,
r � r r r r r

� 
 

�� 

� 
 � �

� 

� ��
� � �

 (1.80) 

 1 1 1 1( ) ( )
2 2 sin

r r
r r

u uu uu u =   +     ,        +  , 
r r � r r � r r

� �
 


 �� �

�
�� � �

� � �
� � � �

 (1.81) 

 

 
Figure 1.6 Spherical coordinates 
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Again these results are the same as those obtained by considering the kinematics of 
compatibility in deformations. 
 Following the similar technique in specialization of tensor equations, the 
following results can be obtained: 

  •
2 1 1( cot )
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2

2 2
2 2 2 22

1 1 1( ) (sin )
sin sin

f f ff    rr rr r r




 

 
 �
� � � � �

� � ��
� � � � �

 (1.85) 

In spherical coordinates, the three components of the equilibrium equations, �	� = 0, 
can be written explicitly as 

  1 1 1 (2 cot ) 0
sin

rrrr
rr r  

r r r r
�




 �� 

���

� � � � 


 
 �

���
� � � � � � �

� � �
 (1.86) 

  1 1 1 [3 ( )cot ] 0
sin

r
r  

r r r r
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�� �
� � � � � �
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 (1.87) 

  1 1 1 (3 2 cot ) 0
sin

r
r  

r r r r
� 
� ��

� 
�
� � �

� 
�

 
 �

� � �
� � � � �

� � �
 (1.88) 

The proof of these equations is again given as problems at the end of this chapter. 

1.9 SUMMARY AND FURTHER READING 

The most comprehensive coverage of tensor analysis applying to solid mechanics is 
given by Malvern (1969). We also highly recommend the books by Chou and Pagano 
(1967) and Segel (1987). For a quick reference, Hughes and Gaylord (1964) 
summarized many useful formulas in tensor as well as component form. A good 
vector analysis is given in Chapter 1 of Wong (1991). 

1.10 PROBLEMS 

Problem 1.1 Prove the e-� identity given in Eq. (1.18). 
 
Problem 1.2 Show the following results: (a) �ii  =  3, (b) �ij�ij  = 3, (c) eijkejki  = 6,  
(d) eijkAjAk = 0, and (e) eijkepjk = 2�ip. 
 
Problem 1.3 Show that (Pijk + Pjki + Pjik)xixjxk = 3Pijkxixjxk. 
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Problem 1.4 Use indicial notation to prove the following vector identities: 
  ( ( ) ( ) , ( ))  0� � � �� � �u v w  = u w v u v w     u v w =  (1.89) 
 
Problem 1.5 Prove Eq. (1.73) through (1.75), starting from specializing �	� to the 
cylindrical coordinate system. 
 
Problem 1.6 Prove Eq. (1.83) through (1.85) by specializing the appropriate tensor 
equation. 
 
Problem 1.7 Prove Eq. (1.86) through (1.88) by specializing the appropriate tensor 
equation. 
 
Problem 1.8 Show the validity of (1.46) and (1.47). 
 
Problem 1.9 Prove (1.50) using Cartesian coordinates. 
 
Problem 1.10 Using (1.65) to show the validity of the following equations: 
 

 1 1( )r r
r r r

u u
r r r r� �

� ��
�

� � �
�e e e e  (1.90) 

 
2

2 2 2
1 1 1 1{ [ ( ) ]} ( ) ( )r

r r r
u u uuu u

r r r r
� � �

� � � �� � � ��

� � ���
� � � �

� � � ��
�e e e + e e  (1.91) 

 1 1( )z z
r z z

u u
r r r r� �

� ��
�

� � �
�e e e e  (1.92) 

 1 1( )r
u u

r r r r
� �

� � ��
� ��

�
� � �

�e e e e  (1.93) 
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�� � ��
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� � � ��
�e e e e e  (1.95) 

 
Problem 1.11 Use (1.66) and the results in Problem 1.10 to show the validity of 
the following equation: 
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 (1.96) 

Problem 1.12 Use the result of Problem 1.11 to show the validity of the following 
equation: 
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where the Laplacian operator is given in (1.72). 
 
Problem 1.13 Substitute the result of Problem 1.12 and (1.70) into the following 
equation: 

 1 1( ) ( ) 0
1 2# $

� � �
�

� �u u F� � � �  (1.98) 

to show that 
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1 2 1 0
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 (1.99) 
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2 2

1 1 2 1 0
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Note that these are the three-dimensional equilibrium equations in cylindrical 
coordinates in terms of displacements. 
 
Problem 1.14 Adopting the procedures used in Problems 1.10�1.13, prove the 
following three-dimensional equilibrium equations in spherical coordinates in 
terms of displacements: 

2
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   CHAPTER TWO 
 

Elasticity and Its Applications 

2.1 INTRODUCTION 

Elasticity is perhaps the most successful theory ever developed to model the 
mechanical response of solids. Many important fields in solid mechanics, such as 
fracture mechanics and the theory of dislocation, are developed from the firm basis 
of the mathematical theory of elasticity. Thus, the theory of elasticity itself is a 
pre-requisite for and provides a fundamental background to any graduate student 
who wants to study more advanced topics in geomechanics or in engineering in 
general. 
 The mathematical theory of elasticity had occupied the minds of great 
scientists since the time of Galileo in the seventeenth century. Despite its 
development in the last 360 years, research on elasticity remains active today; it is 
fair to say that many theoretical and practical problems in elasticity remain to be 
solved. 
 Elasticity, in general, can be regarded as a branch of science that deals with 
the mechanical deformations of solids that deform under applied loads, such as 
applied traction, displacements, and temperature gradients, and then are able to 
recover their original shape upon unloading. The scope of elasticity can be 
extremely wide, depending on the type of elastic solids, the types of loading, and 
the form of deformation that we are interested in. There are about 100 textbooks 
directly devoted to or closely related to the theory of elasticity. The solids can be 
modeled as one, two or three dimensional although most analytic solutions exist 
only for one- or two-dimensional problems. The loading can be time dependent 
such that inertia effect may play a key role; for example, wave propagation is a 
typical phenomenon due to dynamic loads. Wave propagations and soil dynamics 
will be discussed in Chapter 9. Compared to the dimensions of the original solid, 
the deformations and strains in the body can be either infinitesimally small or 
finite. The deformation of solids may be either proportional to the applied loads 
(linear elasticity) or nonproportional to the loads (nonlinear elasticity). When 
nonlinear constitutive behavior sets in or when large deformation and strain are 
allowed to occur, the uniqueness theorem fails. The solution for elasticity 
problems becomes the result of solving nonlinear differential equations, which, in 
general, cannot be solved analytically. Approximate techniques, such as 
perturbation, have been developed to solve such problems.  Numerical methods for 
solving these problems may yield unreliable solutions if no special care is taken. 
At certain critical loading conditions a trivial solution may yield to a nontrivial 
solution (this is normally called bifurcation in mathematical terms). Bifurcation 
problems in geomechanics have also been considered quite extensively (e.g., 
Rudnicki and Rice, 1975; Chau and Rudnicki, 1990, Chau, 1992, 1993, 1994a, 
1995a�c, 1998a, 1999b; Chau and Choi, 1998; Muhlhaus et al., 1996; 
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Vardoulakis, 1979, 1983; Sulem and Vardoulakis, 1990; Vardoulakis and Sulem, 
1996; Bigoni, 2012). In addition, the constitutive response of solids may be 
loading direction dependent; that is, the solid is not isotropic or it is anisotropic in 
response. For example, specimens taken horizontally from anisotropic solids will 
deform differently from those taken vertically. To date, most of the analytical 
solutions exist only for isotropic solids. Due to recent development of composite 
materials for the aerospace industry and other research, much effort has focused on 
the mechanical behavior of anisotropic elastic solids (e.g., Chau, 1994b, 1998b). 
 In terms of the existence of strain energy, elasticity can further be divided 
into two groups: hyperelasticity, for solids having an elastic potential or strain 
energy function; and hypoelasticity, for solids attaining a linear relationship 
between strain rate and stress rate. Strictly speaking, hyperelasticity is more than 
elasticity, which simply requires the recovery of strain and deformation upon 
unloading; on the other hand, hypoelasticity is less than elastic since it does not 
even require proportionality between stress and strain. 
 This chapter covers only problems with small deformations (i.e., linear 
elasticity). Both isotropic and anisotropic solids will be discussed, but the focus 
will mainly be on isotropic solids. Some practical examples will be used to 
illustrate the power of elasticity. The application of elasticity to model dislocation 
will also be introduced. 

2.2 BASIC CONCEPTS FOR STRESS TENSORS 

As we learned from elementary textbooks on the strength of material, the axial 
stress of a bar under tension is defined as the force per unit cross-sectional area. 
When we want to consider the stress of a particular surface in a three-dimensional 
solid, we need to use the concept of free body. Imagine if we cut a finite solid into 
two parts along a surface with unit normal n on which the magnitude of stress is of 
interest, then a resultant force has to be applied to this surface such that both parts 
of the cut body remain stationary as the solid was before the cutting process. The 
resultant amputated body is called a free body, such as the one shown in Fig. 2.1. 
Traction at a point P is defined as the force per unit area when the following limit 
is taken: 

  
0

lim [ ]
A

  
A%

%
%&

�
FT  (2.1) 

where %F is the resultant force on area �A. As shown in Fig. 2.2, this traction 
vector can be considered as the projection of the Cauchy stress tensor � on the 
surface �A, 
    � �T n �  (2.2) 
Note that the Cauchy stress tensor is also called the true stress tensor since it is 
supposed to be determined on the deformed body. But for linear elasticity, it is 
assumed that there is no significant difference in shape and size between the 
original body and the deformed body; therefore, there is only one stress tensor, the 
Cauchy stress tensor.  
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Figure 2.1 Surface force �F on �A at Point P 
 

 

 

 

 

 

 

 

 

 

Figure 2.2 Traction vectors on three independent planes 
 

2.3 PIOLA�KIRCHHOFF STRESSES  

For a large deformation, the stress tensor determined on the undeformed (or 
reference) body can differ substantially from the stress tensor determined on the 
deformed body (or the Cauchy stress). For large deformation problems, the 
boundary conditions on the current body are in general functions of the 
deformation if Eulerian formulation is used or a current deformed body is used as 
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a reference. Therefore, it is more convenient to formulate large deformation 
problems using Lagrangian formulation (i.e., problems formulated referring to the 
initial configuration). There two choices for stress tensor formulated on the 
reference state.   
 Physically, the first Piola�Kirchhoff (PK) stress is defined using the actual 
force dP on the undeformed body dS0, as shown in Fig. 2.3. Note that the dotted 
force on the undeformed body V0 is simply translated from the deformed body.  
Using this definition, we have 
  1 0( ) ( )PK dS d dS� �� �P n' � �  (2.3) 
The first Piola�Kirchhoff stress �PK1 is also known as nominal stress, engineering 
stress, pseudo-stress tensor, or Lagrangian stress tensor. Since the deformation 
vector in the current configuration is defined by the following mapping 
  d d� �x F X  (2.4) 
the second-order tensor F is called the deformation gradient. Further discussion of 
this deformation gradient tensor and strain will be given in the next section. The 
applied force vector also follows the same mapping: 
  d d� �P F P*     or    1d d�� �P* F P  (2.5) 
With Nanson formula, dS0 can be related to dS as 

  10
0dS dS

(
(

�� �n N F  (2.6) 

The proof of Nanson formula is given in Appendix A. Substitution of (2.6) into 
(2.3) gives 

  10
1 0 0( )PKd dS dS

(
(

�� �� � �P F' � ' �  (2.7) 

Therefore, the first Piola�Kirchhoff stress (or first PK stress) can be related to the 
Cauchy stress as 
  1PK J� �� �G  (2.8) 
where G is the inverse of the deformation gradient F and is defined as  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.3 Forces on undeformed and deformed bodies 
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The Jacobian is the magnitude of the deformation gradient F or the volume ratio of 
the deformed to that of the reference body:  

  0

0

dVJ
dV

(
(

� �  (2.10) 

Since G is not symmetric, the first PK stress is not symmetric. It is awkward to use 
unsymmetric stress. Therefore, the second Piola�Kirchhoff stress is proposed. 
 The second Piola�Kirchhoff stress is defined as the transformed or mapped 
force dP* on the undeformed body dS0.  In particular, we have 
  1

2 0( ) ( )PK dS d dS�� �� � �P* F n' � �  (2.11) 
Again, substitution of Nanson’s formula (2.6) into (2.11) gives 

  

1 10
2 0 0

1 10
0

( ) ( )

( )

PK

T

d dS dS

dS

(
(

(
(

� �

� �

� �

�

� � � �

� � �

P* F F

F F

' � ' �

' �
 (2.12) 

Thus, the second Piola�Kirchhoff (2nd PK) stress can be related to the Cauchy 
stress as 
  2

T
PK J� � �� �G G  (2.13) 

which is clearly symmetric. Thus, the second Piola�Kirchhoff stress is more 
convenient for numerical analysis for large deformations, such as the nonlinear 
finite element method. The disadvantage of using the first and second 
Piola�Kirchhoff stresses is that they do not physically relate to the traction on the 
surface of the solid or the force per unit deformed area, as shown in Fig. 2.3.  
More discussion on these stresses can be found in Malvern (1969). 

 2.4 COORDINATE TRANSFORMATION OF STRESS  

We now restrict our discussion to small deformations, and for such cases all 
Cauchy, first PK, and second PK stresses are the same.  A complete determination 
of the stress tensor � requires the information of three independent traction vectors 
around the point P, obtained by cutting free surfaces along other orientations. For 
example, Fig. 2.4 illustrates the traction vectors on three independent planes for a 
particular Cartesian coordinate. The three components of T(1), T(2), and T(3) are 
(�11, �12, �13), (�21, �22, �23), and (�31, �32, �33). As shown in Fig. 2.4, note that the 
first subscript of �ij indicates the plane on which the stress component acts, and the 
second subscript j indicates the direction along which the stress component acts. It 
is obvious that the stress at point P has nine independent components, thus it is a 
second-order tensor (compare discussion in Chapter 1). 
 In addition to this surface traction, body force may also act on the body 
through “action-at-a-distance.” Gravitational force is the most trivial example of 
body force, which is reckoned per unit mass or unit volume. Pore water pressure 
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and thermal stress can also be considered body forces.  The effect of pore pressure 
can be modeled by the theory of poroelasticity, a topic covered in Chapter 8.  This 
body force will not be considered here but in the section of force equilibrium. 
 The transformation of stress tensor from one coordinate to the other can be 
done by multiplying the directional cosines, between the axes of the new and old 
systems, to the tensor components. For example, in index notation of the Cartesian 
tensor, it can be done as 
 p q

i jij pq  a a� ��  (2.14) 
where ai

p is the directional cosine between axis ix  of the new (barred) coordinate 
system and axis xp of the old (unbarred) coordinate system, i.e., 
  cos( , )p

i i pa x x�  (2.15) 
For example, the angle a1

2 is illustrated in Fig. 2.5. 
 

 

Figure 2.4 The stress components in Cartesian coordinates 
 

 
Figure 2.5 Rotation of axes 
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 The Cauchy stress tensor � can be shown to be symmetric by taking 
moments about the xi- (i = 1, 2, 3) axis as the element shown in Fig. 2.4 shrunk to 
zero. That is, �ij = �ji (This result will be shown later using a more rigorous 
approach). This conclusion is only valid when there are no distributed or surface 
couples on the solids. If that is not the case, a whole new theory called micropolar 
elasticity emerges. Such a medium is sometimes called the Cosserate continuum. 
Intensive research on micropolar elasticity is still being carried out. It also finds 
application in explaining the width of shear band observed in soils (Muhlhaus and 
Vardoulakis, 1987) and bifurcation in rock specimens (Sulem and Vardoulakis, 
1990) under triaxial tests. But, we will not digress to such a theory since it is much 
more complicated than the theory for classical elastic solids. 

2.5  BASIC CONCEPT FOR STRAIN TENSOR 

The formulation of strain tensor in this section will not follow the traditional 
approach way of considering the kinematics of deformed elements (e.g., 
Timoshenko and Goodier, 1982). Instead, we use the exact approach called 
Lagrangian formulation, which is also valid for large deformation formulation. In 
this approach, the strain tensor is formulated on the undeformed body (now the 
deformation in the body is considered to be large such that there is a significant 
difference in position between the undeformed and deformed bodies). When the 
strain is formulated on the deformed body, we called it the Eulerian formulation. 
In elasticity formulation, however, the Lagrangian formulation is more suitable 
since there is a natural undeformed state to which all deformed states must return 
upon unloading. 
 Figure 2.6 depicts both the undeformed natural state of a body under 
unloaded condition and the deformed state of the same body under loading. It also 
shows the displacement, stretch, and rotation of a material vector dX in the 
undeformed body to dx in the deformed body. The initial point X in the body is 
displaced to a current position x, by the following deformation: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.6 The deformation of dX at X to dx at x 
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 1 2 3),  or ( , , , )( ,      i it tx x X X X� �x x X  (2.16) 
and inversely by 
 1 2 2( , ), ( , , , )       i it or X X x x x t� �X X x  (2.17) 
We introduce here another useful second-order tensor called the deformation 
gradient tensor: 
 ( )Tx x� �� �F  (2.18) 
where the vector differential operator � is defined in (1.36) in Chapter 1. Then, an 
arbitrary infinitesimal material vector dX at X is associated with dx at the current 
position x as 
 Td d d d�  ,   or    = � �x F X x X F  (2.19) 
Let dS = (dX	 dX)1/2 be the length of the material vector dX in the original 
undeformed state, then the length of the material vector dx in the deformed state ds 
is given by 
 2( ) T Tds  = d d d d d d = ( ) ( ) = ( )� � � � � � �x x X F F X X F F X  (2.20) 
By definition, the Green’s strain tensor is 
 2 2( ) ( )ds dS  = 2d d� � �X E X  (2.21) 
which is one of the ways to define strain tensor. This is a strain measure 
introduced by George Green in 1838. Green was a self-taught, extraordinary 
scientist whose brief biography is given in the “Biography” section at the end of 
this book.  Physically, Green’s strain tensor is the change in the squared length of 
a line element in the reference configuration.  Comparison of (2.20) and (2.21) 
yields: 
 1 1

2 2( ) ( )  T� � � ��E F I C IF  (2.22) 
where I is the second-order unit tensor and C is the right Cauchy�Green tensor. 
Analogous to C, we can define the left Cauchy�Green tensor B as 
  T� �B F F  (2.23) 
If the strain is formulated in the Eulerian or current configuration, the Eulerian or 
Alamani’s strain tensor e is defined as 
 1 1

2 2( ) ( )  T� � � ��e I G G I c  (2.24) 
where c is the Cauchy strain tensor and  
 1 1( )T� �� �G F F  (2.25) 
Referring to Fig. 2.6, we have 
 u + X= x  (2.26) 
Therefore, the deformation gradient tensor F is 

 ( ( ))T i
ij i j

j

u
X

�
�

� � � � �
�

F I u e e  (2.27) 

Substitution of (2.27) into (2.22) gives 

 

1 1
2 2

1 1
2 2

( ) [( )( ) ]

( )

k k
ij ij ki kj ijki kj

i j

ji k k

j i i j

u u  F F   E X X

uu u u  
X X X X

� � � �
� �

� � � � � �
� �

�� � �
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� � � �

 (2.28) 
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For the case that the deformation is small (i.e., Xi ) xi), we have 
 1 1

, , , ,2 2( )ij i j j i k i k j u ue u u� � �  (2.29) 
For small strain problems, the last term on the right-hand side of (2.29) can be 
neglected and this results in the classical displacement-strain relationship (e.g., see 
Timoshenko and Goodier, 1982). Therefore for small strain and small deformation, the 
strain tensor can be defined as 
 1

2 ( )= +� ��* u u  (2.30) 
which applies to Cartesian coordinates, as well as to polar coordinates as 
demonstrated in Chapter 1. 

2.6 RATE OF DEFORMATION 

For later hypoelasticity discussion, the incremental forms of stress and strain in 
formulating constitutive law are introduced here.  For such cases, the rate of 
deformation is needed.  Let us start with considering the velocity change as 
 d = d�v L x*  (2.31) 
where L is the velocity gradient tensor.  The physical meaning of dv is illustrated in 
Fig. 2.7.  Since the deformation tensor is defined as 
 d = d�x F X*  (2.32) 
the time derivative of (2.32) gives 
 1d = d d d�� �� � � �v F X = F F x = L x*  (2.33) 
This gives a relation between L and F.  The symmetric and asymmetric parts of L are 
defined as 

  1 ( )
2

T� �D L L* ,   1 ( )
2

T� �L L+*  (2.34) 

which are the rate of deformation and the rate of rotation tensor, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7 The definition of velocity gradient tensor 
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2.7 COMPATIBILITY EQUATIONS 

Since (2.30) is symmetric with respect to its indices, there are only six independent 
strain components. If the strain in a body is given, then (2.30) provides six partial 
differential equations for three unknown displacement components. Therefore, the 
strain components cannot be prescribed arbitrarily; there must be some constraints 
or conditions that have to be satisfied among the strain components. The 
conditions for (2.30) to be integrable for u are called the Saint�Venant’s 
compatibility equation, and can be obtained by applying the curl operator twice to 
� given in (2.30), once from the left and once from the right: 
 ,0  or 0 =    ,       ijl pkr jk ipe e �� �� � � �S �  (2.35) 
This integrability condition can easily be seen if one remembers that the curl of a 
gradient is zero [see (1.46) of Chapter 1]. It can easily be shown that the index notation 
in (2.35) is symmetric, thus only six independent components remain. However, it is 
clear that we need only three conditions for (2.30) to be integrable. It can be further 
shown that the six components of S have to again satisfy three conditions called 
Bianchi equations (Malvern, 1969; Washizu, 1958); the details will not be discussed 
here. 
 It will be shown later that the compatibility equations have to be satisfied if 
stress is formulated as the unknown in boundary value problems, such as in the 
Airy stress function formulation in 2-D elasticity. If the displacement functions are 
used explicitly in the formulation, then the compatibility equations are not needed, 
such as the Galerkin vector for 3-D problems to be discussed in Chapter 4. 

2.8 HILL’S WORK-CONJUGATE STRESS MEASURES  

By now, we have introduced the concept of stress and strain. For large deformation, 
the pair of strain measure and its work-conjugate stress measure should be used in 
constitutive law formation or when the rate of stress working is considered (Hill, 
1978). In particular, the rate of stress working per unit current volume is 
 :cW � D��  (2.36) 
Alternatively, the rate of stress working per unit reference volume is 
 : :W J� �D D� ,�  (2.37) 
where , is called the Kirchhoff stress tensor. If the first Piola�Kirchhoff stress is 
adopted, the conjugate strain is the time derivative of the deformation gradient. That is, 
  1 :PKW � F�� �  (2.38) 
If the second Piola�Kirchhoff stress is adopted, the conjugate pair of strain is the time 
derivative of the Green’s tensor defined in (2.22): 
 2 :PKW � E�� �  (2.39) 
Instead of rate of stress working, we can also determine the conjugate pair by 
considering the strain energy per unit initial volume. In particular, as discussed by 
Bažant and Cedolin (1991), the stress and strain used in constitutive law 
formulation must be a conjugate pair in doing work, which is the Helmholtz free 
energy if the condition is isothermal and the total energy if the condition is 
adiabatic. 
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2.9 CONSTITUTIVE RELATION 

The deformation in a solid depends on how the solid responds to applied 
excitations, such as loads. Constitutive relation is an expression that relates stress 
and strain at any point inside the solid. In this section, we restrict our discussion to 
small deformation. The macroscopic constitutive response for a solid can be 
considered the overall effect of the individual microscopic constituents of the 
materials. It can be time or loading rate dependent. Most of the constitutive 
response is direction sensitive, i.e., anisotropic. If all time effect is neglected, we 
can simply assume 
 ( )� f� �  (2.40) 
Linearization of (2.40) leads to the following classical form: 
 or       ij ijkl klC� �� �� * * - �C  (2.41) 
where C is a fourth-order tensor called the elasticity tensor. There are, in general, 81 
components for C, but due to the symmetric properties for both strain and stress (six 
independent components each) only 36 possible constants exist. If one further assumes 
that the potential energy function exists, they reduce to 21. This can be shown by 
assuming the Clapeyron formula for strain-energy function: 
 1 1

2 2  ij ij ijkl ij klW  C� � � ���  (2.42) 
It is clear from the last part of (2.42) that Cijkl = Cklij; this symmetric property reduces 
the elastic moduli to 21. In the terminology of material science, it is called triclinic. It 
can be shown that the number of constants reduces to 13 when there is one plane of 
symmetry; this kind of symmetry is also called monoclinic. When three mutual planes 
of symmetry exist, the number of independent constants reduces to 9. This is called 
orthotropic or orthorhombic. When there is a plane of isotropy (i.e., isotropic property 
within the plane), 5 independent constants remain and the solid becomes transversely 
isotropic or hexagonal. In cubic materials, there are 3 elastic constants. And, finally, 
for isotropic elastic solids, there are 2 independent constants.  General discussion on 
anisotropic solids can be found in Hearmon (1961) and Lekhnitskii (1963).  
 To date, most of the analytic solutions are for isotropic solids. In this chapter, 
attention will be restricted to isotropic and transversely isotropic solids. 

2.10 ISOTROPIC SOLIDS 

The three-dimensional Hooke’s law for an isotropic solid can easily be generalized 
from the one-dimensional Hooke’s law. Consider a uniaxial tension �11 applying 
on a parallelepiped along the x1 direction, as shown in Case I of Fig. 2.8. The axial 
strain will be �11 = �11/E, where E is called the Young’s modulus; the lateral 
strains along both the x2 and x3 directions will be �#�11 (i.e., �22 = �33 = �#�11), 
where # is called the Poisson’s ratio. If the solid is isotropic, a uniaxial tension 
applied along the x2 direction yields �22 = �11/E as the axial strain, and �#�22, as the 
lateral strains (this is illustrated in Case II of Fig. 2.8). That is, the same Young’s 
modulus and Poisson’s ratio apply irrespective of directions. A similar situation again 
applies to uniaxial tension along the x3- direction, as shown in Case III of Fig. 2.8. For 
infinitesimal deformations, the relation between stress and strain is linear. Thus, the 
principle of superposition applies. If all normal stresses along x1, x2, and x3 are applied 
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simultaneously, the overall axial strains are simply the superposition of strains due to 
each stress component. For example, the axial strain along the x1- direction is 

 11 11 22 33 11
1 1[ ( )] [(1 ) ]kk    
E E

� � # � � # � #�� � � � � �  (2.43) 

Combining all three normal strains, we can write 

 1 [(1 )= ]kkE
# #�� �� � I  (2.44) 

For nondiagonal components, (2.44) implies 

 1 1 , ( )
2ij ij ij         i j

E G
#

� � �
�

� � �  (2.45) 

where G is called the shear modulus. This can easily be verified as the modulus 
governing deformation due to a shear stress applied on a parallelepiped, as covered in 
most textbooks on elasticity (e.g., Timoshenko and Goodier, 1982). 
Taking the trace of (2.44) we get 

 1 2 1
3kk kk kk   

E K
#� � ��

� �  (2.46) 

where K is the bulk modulus relating the compressibility of solids. Note that the trace 
of a second-order tensor � can be defined as tr(�) = I:� or �kk. Rearranging (2.44) and 
applying (2.46), we have 
 
 

 
 

Figure 2.8 Uniaxial compression along three independent directions 
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 + 2
1 (1 )(1 2 ) kk kk

E E# � $ ��
# # #

� � �
� � �

� �� I I  (2.47) 

where � and $ are the Lamé constants. Note that $ is also called the shear modulus 
and denoted by G as defined in (2.45). In Cartesian components, the relationship 
between the stress � and strain � can be expressed as  
 2ij kk ij ij  � �� � $�� �  (2.48) 
It can further be shown that the elastic tensor C for isotropic solids in Cartesian 
coordinates is 
 ( )ijkl ij kl ik jl il jkC    � � � $ � � � �� � �  (2.49) 
In isotropic solids, there are only two independent materials constants; all E, K, G, #, 
�, and $ can be shown to be related as 

 2
3

2 ( 2 ) 3 3 (3 )
1 2 3 (1 )(1 2 ) 1 9

G G E G E K K K E      K G      
G E K E

# # #�
# # # #

� �
� � � � � � �

� � � � � �
 (2.50) 
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(1 2 ) 3 (1 2 ) 3( )
2 2(1 ) 2(1 ) 9

E K KE  G    K       
K E

� # #$ �
# # #
� �
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 (2.51) 

 3 2 31
2( ) (3 ) 2 2(3 ) 6

E K G K E           
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� �#
� �

� �
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 (2.52) 

(3 2 ) (1 )(1 2 ) 9 ( ) 92 (1 ) 3 (1 2 )
2(3 ) 3

G G K K KGE        G    K
G K G K G

� � # # � # #
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 (2.53) 
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3

(1 ) 2 (1 )
3 3(1 2 ) 3(3 ) 3(1 2 )

G GE EK  G         
G E

� # #�
# # #
� �
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 (2.54) 

The method of solution for problems in isotropic elastic solids will be discussed later 
after the constitutive form of transversely isotropic solids is introduced. 
 Young’s modulus and Poisson’s ratio are normally determined from either 
uniaxial or triaxial compression tests.  However, as discussed by Filon (1902) and 
Chau (1997), when friction exists between the loading platens and the end surfaces of 
the solid cylinder, a correction factor needs to be applied to get the true Young’s 
modulus because of the nonuniform stresses. In the case of plane compression, the 
correction factor was considered by Chau (1999), using the hypercircle approach of 
Synge and Prager.     

2.11 TRANSVERSELY ISOTROPIC SOLIDS 

As mentioned in Section 2.9, there are five independent material constants for 
transversely isotropic solids. In explicit Cartesian component form, we have 
 11 11 11 12 22 13 33  C C C� � � �� � �  (2.55) 
 22 12 11 11 22 13 33  C C C� � � �� � �  (2.56) 
 33 13 11 22 33 33( )  C C� � � �� � �  (2.57) 
 12 11 12 12 3 44 3( ) , 2 ( 1,2)i iC C    C      i� � � �� � � �  (2.58) 
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Hooke’s law for transversely isotropic solids can be written in terms of Cartesian 
tensors as, C = Ciknm ei ek en em, where Ciknm is (Srinivasan and Nigam, 1969) 
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� � � �
� �

� � � �
 (2.59) 

in which we have assumed the x3-axis is perpendicular to the plane of isotropy. 
Comparison of (2.59) to (2.55)�(2.58) yields the following definitions for �, �, ., /, 
and �: 

 
1 1
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33 11 13 12 44
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3 2( 2 ) 4
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 (2.60) 

The physical meaning for Cij (i, j = 1, 2, 3) is not readily understandable. We invert 
Hooke’s law such that 
 ik iknm nmS� ��  (2.61) 
where Siknm is the compliance tensor and is defined as 
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 (2.62) 

These parameters are now related to the following physical parameters: 
1 1 1 1 3 2 4, , ( ) , , 2( )

2 2
                       

E G E E E E E E E E G
# # # # # # #� 0 / � .
1 1 1� �

� � � � � � � � � � � � �
1 1 1 1 1

 

   (2.63) 
where E and E1 are the Young’s moduli in directions perpendicular and parallel to the 
plane of symmetry, respectively; # and #1 are the Poisson’s ratios for modeling the 
transverse deformation (compressive/tensile) in the directions perpendicular and 
parallel to the plane of symmetry, caused by perpendicular stresses (tensile/ 
compressive).   
 The general theory for solving transversely isotropic solids was derived by 
Hu (1954) and is also found in Lekhnitskii (1963). For the application of the 
theory of transversely isotropic solids to rock mechanics, we refer to the analysis 
by Chau (1994b) and the related analyses on spherically isotropic solids by Wei 
and Chau (2002, 2009), Chau and Wei (1999), and Chau (1995a, 1998b). 

2.12 EQUATIONS OF MOTION AND EQUILIBRIUM 

Let us consider a body, either elastic or not, with volume V and surface S as shown 
in Fig. 2.9. Applying Newton’s third law to the body Vi, which is an arbitrary 
volume inside the body V, we arrive at the following force equilibrium: 

 V S V
d ddV dS dV
dt dt

(� �� � �  � uF n �  (2.64) 

where u is the displacement vector. In this equation, the body force is denoted by FdV 
and the surface force by n	 � dS, where n is the unit normal to the surface Si of body 



 Elasticity   31 

 

S

iV
dVF

iS in
i dS	n �

V

Vi. The second term on the left-hand side of (2.64) can be transformed to volume 
integral by using the divergence theorem discussed in Section 1.6.1. Thus, we have: 

 
2

2( )
V V

ddV dV
dt

(� �+  = �
uF��  (2.65) 

Since the volume Vi can be taken arbitrarily as long as it is inside the body V, we must 
have 

 
2

2
d
dt

(� � ��� uF  (2.66) 

at every point inside the body V. This is the equation of motions. When the force of 
inertia is absent or all loadings are quasi-static, the equation of equilibrium is obtained: 
 0� � ��� F  (2.67) 
In addition, the moment of momentum must also be in equilibrium, therefore we have 

 ( )   V S V
d ddV dS dV
dt dt

(� � � � �� � ��� ur F r n r  (2.68) 

We now proceed with the Cartesian components such that (2.68) becomes 

 m m k m nrmn n rmn kn rmnV S V
de F dV e dS e dVx x n x v
dt

� (� �� � �   (2.69) 

where vn = dun/dt is the velocity component. We now apply the generalized Gauss 
theorem to the second term on the left-hand side to yield (Malvern, 1969) 

 
( )

( )m kn kn
m k mrmn kn rmn rmn mnS V V

k k

xe dS  e dV  e dVx n x
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� �

� �
� �
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� �

 (2.70) 

Back substitution of (2.70) into (2.69) and application of the equation of motion (2.66) 
again gives us 

 n n
m m n mrmn mn rmnV V

d dv ve ( + )dV = e ( + )dVx v v x
dt dt

� ( (� �  (2.71) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.9 Momentum balance of body Vi 
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We further note that ermnvmvn  = 0 since vmvn is symmetric while ermn is antisymmetric in 
m and n. Thus, we must have ermn�mn = 0, which is satisfied if and only if � is 
symmetric. Therefore, it can be concluded that the stress tensor must be symmetric if 
there is no concentrated or distributed moments inside the body. The theory of 
micropolar elasticity does allow such a possibility, but it is outside the scope of the 
present study. 
 For isotropic solids, substitution of (2.30) and (2.48) into (2.67) gives the 
equation of equilibrium in terms of displacement u: 
 u+( + ) +  = 0$ � $� � ��� �u F  (2.72) 
In obtaining (2.72), we have used the identity �	 (u�)=��	 u. Alternatively, using 
vector identity (1.50) of Chapter 1, (2.72) can be written as 
 ( 2 ) ( )+  = 0� $ $�� � �� � � ��u u F  (2.73) 
Equation (2.72) or (2.73) provides the equation of equilibrium in terms of 
displacement and is also called Navier’s equilibrium equation, which is first obtained 
by Navier in 1827 (see Love, 1944). Similarly, the surface traction can also be written 
in terms of displacement. Substitution of (2.30) and (2.48) into (2.2) gives 
 ( ) ( ) ( )$ $ �� � �� � �� � �n u n u n u T  (2.74) 
Using the following identity 
 ( ) ( ) ( )� � � �� �� � �n u n u n u  (2.75) 
we find another form for the surface traction T: 
 2$ $ �� � �( ) + ( )+ ( )� �� � �n u n u n u T  (2.76) 
When displacements are written explicitly as the unknown, the equation of 
compatibility is not required to be satisfied (it has been satisfied automatically). 
 For anisotropic solids, the equation of equilibrium will be much more 
complicated when it is written in terms of displacements.  

2.13 COMPATIBILITY EQUATION IN TERMS OF STRESS TENSOR 

Sometimes, it is more convenient to rewrite the compatibility in terms of stress 
tensor. We start by introducing a double cross product: 

 i l j k ij klA B
�

� �
�

 =  A B e e e e  (2.77) 

where ei is the base vector of any Cartesian coordinate. We now apply this double 
cross product to (2.77) as 

( ) ( ) ( ) ( )i i j jk k i j i k jk� �
� �

� � � � � � � � � � �
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I e e e e e e e e E�� � � � � �  (2.78) 

Expanding the triple cross product using (2.75), we obtain 
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 (2.79) 

Each of these four terms in the second part of (2.79) can be interpreted again in 
symbolic form together with (2.35), and therefore we obtain 
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 +( )  = 0kk�� �� � �� � ��� � � �� � �  (2.80) 
We now substitute (2.44) into (2.80), and the equation of compatibility can be written 
in terms of the stress tensor �: 
 (1 )[ ( ) ] 0kk kk# # � ��� � � � � � � ��� � � � � �� � � � I� � �  (2.81) 
Taking the trace of (2.81), we can show that 

 1
1

( )kk
#

�
#

� � � �
�

�
�

� � ��  (2.82) 

Substituting (2.82) and the equilibrium equation (2.67) into (2.81), we finally obtain 
the following Beltrami�Michell compatibility equation 

 1 • • (
1 1

 kk
#��

# #
�� � � � � ��� � � � �

� �
FI F F  (2.83) 

which was obtained by Beltrami in 1892 and by Michell in 1900. 

2.14 STRAIN ENERGY DENSITY 

If a solid is purely elastic, it recovers all its deformation upon unloading. To put 
the statement into energy terms, all the external work done by applied loads on the 
body will be stored in the form of potential energy or the strain energy, and will be 
totally recuperated when the loads are removed. For most geomaterials, this is not 
true. In soils, frictional energy is dissipated when relative displacement between 
soil particles occurs under external loads; in rocks, growth of microcracks and 
frictional sliding between the surfaces of closed microcracks under external loads 
also result in energy loss. Therefore, energy loss due to these nonlinear processes 
must be incorporated in formulating the energy function in geomaterials if a more 
realistic prediction is desired. (This will be done in Chapter 6 on fracture 
mechanics.) Nevertheless, the existence of a recoverable strain energy does lead to 
some beautiful mathematical results and consequences. 
 Consider again an elastic body of volume V and surface S, as shown in Fig. 
2.9. The total work done W on the elastic body by body force F and external 
traction T is 

 
00

( )( )
ff uu

SV
W  d dSd dV� � � �� � �� T uF u  (2.84) 

where u is the deformation and uf is the current value of deformation field. Using T = 
n	 � and applying the divergence theorem to the second term of (2.84), we obtain 

 
0

( [ ( )])
fu

V
W d d dV� � � � � ��F u + u�  (2.85) 

Note that the last term can be expressed as two terms by using the following formula: 
 d d d ( ) = ( ) + :� � � �� � �u u u� � �  (2.86) 
In Cartesian coordinates, the operators � and d are commutative, and we have 
 : : : ( ) :d d d d� � � �� � +u u� � � � � �  (2.87) 
in which we have decomposed the displacement gradient tensor into the strain tensor � 
and the rotation or spin tensor +.  Note also that �:d+ = 0 since � is symmetric while 
+ is antisymmetric.  Therefore, the strain energy is 
  :dW d�� �  (2.88) 
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or 
 :W d� �� �  (2.89) 

Furthermore, if � and � are linearly related for elastic bodies under small deformations, 
we must have 
 1

2: ( : )  d d�� � � �  (2.90) 
Combining (2.85) and (2.90), we finally get 

 
0

1 1[( ) ( )]
2 2

fu

V V
W d d dV dV2 3� � � �4 56 7� � �: :� ��F u� � � � �  (2.91) 

since the first term inside the brackets vanishes by the equilibrium equation. 
Therefore, the strain energy density is 
 1

2dW = -� �  (2.92) 
Note that we have not made any assumption on the constitutive behavior of the solid in 
the derivation of (2.92), so it applies to isotropic as well as anisotropic solids. 

2.15 COMPLEMENTARY ENERGY  

To consider complementary energy, we first introduce the following Legendre 
transform as 
  := W(8 �� �  (2.93) 
Taking the differential form of (2.93) yields 
  : :d = dW d d( 8 �� �� � �  (2.94) 
Substituting (2.88) into (2.94), we have 
  :d = d( 8 ��� �  (2.95) 
We now define the incremental complementary energy as 
   :cdW d = d( 8� � � �  (2.96) 
Thus, complementary energy can be obtained by integrating (2.96)  
  :cW d� �� �  (2.97) 

The physical meaning and relation between strain and complementary energies are 
illustrated in Fig. 2.10. The horizontal hatched strip represents the increment of 
complementary energy (2.96), whereas the vertical hatched strip represents the 
increment of strain energy (2.88). For linear elastic solids, the stress strain relation 
becomes a straight line and in this case the complementary energy will be the same as 
the strain energy.  

2.16 HYPERELASTICITY AND HYPOELASTICITY 

As mentioned in the Introduction, if elastic potential or strain density function 
exists in an elastic body, the body is called hyperelastic. Elastic solids with the 
existence of strain energy function were first considered by George Green in 1839 
and thus they are also called Green-elastic (Malvern, 1969). For example, 
substitution of (2.47) into (2.92) gives 
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Figure 2.10 Strain energy and complementary energy 
 

 1
2 tr 2+ :)dW = (� $� � �  (2.98) 

Inversely, substitution of (2.44) into (2.92) yields 

 21 [(1 ) ( ])
2dW  tr

E
# #� � �� � ��  (2.99) 

This elastic potential, of course, only applies to isotropic bodies under small strain and 
deformation. One main application of hyperelasticity has been on highly elastic bodies 
under finite deformation, such as rubber-like materials. The main issue is how to 
postulate the strain energy function in terms of invariants of the stress tensor, and 
subsequently how to determine the unknown coefficients involved in elastic potential. 
Most applied mathematicians working on elasticity follow such an approach. We will 
not explore such a theory in detail here. Some of the more commonly adopted models 
are 
Neo�Hookean material: 
 1( 3)BW = c I �  (2.100) 
Mooney�Rivlin material: 
 1 2( 3) ( 3)B BW = c I c II� � �  (2.101) 
Rivlin�Saunders material: 
 1( 3) ( 3)B BW = c I f II� � �  (2.102) 
where  

 B KKI B� ,   1 ( )
2B KK LL KL KLII B B B B� �  (2.103) 

The stress tensor is given by 

 12 2
B B

W Wp
I II

�� �
� � � �

� �
� I B B  (2.104) 

where p is the pressure, I is the unit tensor, and tensor B is the left Cauchy�Green 
tensor defined in (2.23). 
 As mentioned earlier, hypoelasticity deals with elastic solids in which the 
stress rate is proportional to the rate of deformation D 
 = :� C D,  (2.105) 
where ,�, the Jaumann rate of Kirchhoff stress, which is a frame-indifferent quantity, 
and D are defined as 
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 1• • , ( )
2

    � � � � �� D v v, � , ,, + + � � , (2.106) 

respectively, and v is the velocity vector, + the rotation tensor, and �,  the material 
time derivative of Kirchhoff stress. If there is no abrupt change in the material 
response with respect to nonproportional load, the last two terms in the first part of 
(2.106) can be neglected. More detailed discussion on frame-indifference and the 
Jaumann stress rate can be found in Malvern (1969). Bažant and Cedolin (1991) 
showed that many other kinds of frame-indifferent stress rates (or objective stress rate) 
can be used, including Truesell’s stress rate, Biot’s stress rate, Green’s stress rate, 
Oldroyd’s stress rate, and Cotter�Rivlin stress rate. However, the choice of stress rate 
must be associated with work with some admissible finite strain as discussed in 
Section 2.8 (Section 11.3 of Bažant and Cedolin, 1991).  

2.17 PLANE STRESS, PLANE STRAIN, AND THE AIRY STRESS 
FUNCTION 

Three-dimensional problems in elasticity are difficult to solve. This is partly due to 
the fact that the geometrical shape of the boundary can, in general, be very 
irregular, and, partly because the conditions to be satisfied on the surface of the 
body can be mixed (i.e., displacement is prescribed on part of the surface while 
surface traction is imposed on the rest of the surface). In practice, two-dimensional 
(2-D) idealization is always used; two commonly used 2-D conditions are the 
plane strain and plane stress conditions. In particular, in plane strain condition the 
strain dyadic � is reduced to 
 11 1 1 22 2 2 12 1 2 2 1( )+� � �� �� � e e e e e e e e  (2.107) 
In addition, it is assumed that all nonzero stress components are not functions of x3. A 
typical example of plane strain condition is a slice of a dam section under water 
pressure, as shown in Fig. 2.11. Note that the displacement u3 normal to the slice 
surface is identically zero, hence so is the strain component �33. Furthermore, from Fig. 
2.11 it is obvious that u1 and u2 are functions of x1 and x2 only, but not of x3. Therefore, 
the shear strain components �13 and �23 are identically zero. If we substitute (2.107) 
into Hooke’s law, the nonzero stress components can easily to be shown as: 
 11 1 1 22 2 2 12 1 2 2 1 33 3 3)� � � �� � � � �� e e e e (e e e e e e  (2.108) 
As expected, a nonzero �33 is required to prevent displacement along the x3-direction. 
Plane strain condition does lead to a truly 2-D theory. 
 For plane stress condition, we consider a two-dimension body with 
thickness, say 2h, much smaller than the other two dimensions, as shown in Fig. 
2.12; and all loads are applied parallel to the x1-x2 plane. The stresses on the 
surface x3 = ± h must vanish, i.e., 
 3 13 1 23 2 33 3 0+ +� � �� ���e e e e  (2.109) 
since all three stress components must vary from zero on x3  = �h to zero again on x3 = 
h. We generally assume that all of them are identically zero. Without this assumption, 
the plane stress condition will not lead to two-dimensional theory. That is, the only 
nonzero stress components are 
 11 1 1 22 2 2 12 1 2 2 1 = + + ( )� � � �� e e e e e e e e  (2.110) 



 Elasticity   37 

 

3x

1x

2x

2h 1x 2x

3x

where �11, �22, and �12 are functions of x1 and x2 only, but not of x3. Substitution of 
(2.110) into Hooke’s law leads to 
 11 1 1 22 2 2 12 1 2 2 1 33 3 3 = + + ( )+� � � ��� e e e e e e e e e e  (2.111) 
in which the nonzero component �33 indicating that the body is free to expand along 
the x3-axis. As discussed by Timoshenko and Goodier (1982), this plane stress state 
satisfies the compatibility if and only if �33 is a linear function of x1 and x2. This, of 
course, is too restrictive for general problems. Therefore, the solutions for plane stress 
problems are of approximate nature, but should closely resemble the actual solution if 
h is small (see Article 98 of Timoshenko and Goodier, 1982). In addition, the out-of-
plane bucking in the x3-direction is neglected in plane stress theory due to the 
assumption of small deformation. 
 For isotropic solids, it can easily be shown that the constitutive response for 
both plane strain and plane stress problems can be written in terms of a unified 
form (Karasudhi, 1991): 
 
 

 
 

Figure 2.11 Example of plane strain condition 
 
 
 

 
 

 
 
 

 
 

 
 
 

Figure 2.12 Example of plane stress condition 
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 1 3[ (  ) ]
2 4ij ij ij  tr/
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$

�
� � �  (2.112) 

where i, j = 1, 2 and � is given in (2.110) and / equals (3�#)/(1+#) for the plane stress 
condition and 3�4# for the plane strain condition. Inversely, (2.112) can be written as 

 [2( 1) (3 )(tr ) ]
1ij ij ij  $ / /� � �

/
� � � �

�
�  (2.113) 

where, again, i, j = 1, 2. 
 For the plane strain condition, the equation of compatibility (2.35) is 
identically satisfied except for the following component: 
 11,22 22,11 12,122 0+  � � �� �  (2.114) 
Substitution of (2.112) into (2.114) and elimination of the shear stress component by 
using the two-dimensional equilibrium equations yields the compatibility equation in 
terms of stress: 

 2 4( ) ( )
1

�tr
+ �

� � � ��F  (2.115) 

where 

 , 1,2i
i

     i
x
�

�
�

� � e  (2.116) 

Now we assume that the body force is conservative (i.e., F1,2 = F2,1), such that it can be 
written in terms of a potential V as 
 V�� �F  (2.117) 
Then the equation of equilibrium becomes 
 • 0V� �� ��  (2.118) 
which can be written as 
 • [ ] 0V� �  � I�  (2.119) 
where I = e1e1 + e2e2. Since the divergence of a curl must be zero (see (1.47) of 
Chapter 1), � � IV must be the curl of some dyadic. In addition, � is symmetric and 
with only nonzero components �11, �22, and �12, it is therefore natural to try the 
symmetric dyadic � (x1, x2) e3e3 which is operated twice symmetrically with the curl 
operator. That is, we assume 
 3 3 3 3( ) ,I  =     or    = I ( )V V� �� � � � � � �e e e e� �� � � �  (2.120) 
We now consider the trace of the two-dimensional stress tensor: 
 3 3tr( )  2V �� � � �e e� ��  (2.121) 
Using the vector identity (1.48) of Chapter 1, the last term in (2.121) can be written as: 
 3 3 3 3 3 3= ( )+ ( )� � �� � � � � �� � � � � �� � �e e e e e e  (2.122) 
where the last term vanishes as the curl of the grad of a scalar must be zero (see (1.45) 
of Chapter 1). We now apply the vector identity (1.48) of Chapter 1 to the first term on 
the right-hand side of (2.122) and substitute the result into (2.121), we get 
 3 3 3tr( )  2 [ )] 2 (V V� � �� � � � �� � �e e e� � � � ��  (2.123) 
Note that it is easy to see e3	 �  9 0 in (2.123) if we recall the definition of � given in 
(2.116). Substitution of (2.117) and (2.123) into (2.115) leads to the following 
governing equation for � and V: 
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�
� �� � � �  (2.124) 

where �4 is the biharmonic operator and � is called the Airy stress function, which 
was originally proposed by G.B. Airy in 1863. This equation, of course, agrees with 
those given in Article 17 of Timoshenko and Goodier (1982). The above equation 
reduces to the usual biharmonic equation for the Airy stress function if body force is 
neglected. The stress is given in terms of Airy stress function in (2.120). If the body 
force is not conservative, we refer to the recent publications by Ho and Chau (1997, 
1999) and Chau and Wei (2001b). A very detailed historical review on two-
dimensional biharmonic functions was given by Meleshko (2003).  
 Although we have considered the Cartesian components in deriving (2.120) 
and (2.124), the procedure can easily be modified to cylindrical coordinate. That 
is, both of them remain valid for cylindrical coordinates. For example, in terms of 
Airy stress function and body force potential the stress tensor becomes 
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That is, the stress components are 
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 (2.128) 

Now the solution for 2-D elasticity becomes the solution of (2.124) with appropriate 
boundary conditions. The general solution for (2.124) would be the homogenous 
solution for the biharmonic equation plus the particular solution, which depends on the 
form of the body force potential V. 
 We first consider the homogeneous solution. In explicit form, Airy stress 
function satisfies the following equation in polar coordinate: 
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 (2.129) 

By using separation of variables, Michell (1899) presented a so-called “general” 
solution: 
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 (2.130) 

where R is an arbitrary constant to normalize r. Note that the r2� term in (2.130) was 
actually added by Timoshenko and Goodier (1982). The validity of (2.130) can simply 
be checked by its direct substitution in (2.129). A comprehensive table for stress and 
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displacement components due to each term of this homogeneous solution was 
compiled by Karasudhi (1991). For some given conservative body force potential V, 
the particular solutions were also tabulated (Karasudhi, 1991).  
 However, as summarized by Meleshko (2003), some terms were missing in 
Michell’s solution. The most general solution form for separation of variables is 
(Filonenko-Borodich, 1965; Sadeh, 1967; Mann, 1949) 
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 (2.131) 

Physically, the first four terms in (2.131) correspond to more general types of 
dislocations with discontinuous stresses (e.g., Mann, 1949). See also the discussion by 
Wan (1968), Bert (1968), and Hyman (1968). 

2.18 STRESS CONCENTRATION AT A CIRCULAR HOLE 

Consider an infinite two-dimensional elastic body containing a circular hole of 
radius R; and uniform compression is applied at infinity along the x1-direction as 
shown in Fig. 2.13. This solution was obtained by Kirsch in 1898 and is also called 
the Kirsch solution (Hetnarski and Ignaczak, 2011). This simple problem can, 
however, be used to model the stress field around a tunnel (or a borehole) due to 
overburden pressure (or lateral earth pressure). 
 The far field stress tensor is � = �Te1e1 or in polar form 
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as r & �. On the contrary, the traction-free condition on the circular hole applies, 
 0r� � �� �� �n e  (2.133) 
on r = R. We now look for an Airy stress function that will yield the far field stress at 
infinity (r & �) given by (2.132) but at the same time yield near field stress satisfying 
(2.133). An obvious choice for � is 

 2 1 2( , ) ln( ) ( ) cos2 2 2rr   A +C + B  +C + D 2r r rR
� � ���  (2.134) 

 
Substitution of (2.134) into (2.125) yields 

 

2 4 2
2 2 2

42
2 2

4 2
2 22

[ 2 (6 2 4 )cos 2 ]

[ 2 (6 2 )cos 2 ]

( )( 6 2 2 )sin 2

r r

r r

C B C DAr r r
A C B r Cr

CB r D r

� �

� �

�

�

�

� � �

��

� �

� � � � �

� � � � �

� � � � �

� e e

e e

e e e e

 (2.135) 
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Figure 2.13 An infinite plane with a circular hole under compression 
 
The far field condition (2.132) gives 

 22 , 2
2 2
T TC           C� � �  (2.136) 

The boundary condition on r = R yields 
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and the following coupled equations for B2 and D2: 
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The solutions for (2.138) and (2.139) are 
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Back substitution of all the constants into (2.135) gives 
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The stress concentration is expected to be the most severe on the circumference of the 
hole. On r = R, the stress dyadic reduces to 
 1 2cos 2= ( )r R T � � �� � �e e�  (2.142) 
The hoop stress (���) at � = 0 is T (tensile) while the one at � = �/2 is �3T 
(compression). For brittle rocks, the compressive strength to tensile strength is 
typically in the order of 10 to 40. Thus, if we assume that the required stresses for 
cracking and crushing are roughly proportional to the tensile and compressive 
strengths of the rock, respectively, one should expect cracking at � = 0 well before 
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crushing takes place as shown in Fig. 2.14. More rigorous analysis including fracture 
mechanics of the vertical cracks emanating from the hole did show the same 
conclusion (Gharpuray et al., 1990). 
 This solution can readily be used to find the stress state at a circular tunnel under 
a more practical loading:biaxial compression, as shown in Fig. 2.15. We can simply 
add the stress dyadic given in (2.141) to another stress dyadic, which is obtained by 
replacing T and � by �T and �+�/2 in (2.141), respectively. The following stress 
dyadic for the biaxial compression is obtained: 
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Figure 2.14 The position of crack nucleation at a circular hole under compression 
 
 

 
 

Figure 2.15 A tunnel subject to biaxial stresses  
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This solution can be applied to modeling the stress field around either a circular tunnel 
or a borehole. For example, Terzaghi and Richart (1952) applied this solution to 
examine the stress around a tunnel under geostatic stress state. We assume that �22 is 
the vertical stress due to the overburden stress (i.e., �22 = �.z, where z is the depth of 
the tunnel and . the unit weight of rock) and �11 is the lateral earth pressure, which can 
be approximated by 

 11 ( )
1h    K z  z#� . .�

#
� � � � � �

�
 (2.144) 

where # is the Poisson’s ratio of the rock. For a typical Poisson’s ratio of 0.2 for rock, 
K equals 0.25. In applying this to (2.144), we can set T = K.z and � = 1/K. Similar to 
the uniaxial compression case, it is straightforward to see that tensile hoop stress of 
magnitude 0.25.z develops at the roof of the tunnel.  

2.19 FORCE ACTING AT THE APEX OF A WEDGE 

In this section, we consider a thin plate in the form of a wedge which is bounded 
by the planes x3 = ±b, and by the planes � = ±�. As shown in Fig. 2.16, the wedge 
is assumed to be fixed at a great distance from the origin, and subject to a 
concentrated force F applied at the origin. This problem was first considered by 
Michell (1902). The boundary condition on the planes � = ±� is 
 0,      (  = )� � �� ;��e  (2.145) 
Substitution of (2.125) into (2.145) gives: 
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It can be shown that the following form of the Airy stress function can be used: 
 ( , ) ( cos sin )r   r  G H � � � � �� �  (2.147) 
With the Airy stress function given in (2.147), (2.125) yields the stress dyadic 

 2 ( cos sin )r r H G
r

� �� �� e e  (2.148) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.16 A wedge subject to a point force at the vertex 
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This expression predicts that the stress becomes infinity as r tends toward zero. To 
remove this singularity, we exclude the origin from the physical wedge and assume the 
force F being distributed on a small circular arc of radius �. That is, 

 ( 2 ( cos sin ))
2

  = r rr dS H G d
b

�

� �
� � �

�
 � �

� � � �� �� Fe e  (2.149) 

If we write F in terms of its Cartesian components (i.e., F = e1F1 + e2F2 and er = 
e1cos� + e2sin�) we have 

 1 2/ (2 ) / (2 ),
2 sin 2 2 sin 2

b bF FH      G  
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� � �
� �

 (2.150) 

The stress dyadic thus becomes 

 1 21 cos sin[ ]
2 sin 2 2 sin 2r r

F F
rb
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The stress field for a semi-infinite plane subject to an inclined point force can readily 
be obtained as a special case of (2.151) by setting � = �/2. Therefore, the stress dyadic 
becomes 

 1 2
1 [ cos sin ]r r F F
br

� �
�

� � �e e�  (2.152) 

which can further be simplified by letting the magnitude of the point force be F = (F1
2 

+ F2
2)1/2. Thus, as shown in Fig. 2.17, if 0 is the angle between the normal and the 

direction of F, we can write 

 cos( )r r
F
br

0 �
�

� � �e e�  (2.153) 

Now an interesting conclusion can be drawn if we draw a circle with diameter d such 
that r = d cos(0-�) as shown in Fig. 2.17, then the stress on such a circle becomes 
constant and equals 

 r r
F
bd�

� �e e�  (2.154) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.17 The circle of uniform radial stress near the surface 
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The traction on this circle is �er	 � or erF/(�bd), which is always radial and inversely 
proportional to the diameter d. This solution can be used to synthesize the solutions for 
many other loadings or other two-dimensional problems by the principle of 
superposition. Poulos and Davis (1974) have compiled a rather comprehensive list of 
solutions for various types of loading on the surface of a half plane. 

2.20 UNIFORM VERTICAL LOADING ON PART OF THE SURFACE 

The stress field under a patch of two-dimensional load can easily be obtained by 
integrating the solution for line load found in the previous section. We first set F2 
= 0 in (2.152) and rewrite the stress dyadic in Cartesian coordinates:  
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We further write r and � in terms of x1 and x2 as: 
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This line force solution can now be used to estimate the patch load solution. We 
replace F1 by qdx2, and carry out the integration along the surface. This can be done 
more conveniently in terms of d
. Referring to Fig. 2.18, we find 

 1
2 2cos( ) cos ( )

x drd    dx




0 
 0 

� �

� �
 (2.157) 

In obtaining the second part of (2.157), we used r cos(
+0) = x1. The stress dyadic at 
point P becomes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.18 Patch load solution by integrating line load solution 
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  (2.158) 
Note that x1 is independent of 
 while x2 = x1tan(
 + 0). Using this information and 
after integration, we obtain 
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This solution, of course, agrees with the formulas given by Poulos and Davis (1974). 

2.21 SOLUTION FOR INDIRECT TENSILE TEST (BRAZILIAN TEST) 

Both concrete and rocks are very strong under compression but extremely weak in 
tension. Experimental observations show that even when specimens are loaded 
under uniaxial compression, the actual failure is due to tensile crack growth. This 
issue will be discussed in more detail in a later chapter. Therefore, the tensile 
strength is a very important parameter for brittle geomaterials. Since it is very 
difficult to apply uniaxial tension on rock specimens without inducing any stress 
concentration or unwanted bending stress due to eccentricity, indirect tensile tests 
are more commonly used than uniaxial tensile tests. Among these indirect tensile 
tests, the Brazilian test remains the most popular test procedure for obtaining the 
tensile stress for rocks and concrete. Although this test is called the Brazilian test, 
it was proposed independently by Carneiro in Brazil and by Akazawa in Japan 
about 1943 (Fairbairn and Ulm, 2002).  
 Figure 2.19 illustrates a typical experimental set-up for the Brazilian test: a 
rock core of length 2b subjected to concentrated diametral forces F and �F acting 
on the circumference of the rock specimen at points O and O1, respectively. 
 The results of Section 2.20 showed that the contour of constant stress er 	 � 	 er is 
a circle through point O of the boundary of the infinite plate and with its center on the 
line of action of the point force. As shown in Fig. 2.19, our boundary for the indirect 
tensile test is exactly the circle of constant stress for both points O and O1, so it is 
natural to try the following stress dyadic: 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.19 Rock core subject to diametral point forces 
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On the circular boundary this stress dyadic, however, does not yield a traction-free 
boundary. In particular, we have d = r/cos� = r1/cos�1, and er and er1 must be 
orthogonal. Therefore, on the boundary (2.160) becomes 

 [ ]r r
F
bd � ��

� �e e e e  (2.161) 

To remove this unwanted stress dyadic on the circular boundary, we must add a stress 
tensor of different sign. Therefore, the solution for the stress field in a Brazilian test is 
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Along the direction of the action of force (i.e., diameter O-O1), we have � = �1 = 0 and 
r1 = d � r. Consequently, the stress becomes 
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along the diameter O-O1. The radial stress is always compressive with a minimum at 
the center, (�rr)min = 3F/(�bd), and approaches infinity at both points O and O1. More 
importantly, the circumferential stress ��� along O-O1 is always tensile and equals 
F/(�bd). This is the reason why the Brazilian test is suitable as an indirect tensile test. 
 In practice, the point load is actually recommended to be disturbed over a 
distance of d/12 at both points O and O1. As shown in Fig. 2.20, this situation can 
be modeled by a uniform radial pressure p acting over an angle of 2� at both ends 
of the diameter. This loading can be modeled mathematically by Fourier series 
expansion, and the stress dyadic along O-O1 is found to be (Hondros, 1959) 
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where ( = r/R is the normalized radial distance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.20 Brazilian test loaded by pressure over an angle of 2� at both ends 
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 This theoretical analysis was also extended to transversely isotropic materials 
by Wang and Chong (1989); they concluded that the Brazilian test is valid for 
transversely isotropic solids but the detailed stress distribution was not examined. 
 Another related indirect strength test is the point load strength test, and the 
theory of elasticity has also been found essential in estimating the tensile stress 
inside the tested rock specimens (e.g., Wei and Chau,1998; Chau,1998c; Chau and 
Wong, 1996). The mathematical details will, however, not be discussed here. 

2.22 JAEGER’S MODIFIED BRAZILIAN TEST 

Jaeger and Cook (1967) proposed a modification to the traditional Brazilian test by 
applying three line loads instead of just two in the conventional one. Figure 2.21 
shows a rock core of radius R being loaded by the three-line load test. Each of the 
line loads is W per unit length of the specimen, and the angle between each line 
load is 2�/3. The stress field can again be modeled by Fourier series expansion, 
and the resulting series in the stress components can be summed exactly to give 
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where ( = r / R. 
 If the line loads are distributed over an angular width of 2�, the stress dyadic 
acting along � = 0 is given by (Jaeger and Cook, 1976): 
  
 

 
 
 

Figure 2.21 Jaeger's modified Brazilian test 
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It can be shown that this stress does not lead to uniform tensile stress in the cylinder. 
Tensile stress only appears near the center of the cylinder. 

2.23 EDGE DISLOCATION 

In this section, we will discuss the theory of edge and screw dislocation based on 
two-dimensional elasticity. Dislocation was first proposed by G.I. Taylor in 1934 
and E. Orowan in 1934 to explain defects in lattices. However, the mathematical 
theory of dislocation had been considered earlier in 1907 by V. Volterra who 
considered a thick circular cylinder subject to a cut parallel to the axis of the 
cylinder, as shown in Fig. 2.22. 
 The relative displacement bx and by are called edge dislocations, whereas bz is 
called screw dislocation. These are now called Burgers vectors. After relative 
displacement of Burgers vectors is imposed, the cuts are healed by welding back 
the cylinder material. The rough edges of the cylinder are then grinned and 
polished to get back the original shape. The cylinder looks the same, but residual 
stress is trapped in the cylinders because of the imposed Burgers vectors. These 
stresses are in self-equilibrium.   
 For pure edge dislocation as shown in Fig. 2.23, we have defined the Burgers 
vector to be positive if we go around a dislocation line (i.e., the direction z going 
out of the page in Fig. 2.23) clockwise, and the positive directions of bx and by are 
shown. It can be shown that we can set the Airy stress function as 
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Note that logarithmic function of a dimensional number is meaningless. In order to 
have a physically meaningful solution, we must have normalized all distance 
respective to some arbitrary constant. For simplicity, we would not write out this 
dimensionless form explicitly. That is, r is understood hereafter as normalized 
distance from the dislocation. The corresponding stress components are 
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We can then integrate this to get the displacement field as 
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Figure 2.22 Volterra’s dislocation on thick cylinder 
  
 

 
 

 
 

 
 
 

 
 

Figure 2.23 Definition for Burgers vector for edge dislocations  
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It is obvious from (2.172) that if we go around the dislocation line in the clockwise 
direction, 
 will increase by 2� such that uy attains a jump of displacement of by. 
All other stress and displacement components are, however, continuous and suffer 
no jump. Therefore, this solution is indeed the solution for edge dislocation.   
 For the case of the nonzero Burgers vector bx, the solution has been given by 
Weertman and Weertman (1964): 
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This result was first obtained by Koehler (1941). The corresponding stress 
components in cylindrical coordinates are: 
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2.24 DISLOCATION PILE-UP AND CRACK 

So far, we have assumed a single or discrete dislocation. To solve crack problems, 
we can actually superimpose an appropriate distribution of dislocation density. 
Figure 2.24 illustrates the superposition of discrete edge dislocation to model 
opening. The gap displacement g(x) and normal traction N(x) on y = 0 are also 
sketched in the figure. 
 For the shift dislocation shown in Fig. 2.24, we have from (2.172) and 
(2.170) that 
 ( ) ( ,0 ) ( ,0 ) ( )y y yg x u x u x b H x� �� � � �  (2.177) 
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For the distributed edge dislocation shown, we have 
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Figure 2.24 Distributed dislocation for modeling opening crack  
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This equation can be interpreted as a Hilbert transform as illustrated by Weertman 
(1996). Therefore, to solve (2.180) Hilbert transform tables can be used to obtain 
solutions for various crack problems. For example, Erdelyi (1954) and Appendix 
A of Weertman (1996) provide useful results for the solution of (2.180). In 
addition, since there is no permanent gap opening outside the distributed 
dislocation, we must have 
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Consider the case of a uniform pressure �T within a crack or  
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This integral actually is singular at x = <, but if we exclude this singular point, the 
integral does exist. This is called the principal value of the Cauchy-type integral, 
and (2.182) is called Cauchy-type singular integral of the first kind. The solution 
of (2.182) is (Muskhelishvili, 1953, 1975; Appendix 4 of Mura, 1987) 
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The constraint (2.181) requires that C = 0. We can apply the following formula 
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However, the second term on the right of (2.184) vanishes for �a < x < a. Finally, 
we have 
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Back substitution of (2.185) into (2.180) gives 
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The integral can be evaluated by using the following integration formula: 
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Substitution of (2.187) into (2.186) gives 
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This solution can be used to get the Griffith crack by superposition as shown in 
Fig. 2.25. 
 The stress on the x-axis now becomes 
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Figure 2.25 Griffith crack modeled by edge dislocation pile-up  
 
Substitution of x = a + r into (2.189) gives the normal stress ahead of the crack 
front: 
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This inverse square root singularity in stress is actually a universal form at the 
crack tip, and it will be discussed in more detail in Chapter 6. For more in-depth 
discussions about the use of dislocation theory in fracture mechanics, the reader 
can refer to Weertman (1996), Hill et al. (1996), and Dundurs (2008). Wong 
(1990) applied dislocation pileup theory to model wedge crack nucleation in rocks 
similar to the Zerner�Stroh mechanism used in metals.  

2.25 SCREW DISLOCATION AND FAULTING 

As discussed by Weertmann and Weertmann (1964), dislocation can be used to 
model imperfection of both metals and nonmetallic crystalline solids. The theory 
of dislocation is closely related to plastic deformation in solids. The theory of 
infinitesimal dislocation distribution on a plane has been applied to crack problems 
as well as faulting problems in the Earth’s crust (Chinnery 1961, 1963; 
Weertmann, 1964; Jeyakumaran et al., 1992).  
 Considering the geomechanics application of dislocation theory, we follow 
the discussion of Rudnicki (1988) on the slipping in strike-slip fault problems. 
Figure 2.26 shows an elastic half-space containing a vertical strike-slip fault. The 
fault slippage displacement is assumed uniform as b for x < 0 but zero for x > 0. 
The depth of the fault front to the free surface is H. This simple model closely 
resembles the situation at the San Andreas Fault in California. The lower part of 
the fault plane corresponds to the seismic creeping zone-driven tectonic stress, 
whereas the upper part of the fault plane is assumed locked. 
  Since the only nonzero displacement occurs along the z-axis, we have the 
so-called anti-plane problems in elasticity with displacement as (Milne-Thomson, 
1962) 
 ( , )z z zu w x y� �u e e  (2.191) 
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Figure 2.26 Screw dislocation model for strike-slip faulting 
 
The term anti-plane was coined by Filon in 1937. The boundary condition on the 
fault plane is 

 ( ,0 ) ( ,0 ) 0
0 0

w x w x b x
x

� �� � =
� >

 (2.192) 

Dimensional consideration for the linear elasticity suggests that the stress must be in 
the following form: 

 ( )b f
r
$ 
  (2.193) 

where $ is the shear modulus and r is the radial distance from the origin as shown 
in Fig. 2.27. The only nonzero shear stress components of the problem are 
 
 
 
 
 
 
 
 
 

 
Figure 2.27 Definition of the polar coordinate around the fault tip 
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The force equilibrium in the z-direction is  

 0yzxz

x y
�� ��

� �
� �

 (2.195) 

Substitution of (2.194) into (2.195) gives 
 2 0w� �  (2.196) 
The compatibility equation in terms of stress is 

 yzxz

y x
�� ��

�
� �

  or  yzxz

y x
�� ��

�
� �

 (2.197) 

Equations (2.195) and (2.197) can be considered the Cauchy�Riemann equations for 
real and imaginary parts of an analytical function (Silverman, 1974). Therefore, we 
can express the stresses as 

 xz yz
di
dz
�� �� �  (2.198) 

for some analytical functions �. Thus, the solution of w can be expressed as 
 Im[ ( )]w z$ ��  (2.199) 
To satisfy the boundary condition (2.192), we can try the following solution form:  

 1tan ( )
2 2
b b yw

x



� �
�� �  (2.200) 

It is straightforward to show that (2.200) satisfies (2.192) identically. Substitution of 
(2.200) into (2.198) gives 

 ( ) ( sin cos )
2 2

i i
rz z xz yz

b i bi e i e i
r r


 




$ $� � � � 
 

� �

� �� � � � � � �  (2.201) 

Therefore, we have 

 
2z

b
r


$�
�

�  (2.202) 

We can now shift the coordinate upward such that the origin is on the ground 
surface as: 

 1tan ( )
2 2
b b yw

x H



� �
�� �
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 (2.203) 
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 (2.204) 

This is the solution for a screw dislocation in a full space. Thus, the surface 
traction on the ground surface is not zero. To remove this traction, we can apply 
the method of images (Weertman and Weertman, 1964). In particular, we can 
impose a negative Burgers vector b at x = �H to get: 

 1 1tan ( ) tan ( )
2
b y yw

x H x H�
� �2 3� �4 5� �6 7

 (2.205) 



56   Analytic Methods in Geomechanics  

x

y

a t *( )t$

Surface breaking 
fault 

 2 2 2 2[ ]
2 ( ) ( )xz

b y y
x H y x H y

$�
�

� � �
� � � �

,   (2.206) 

 2 2 2 2[ ]
2 ( ) ( )yz

b x H x H
x H y x H y

$�
�

� �
� �

� � � �
 (2.207) 

On the ground surface, the strain can be evaluated (by setting x = 0) as 

 2
1[ ]

2 1 ( / )yz
b
H y H

�
�

�
�

 (2.208) 

This strain prediction can be checked against field data to calibrate the value of b. 
Thus, the dislocation model provides a simple way to estimate the creeping strain 
underneath the ground surface. Subsequently, the average slip on the fault can be 
estimated.   
 This screw dislocation can also be applied to model external crack in a half-
space, similar to the case of breaking of the locked zone during an earthquake. As 
shown in Fig. 2.28, the screw dislocation is applied to model external crack in a 
half-space. Now suppose the slipping displacement or Burgers vector b becomes a 
distributed function $*(t) = �(�b/�x) instead of a constant. The displacement can 
be expressed as 

 1 1

0

1 tan ( ) tan ( ) *( )
2

a y yw t dt
x t x t

$
�

� �2 3� � �4 5� �6 7�  (2.209) 

The corresponding shear stress is 

 2 2 2 20
*( )[ ]
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a
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x t x tt dt
x t y x t y
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 2 2 2 20
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a
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Figure 2.28 Surface breaking fault in half-space 
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On the fault surface y = 0, and the shear stress becomes 

 2 2 2 20 0

2 *( )( ,0) *( )[ ] [ ]
2 2( ) ( )

a a
yz

x t x t t tx t dt dt
x t x t x t

$ $ $� $
� �

� �
� � � � �

� � �� �  (2.212) 

If the slipping is driven by the difference of the far field applied shear stress and 
the fault face shear resistance, we have the following integral equation for the 
distributed dislocation function $*(t) 

 2 20

2 *( )( ) [ ]
2

a
yz f

t tx dt
x t

$ $, ,
�

� � � �
��  (2.213) 

Recall that this solution for half-space is a result of the image method, and thus we 
have a subsidiary condition that 
 *(0) 0$ �  (2.214) 
and it is an even function of x.  For the case of constant resistance (,f), the solution 
of this Cauchy-type singular integral can be expressed as (Muskhelishvili, 1953) 
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The corresponding stress components are 

 2 2 1/2( ) ( )
( )xz yz yz f

zi z
z a
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 (2.216) 

where z = x + iy. Integration of (2.216) gives 
 2 2 1/2( ) ( )( )yz fz z a� , ,�� � �  (2.217) 
The displacement field can be found by using (2.199):  
 2 2 1/2( ,0) Im[ ( )] ( )( )yz fw x z a x$ � , ,�� � � �  (2.218) 
on y = 0, whereas 
 2 2 /2(0, ) ( )( )yz fw y y a$ , ,�� � �  (2.219) 
on x = 0. We now examine the stress field around the fault tip at x = a by defining 
x = a + r. The stress on y = 0 becomes 
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 (2.220) 

The dominant stress field near the fault tip can be expressed as 

 1/2 1/2

( )

(2 ) (2 )
yz f

xz yz
a Ki

r r

, , �
� �

� �

� �
� ��  (2.221) 

In particular, an inverse square root singularity of the stress field with distance r is 
obtained, similar to the conclusion obtained in Section 2.24. In fact, we will show 
in Chapter 6 that this singular stress field is universal for all cracks, and the strike-
slip fault tip considered here can be regarded as a mode III crack. The factor K, 
which is called the stress intensity factor, is only a function of loading and crack 
geometry. 
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2.26 MURA FORMULA FOR CURVED DISLOCATION 

The dislocation solutions discussed so far have been restricted to isotropic solids 
and to straight dislocation. In this section, we will present the more general Mura’s 
formula for calculating displacement and strain in anisotropic solids due to curved 
dislocation, as shown in Fig. 2.29. The following presentation is from Mura 
(1987). A slip plane S is inside the solid with a slip displacement of b from the 
upper surface S+ relative to the lower surface S�. The positive direction # of the 
curved dislocation line L is defined by using a right-handed screw with the 
Burgers circuit c, as shown in Fig. 2.29. The circuit c does not cross the boundary 
S from S+ to S�. The slip displacement vector b to close the Burgers circuit c is the 
Burgers vector proposed by Burgers in 1939 (Mura, 1987).   
 As shown by Mura (1987), the dislocation along dislocation line L induces a 
self-equilibrating elastic field, which can be simulated by an eigenstrain or the 
transformation strain of Eshelby (1957). The displacement gradient can be written 
in terms of elastic distortion 0 and plastic distortion 0* as 
 *

,i j ji jiu 0 0� �  (2.222) 
The plastic strain can be written in terms of the slip b and normal vector n from S+ 
to S� as (more or less like the slip line theory in plasticity):  

 * 1( ) ( ) ( )
2ij i j j ib n b n� �� � � �x S x  (2.223) 

and the one-dimensional Dirac delta function indicates the singular strain at the 
surface S and is zero elsewhere. The elastic field due to an eigenstrain can be 
formulated in terms of Green’s function as (Mura, 1987) 
 *

,( ) ( ) ( )i ijmn mn ij iu C G d� 1 1 1� � ��
+

x x x x x  (2.224) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2.29 Dislocation L and Burgers circuit c (after Mura (1987) with permission from 
Springer, the Kluwer copyright controller) 
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where Gij is the Green’s tensor or the displacement field ui at observation point x 
subject to a unit point force in the j-th direction at point x1 in a full space or the so-
called Kelvin’s solution (Mura, 1987). Note that the Green’s function method was 
proposed by George Green in 1828. Substitution of (2.223) into (2.224) yields  
 ,( ) ( ) ( )i ijmn m ij i n

S

u C b G n dS1 1� ��x x x x  (2.225) 

This is the Volterra formula obtained in 1907 by V. Volterra. Differentiating 
(2.225) and substituting the result into (2.222) gives 
 ,( ) ( ) ( ) ( )ji ijmn m ij i n i j

S

C b G n dS b n0 �1 1� � � ��x x x x S x  (2.226) 

Mura (1963) found that this surface integral can be rewritten as line integral: 
 ,( ) ( ) ( )ji jnh pqmn ip q m h

L

C G b dl0 � #1 1� ��x x x x  (2.227) 

where L and dl are the dislocation line and the dislocation line segment, 
respectively. This was called Mura formula by Willis (1970).  
 To show the equivalence of (2.227) and (2.226), we can use Stokes’ theorem 
(see (1.60) of Chapter 1):  
 ,h klh l k

L S

f dl f n dS# ��� �  (2.228) 

Applying (2.228) to (2.227) gives 
 ,( ) ( ) ( )ji klh jnh pqmn ip ql m k

S

C G b n dS0 � � 1 1� � ��x x x x  (2.229) 

The minus sign is from the differentiation with respect to x1  

 , ,ip q ip ql
l

G G
x
�

� �
1�

 (2.230) 

We now observe that the e-� formula given in (1.18) of Chapter 1 
 klh jnh kj ln kn lj� � � � � �� �  (2.231) 
can be applied to (2.229) as 
 , ,( ) ( )ji pqmn ip qn m j pqmn ip qj m n

S

C G b n C G b n dS0 � � ��x  (2.232) 

Since the Green tensor satisfies the following equation: 
 , ( ) ( )pqmn ip qn miC G � �1 1� � � �x x x x , (2.233) 
the first term in (2.232) becomes 
 ( ) ( ) ( )i j i j

S

b n dS x b n� �1 1� � �� x x S x  (2.234) 

Combining (2.334) and (2.232) gives (2.226). The proof of Mura formula is 
completed. Both Volterra and Mura formulas have been found useful for 
evaluating the strain by dislocation loop in anisotropic solids (Willis, 1970). 
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2.27 SUMMARY AND FURTHER READING  

A number of elementary topics in linear elasticity, such as the concepts of stress 
and strain, constitutive relation, strain and complementary energies, hyperelasticity 
and hypoelasticity, strain compatibility, the Airy stress function, and dislocation 
theory are covered in this chapter. The method of solution using complex variable 
technique will be discussed in Chapter 3 and three-dimensional elasticity will be 
explained in Chapter 4.  
 A brief history of the theory of elasticity can be found in Westergaard (1952) 
and Timoshenko (1953). For general principles, Love (1944) and Malvern (1969) 
give a comprehensive coverage. Mal and Singh (1991) give an elementary 
introduction to mechanics of elastic solids. For the mechanics of anisotropic elastic 
solids, we recommend Hearmon (1961) and Lekhnitskii (1963). For more general 
applications, Timoshenko and Goodier (1982) provide excellent coverage. For 
transversely isotropic solids, the excellent paper by Hu (1954) is highly 
recommended. For anti-plane problems in elasticity, we recommend Milne-
Thomson (1962). 
 For further general reading, we recommend the books by Sokolnikoff (1956), 
Fung (1965), Chou and Pagano (1967), Green and Zerna (1968), Karasudhi 
(1991), Davis and Selvadurai (1996), Little (1973), Barber (2002), Boresi et al. 
(2011), and Hetnarski and Ignacezak (2011). For elastic solutions available for 
foundation engineering applications, the book by Poulos and Davis (1974) offers a 
good start. Elastic solutions of particular relevance to rock mechanics can be found 
in Jaeger and Cook (1976). For dislocation theory, Weertman and Weertman 
(1964) give a good introduction, and the micromechanics book by Mura (1987) 
also provides a very elegant treatment of dislocation theory. Mura’s (1987) book 
also provided a systematic treatment of micromechanics, and it is highly 
recommended for its mathematical elegance. Another comprehensive book on 
micromechanics is by Nemat-Nasser and Hori (1993). More advanced topics of 
dislocation can be found in Hirth and Lothe (1982). For the application of 
dislocation theory to earthquake rupture, one can refer to the review paper by Rice 
(1980) and Savage (1980). 

2.28 PROBLEMS  

Problem  2.1 Write the Cartesian components of first Piola�Kirchhoff stress given 
in (2.3) and the second Piola�Kirchhoff stress given in (2.6). 
 
Problem  2.2 Write the Cartesian components of Eulerian strain tensor given in 
(2.24) (similar to that of Eq. (2.28)).  
  
Problem  2.3 Write the Cartesian components of the compatibility given in (2.35).  

 
Problem  2.4 Show the symmetry of the elasticity tensor Cijkl = Cklij given in 
(2.42).  
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Problem  2.5 Prove the following identity: 
 0ijk i je x x �  (2.235) 
 
Problem  2.6 Show from (2.120) that in Cartesian coordinate the Airy stress 
function is defined as 
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 (2.236) 

 
Problem  2.7 The Airy stress function has been found very useful in solving two-
dimensional problems. Consider the following polynominal: 
 5 4 3 2 2 3 4 5

0 1 2 3 4 5A x A x y A x y A x y A x y A y� � � � � � �  (2.237) 
Determine A4 and A5 in terms of A0, A1, A2 and A3 such that this polynomial 
satisfies the biharmonic equation. 
 
Problem  2.8  Consider any two arbitrary harmonic functions � and �. That is,  
 2 0�� � ,   2 0�� �  (2.238) 
Show that the following function is a biharmonic function: 
 1x? � �� �  (2.239) 
 
Problem  2.9 Plot the principal stresses along r/R for the Jaeger’s modified 
Brazilian shown in Fig. 2.21 for � = 0 for the concentrated line load and for 2� = 
5@.  
 
Problem  2.10 Sections 2.24 and 2.25 are restricted to mode I tensile crack and 
mode III tearing crack. Actually, mode II crack can also be formulated following a 
similar approach, as shown in Fig. 2.30. For the glide dislocation field (i.e., non- 
zero bx), the following stress field is given by Weertman (1996) in Cartesian 
coordinates: 
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By using (2.240)�(2.242), show that the shear traction T(x) on y = 0 can be 
formulated as 
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Problem  2.11 Solve the Cauchy integral equation (2.243) in Problem 2.10 and 
discuss the stress singularity near the crack tip for mode II shear crack (see Fig. 
2.30).  
 
Problem  2.12 Show the validity of Hooke’s law given in (2.112) for plane 
problems.   
 
 

 
 
 
 
 

 
 

 
 
 

Figure 2.30 Dislocation pile-up for mode II shear crack 
 
 



CHAPTER THREE 

Complex Variable Method for 2-D 
Elasticity 

3.1 INTRODUCTION 

The idea of using the complex variable technique in solving elasticity problems 
was probably first proposed by E. Goursat in 1898 and by L.N.G. Filon in 1903 
(Filon, 1903; Milne-Thomson, 1968; Meleshko, 2003). The formal treatment is 
usually credited to two Russians, Kolosov and Muskhelishvili, although similar 
results were obtained independently by others, including Stevenson, Green, and 
Milne-Thomson, much later. We summarize the essence of this approach in this 
chapter.
 The main idea of this approach is that the Airy stress function introduced in 
Section 2.17 can, in general, be written in terms of two analytic functions of a 
complex variable z = x1+ix2, where i is the usual imaginary constant and equals 
(�1)1/2. For a full account of the properties of analytic functions, we refer to Carrier 
et al. (1966) and Muskhelishvili (1975). In short, a function A(z) is said to be 
analytic in a region if it is finite single valued and has a definite derivative at all 
points of the region. Any analytic function A(z) can be expressed in the form 

( ) Re( ) Im( )  z   i iA A A < B� � � �   (3.1) 
where Re and Im stand for the real and imaginary parts of the function A. The
derivative of A with respect to z, analogous to that of real functions, is defined as: 
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Applying the usual definition for a total derivative, we get 
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 (3.3) 

For analytic functions, the derivative in (3.3) should be independent of the path of 
determining limits. Therefore, no matter whether we set �x1 to zero first, then �x2 to 
zero or vice versa, the limit should be exactly the same. This implies 

1 1 2 2
 i   i

x x x x
< B B <� � � �

� � �
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 (3.4) 

or equating the real and imaginary parts gives 
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1 2 1 2
 =  ,      = 

x x x x
< B B <� � � �

�
� � � �

 (3.5) 

This is the well-known Cauchy�Riemann relation (Carrier et al., 1966), and 
consequently the complex derivative is 

1 1 1 2

d(z) =  = +i  = i
dz x x x x
A < B < <A � � � �1 �

� � � �
 (3.6) 

Either < or B can be eliminated from either of the (3.5) equations, and the resulting 
equations are 

2 20 0  ,       = < < B B� � � �� � � � �� �  (3.7) 
where the Laplacian operator is denoted by �2 and is defined as 

2
2 2
1 2

2 2
  +

x x
� �� 9
� �

 (3.8) 

Therefore, it can be concluded that both the real and imaginary parts of an analytic 
function satisfy the Laplace equation. Note that B and < are called conjugate functions, 
and both are harmonic functions (since they satisfy the Laplac  equation). We now 
consider the governing equation for the Airy stress function (2.124) if no body 
force exits: 

4 2 2 0 =   = � �� � �  (3.9) 
We now let P be the trace of the two-dimensional stress dyadic given in (2.123): 

2tr( ) =P = � �� � � ���  (3.10) 
where P must be harmonic as shown by (3.9). We add a conjugate function of P to 
form an analytic function f(z):

( )f z  = P+iQ  (3.11) 
and its integration, defined as follows, is also analytic: 

1( ) ( )
4

z    f z  dz  p iq� � � � �  (3.12) 

Therefore, we have 
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Equating both real and imaginary parts in (3.13) gives 

1 2 1 2

1 1,
4 4

p q q pP         Q   
x x x x
� � � �

� � � � �
� � � �

 (3.14) 

Next we show that � � px1� qx2 is harmonic; by direct differentiation we have 
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 (3.15) 

The last of (3.15) is obtained in view of (3.10) and (3.14) and using the fact that both p
and q must the satisfy the Laplace equation. Thus, 

1 2 1px qx   p� � � �  (3.16) 
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where p1 is a harmonic function, or it may be taken as the real part of some unknown 
analytic function C(z). In addition, px1+qx2 is the real part of the following function: 

1 21 2 Re[( )( )]  Re[ ( )]  i p iq z zpx qx x x �� � � � �  (3.17) 
where the superimposed bar means complex conjugate. The Airy stress function � can 
then be written as 

1Re [ (z) + (z)] = [ (z) + z (z)+ (z) + (z)]
2

 = z z� � C � � C C  (3.18) 

Therefore, we have a general solution for the biharmonic equation in terms of two 
analytic functions �(z) and C(z). Differentiation of the solution form given in (3.18) 
gives
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For our later use, we combine (3.19) and (3.20) as 
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In terms of �(z) and C(z), the stress components become 
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1 21 2

2 2

2[ ( ) ( )]

i   i
x xx x

           z z z

� � �
� � �

� C

� � �� � � � �
� �� �

11 11� �

 (3.24) 

2 2

22 11 2 2
1 2

2[ ( ) ( )] 4 Re[ ( )]    z z     z
x x
� � � � �� � � � 1 1 1� � � � � �

� �
 (3.25) 

Using (2.112), we can write the displacement gradient as 
1 1

11 221,1 11 4 4
1

22 4

,11 ,1

2 2 (1 ) ( 3)

( 1) ( )

       (1 )

u     

 tr

p

$ / /$� � �

/�
/�

� � � � �

� � � �

� � � �

�  (3.26) 

The last part of (3.26) results from (3.10) and (3.14). Following a similar procedure, 
we also have 

2, 2 , 22 , 22 (1 )     qu$ /�� � � �  (3.27) 
Integration of (3.26) and (3.27) once gives 

1 2,1 12 (1 ) ( )    p fu x$ /�� � � � �  (3.28) 

2 1,2 22 (1 ) ( )   q fu x$ /�� � � � �  (3.29) 
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where f1(x2) and f2(x1) are unknown functions of x2 and x1. To find these functions, we 
substitute (3.28) and (3.29) into the following Hooke’s law for shear deformation: 

12 1,2 2,1 ,122 ( )     u u$ $ �� � � � �  (3.30) 
This yields 

1 2 2 1( ) ( ) 0f x   f x   1 1� �  (3.31) 
Therefore, we have f1 = �x2+ a and f2 = ��x1+ b, both of these displacements 
correspond to rigid body motion and can be neglected. Setting both f1 and f2 equal to 
zero, we can combine (3.28) and (3.29) to give: 

1 2 ,1 ,22 ( ) ( ) ( 1)( )

( ) '( ) '( )

u iu   i p iq  

      z z z z

$ /� �

/� � C

� � � � � � �

� � �
 (3.32) 

Note that the analytic function C(z) appears only in its derivative; therefore, these 
equations can be simplified by assuming: 

( ) ( )z   z? C1�  (3.33) 
The stress and displacement components are given in terms of �(z) and ?(z) as: 

22 11 122 2[ ''( ) ( )]i   z z z  � ?� � � 1� � � �  (3.34) 

22 11 2[ '( ) '( )] 4 Re[ '( )] z z     z� � � � �� � � �  (3.35) 

1 22 ( ) ( ) '( ) ( )u iu   z z z z$ /� � ?� � � �  (3.36) 
We have just showed that the Airy stress function can be written in terms of two 
analytic functions �(z) and ? (z). The solution for problems in 2-D elasticity reduces, 
therefore, to searching for the appropriate form of analytic functions. Many important 
problems can be solved by taking �(z) and ?(z) to be polynomials or power series in z
or z�1. If the region in question includes the origin only the positive powers of z can be 
used for the functions to remain bounded at the origin, while for regions excluding the 
origin but including a far field region only negative powers can be used. 

3.2 COORDINATE TRANSFORMATION IN COMPLEX VARIABLE 
THEORY 

This section derives the following formula for coordinate transformation: 
2

22 11 12 22 11 122 ( 2 ) ii i e 
� � � � � �1 1 1� � � � � , 11 22 22 11� � � �1 1� � �  (3.37) 
where 
 is the angle between the 2-D coordinate x1-x2 and the rotated coordinate x11-x12.
Note that the prime used in this section is for a rotated coordinate and it should not be 
confused with differentiation. This formula can readily be showed to be correct by 
recalling the following formulas for two-dimensional coordinate transformation: 

11 11 22 12
1 1(1 cos 2 ) (1 cos 2 ) sin 2
2 2

� � 
 � 
 � 
1 � � � � �  (3.38) 

22 22 11 12
1 1(1 cos 2 ) (1 cos 2 ) sin 2
2 2

� � 
 � 
 � 
1 � � � � �  (3.39) 

12 22 11 12
1 ( )sin 2 cos 2
2

� � � 
 � 
1 � � �  (3.40) 

Combining (3.38) and (3.40), we have 
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22 11 12 22 11 12

22 11 12

2 ( )(cos 2 sin 2 ) 2 ( cos 2 sin 2 )
( 2 )(cos 2 sin 2 )

i i i
i i

� � � � � 
 
 � 
 

� � � 
 


1 1 1� � � � � � �
� � � �

 (3.41) 

Therefore, it is obvious that the first part of (3.37) is correct. The second part of (3.37) 
is obtained by simply summing (3.38) and (3.39). This completes the proof. 

3.3 HOMOGENEOUS STRESSES IN TERMS ANALYTIC FUNCTIONS 

We consider the following form of analytic functions: 
( ) , ( )z   Cz     z   Dz� ?� �  (3.42) 

which C and D are constants which may be complex. Substitution of (3.42) into (3.34) 
to (3.36) gives 

22 11 122 2[ ( ) ( )] 2i   z z z   D� � � � ?11 1� � � � �  (3.43) 

22 11 2[ ( ) ( )] 4 Re[ ( )]  2( )  4  z z     z C C E� � �� � 1 1 1� � � � � � �  (3.44) 

1 22 ( ) ( ) ( ) ( ) ( 1)i    z z z z   Cz Dzu u$ /� � ? /1� � � � � � �  (3.45) 
Now let the principal stresses be �1 and �2 with �1 inclined at 0 to the x1-axis. It 
follows from (3.37) that 

2
1 2 1 22 , 4i D       Ee 0� � � �� � � �  (3.46) 

The solution of (3.46) gives: 
21 1

1 2 2 14 2( ) , ( ) iE       D  e 0� � � � �� � � �  (3.47) 
Therefore we have hydrostatic compression if we set E = ��1/2 and D = 0; uniaxial 
compression �T along x1 if E = �T/4 and D = T/2; and pure shear (�2 = ��1 and 0 = 
�/4) if E = 0 and D = i�1.

3.4 A BOREHOLE SUBJECT TO INTERNAL PRESSURE 

Figure 3.1 shows a circular borehole with diameter R subject to an internal pressure 
p. We try the following analytic functions: 

( ) 0 , ( ) Dz        z   
z

� ?� �  (3.48) 

where D is a real constant. In polar coordinates, we have 
0rr  

� �� �  (3.49) 

2
2

22 2 ( ) i
rr r

D i   z   e
r





 
 ?� � � 1� � � � �  (3.50) 

The first part of (3.50) follows immediately from the result of Section 3.2. Therefore, 
the stress dyadic is 

2 ( )r r   e e e e
D
r


 
� ��  (3.51) 

Note that this stress dyadic automatically satisfies the far field condition as r & �. The 
displacement field in polar coordinates is 
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Figure 3.1 Borehole with internal pressure 

1 22 ( ) 2 ( ) ( )i i
r

Di   i  z  u u u u e e
r


 


$ $ ?� �� � � � � � �  (3.52) 

The first part of (3.52) can be proved easily similar to the consideration given in 
Section 3.2 (see Problem 3.2). Now the boundary condition on r = R is �rr = � p.
Substitution of (3.51) into this condition gives D = � pR2. Therefore, the solution 
becomes: 

2 2

2 2( ) ,      rr r
p pR R
r r


 
� � � � �e e e e u e�  (3.53) 

The solution for a hollow cylinder subject to both internal and external pressures will 
be considered in Problem 3.3. 

3.5 KIRSCH SOLUTION BY COMPLEX VARIABLE METHOD 

In Section 2.18, we solved the stress concentration near a circular hole in an 
infinite plane subject to far field uniaxial compression, which finds applications in 
both tunnel and borehole problems. We will re-derive this solution here using the 
complex variable technique. For the far field stress, we showed in Section 3.3 that 
it can be found by using �(z) = � ¼Tz and ?(z) = ½Tz. For an infinite region with a 
hole, we must add terms to these analytic functions, such that the resulting stress 
decays at infinity, but cancels the traction on r = R caused by the uniform stress 
field. We assume 

1 1
4 2 2( ) ( ) , ( ) ( )A B Cz  T z     z   T z

z z z
� ?� � � � � �  (3.54) 

where A, B, and C are real constants. The choice is guided by the fact that all resulting 
stress components will be in terms of 2
. Differentiating (3.54) yields 

1 1
4 22 2 4 3

3( ) (1 ) , ( ) (1 ) , ( )
2

A B C ATz   T     z   T     z   
z z z z

� ? �1 1 11� � � � � � �  (3.55) 

Therefore with z = rei� we have: 
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 (3.56) 

2
22 11 12

3 2 4 23 2 4

2 4 22 2

2 ( 2 )
[ 1 3 ]
[ ( 3 ) ]

i
rr r

i i i i i

i i

i   i  e
 T  A Cre e e e er Br r

T              e Cr eBr Ar





 



 
 
 
 



 


� � � � � �
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� �� �

� � � � �

� � � � �

� � � � �

 (3.57) 

The real and imaginary parts of (3.57) give 
42 2[ (1 3 )cos 2 ]rr  T  CrBr Ar

 
� � �� �� � � � � �  (3.58) 

41 2
12 2 [1 3 ]sin 2  T  CrAr 
� ��� � �  (3.59) 

Subtracting (3.58) from (3.56) yields: 
2 2 42 [1 (1 2 3 )cos 2 ]rr T Br Ar Cr� 
� � �� � � � � �  (3.60) 

Form the traction-free boundary condition on r = R:
0rr r   
� �� �  (3.61) 

we obtain 
2 2 4B = R  ,   A = 2R  ,   C = R�  (3.62) 

With back substitution of these constants into (3.56) to (3.57), we obtain (2.141)
again, which was derived in Section 2.18 of Chapter 2 by using the Airy stress 
function.

3.6 DEFINITENESS AND UNIQUENESS OF THE ANALYTIC 
FUNCTION 

We have shown in Section 3.1 that the Airy stress function can be expressed in 
terms of two arbitrary analytic functions. For an elastic body with known stress and 
displacement fields, one may ask whether we can find a unique pair of analytic 
functions to describe this solution. This question will be examined in this section. 
 We first assume that a pair of analytic functions �1(z) and ?1(z) will give the 
known stress field [as given in (3.34)�(3.35)]: 

22 11 12 1 12 2[ ( ) ( )]i z z z� � � � ?11 1� � � �  (3.63) 

22 11 14Re[ ( )]z� � �1� �  (3.64) 
We now suppose that another pair of analytic functions �2(z) and ?2(z) will also 
lead to the same stress field. That is, 

22 11 12 2 22 2[ ( ) ( )]i z z z� � � � ?11 1� � � �  (3.65) 

22 11 24Re[ ( )]z� � �1� �  (3.66) 
Let us now investigate the possible difference between these pairs of analytic 
functions.
 Comparison of (3.64) and (3.66) indicates that �12(z) and �11(z) must have the 
same real part. Thus, we can write 

2 1( ) ( )z z iC� �1 1� �  (3.67) 
where C is an arbitrary real constant. Integration of (3.67) gives 
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2 1( ) ( )z z iCz� � .� � �  (3.68) 
where . = A+ iB is an arbitrary complex constant. From (3.67), we must have  

2 1( ) ( )z z� �11 11�  (3.69) 
Thus, comparison of (3.63) and (3.65) gives: 

2 1( ) ( )z z? ?1 1�  (3.70) 
or we have 

2 1( ) ( )z z? ? . 1� �  (3.71) 
where .1 = A1 + iB1 is another arbitrary complex constant. Therefore, we find that 
�1(z) and ?1 (z) can be replaced by 1( )z iCz� .� �  and 1( )z? . 1� , that is, 

1 1 1 1( ) ( ) , ( ) ( )z z iCz z z� � . ? ? . 1D � � D �  (3.72) 
such that the stress field remains unchanged. 
 We now further restrict the arbitrary constants C,., and .' by using the 
displacement expression: 

1 2 1 1 12 ( ) ( ) ( ) ( )u iu z z z z$ /� � ?1� � � �  (3.73) 
In particular, we apply the transformation (3.72) into (3.73) to give 

1 2 1 1 12 ( ) ( ) ( ) ( ) (1 )u iu z z z z iCz$ /� � ? / /. .1 1� � � � � � � �  (3.74) 
Therefore, we must have 

0, 0C /. . 1� � �  (3.75) 
Finally, we conclude that �1(z) and ?1 (z) can be replaced by the following 
identification:

1 1 1 1( ) ( ) , ( ) ( )z z z z� � . ? ? /.D � D �  (3.76) 
such that the stress field remains unchanged, where . is an arbitrary complex 
constant.

3.7 BOUNDARY CONDITIONS FOR THE ANALYTIC FUNCTIONS 

The boundary value problems solved in Sections 3.3�3.5 were solved by assuming 
appropriate analytic functions. But, in general, this cannot be done by pure 
inspection. In this section, we will formulate the traction and displacement 
boundary conditions for the analytic functions �(z) and ?(z). Referring to Fig. 3.2, 
the surface traction vector T = n 	 � can be written in terms of the Airy stress 
function as: 

2 2

1 2 12
1 22 SS

n n T
x xx

� �� � � �� �
� ��  �  �  �  � �� ! "! "

 (3.77) 

2 2

2 1 22
1 21 SS

n n T
x xx

� �� � � �� �
� ��  �  �  �  � �� ! "! "

 (3.78) 

where the subscript S means that the value in the bracket should be evaluated along 
the boundary S with normal n shown in Fig. 3.2. By pure geometric consideration, 
we have 

2
1 1cos( , ) cos

dxn x
ds

�� � �n  (3.79) 
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B n

�
1T

2T
ds

2dx

1dx�

1x

2x s

�

1
2 2cos( , ) sin

dxn x
ds

�� � � �n  (3.80) 

Substitution of (3.79) and (3.80) into (3.77) and (3.78) yields the following total 
differentials along ds: 

1 2
2 1

,
S S

d dT T
ds x ds x

� �� � � �� �
� � ��  �  � �! " ! "

 (3.81) 

We now define the complex boundary traction: 

1 2
2 1 1 2S S S

d d dT iT i i i
ds x ds x ds x x

� � � �� � � � � �� � � �
� � � � � ��  �  �  � � � �! " ! " ! "

 (3.82) 

Substitution of (3.23) into (3.82) and integration of the resulting equation with 
respect to ds from point A to point B (shown in Fig. 3.2) gives: 

1 2( ) ( ) ( ) ( )
BB

A A
z z z z i T iT ds� � ?2 31� � � �6 7 �  (3.83) 

If the upper limit B is an arbitrary point along the boundary s and the lower limit 
evaluated at A is k, then we get 

1 2( ) ( ) ( ) ( )
B

s A
z z z z k i T iT ds� � ?2 31� � � � �6 7 �  (3.84) 

As shown in the previous section, �(z) and ?(z) can arbitrarily be replaced by 
�(z)+. and ?(z)+/. , respectively. Therefore, we can always add a constant . such 
that k is being cancelled. Thus, the traction boundary condition can finally be 
simplified to 

1 2( ) ( ) ( ) ( )
s

z z z z i T iT ds� � ?2 31� � � �6 7 �  (3.85) 

Physically, the combination of the analytic functions on the boundary shown on the 
left of (3.85), which is evaluated at an arbitrary point z, must equal the total 
complex force on the surface times i.
 By virtue of (3.36), the displacement boundary condition, say u1 = us and u2 = 
vs, is simply 

2 ( ) ( ) ( ) ( )s s s
u iv z z z z$ /� � ?2 31� � � �6 7  (3.86) 

Figure 3.2 A segment of boundary with traction components T1 and T2 
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3.8 SINGLE-VALUED CONDITION FOR MULTI-CONNECTED BODIES 

We are interested in obtaining solutions for bodies with holes. Such bodies are 
sometimes called multi-connected because there is more than one simply connected 
surface as boundary (e.g., see Fig. 3.3). For such bodies, the complex functions 
�(z) and ?(z) may become multi-valued functions even though the same functions 
may be single-valued functions in a simply connected body. In this section, we 
investigate the necessary form of the analytic functions such that single-valued 
stress and displacement fields can be guaranteed. As shown in Fig. 3.3, let a body 
contains m inner boundaries s1,.., sm and an outer boundary sm+1. The stress field 
must be single valued, and as shown in (3.35) the sum of normal stresses is related 
to �(z) as 

22 11 4 Re[ ( )]z� � �1� �  (3.87) 
Thus, the real part of �1(z) must be single valued; however the imaginary part of 
�1(z) may not be single-valued. For example, when we consider z to go along any 
inner boundary sk, �1(z) may increase by an imaginary quantity (i.e., an imaginary 
constant), say 2�iAk, where Ak is a real number. 
 To better understand this increment, let us consider Fig. 3.4 which shows the 
contour excluding the hole sk (all other holes are ignored for the time being). The 
change in the value of �1(z) for the variable z to undergo a complete clockwise loop 
Ek around the whole sk is denoted by [�'(z)]E k. This change in value can be written 
as an integral as 

( )[ ( )] k
k

d zz dz
dzE

E

��
1

1 � �  (3.88) 

Then, the following closed contour integral cutting through the solid and excluding 
the hole can be shown to be zero by applying Cauchy’s theorem as (Spiegel, 1964; 
Carrier et al., 1966) 

1
( ) 0S S Sk km m km

d z dz
dzE E
�

� � � ��

1
���  (3.89) 

 
Figure 3.3 A multi-connected body with sm+1 boundaries 
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1mS �

kmS
z

kE

kS

kz

where, as shown in Fig. 3.4, E is a contour integral for a simply connected region. 
Thus, we have 

1

( ) 0
k mS

d z dz
dz
�

��

1
���E

 (3.90) 

Therefore the integral for the loop Ek becomes 

1

( ) ( ) 2
k m

k k
S

d z d zdz dz iA
dz dz
� � � �

�

1 1
� � � �� �� �E

 (3.91) 

The last part of (3.91) is obtained by virtue of (3.87) that Re[�k] = 0. In addition, 
since Cauchy’s theorem applies to other contours as well as long as the hole is 
excluded, we can set Ek = sk . 
Now, we define another complex function: 

*
1

( ) ( ) ln( )
m

k k
k

z z A z z� �
�

1 1� � ��  (3.92) 

where zk (k = l,...m) is an arbitrary point inside the inner boundary sk (i.e., outside 
the body). Since ln(z�zk) can be written as ln(r)+i
 if z�zk = rei
 (the physical 
meaning of this ln(z�zk) is shown in Fig. 3.5), when we go around sk once,
Akln(z�zk) will increase by an amount 2i�Ak while all other terms in the summation 
remain unchanged. Consequently, �1*(z) must also remain unchanged. Therefore, 
we must have: 

*
1

( ) ( ) ln( )
m

k k
k

z z A z z� �
�

1 1� � ��  (3.93) 

where �1*(z) is a single-valued function for the multi-connected body. Integration 
of (3.93) gives 

*
1

( ) [( ) ln( ) ( )] ( )
m

k k k k
k

z A z z z z z z z dz� �
�

1� � � � � � �� �
0

z

z
const  (3.94) 

The integral on the right-hand side remains an analytic function of z. Thus,
similarly, when we go around sk once, it may increase by 2i�ck , where ck is in 
general a complex number. However, we can follow the procedure that leads to 
(3.93) to yield 

Figure 3.4 A contour integral excluding Sk         



74 Analytic Methods in Geomechanics 

zr�



kz z�

( , )r 
 ��

kz

z

 

 
Fig. 3.5 The physical meaning of term ln(z�zk) 

 

*
1

' ( ) ln( ) ( )
0

z

z

m

k k i
k

z dz c z z z� �
�

� � ���  (3.95) 

where �i (z) is the single-valued function for the integral in (3.94). Substitution of 
(3.95) into (3.94) gives 

*
1

1 1

( ) ln( ) ln( ) ( )
m m

k k k k
k k

z z A z z z z z� . �
� �

� � � � �� �  (3.96) 

where *
1�  is a single-valued function for the multi-connected body and .k is a 

complex constant. 
 We now recall (3.34), that is, 

22 11 122 2[ ( ) ( )]i z z z� � � � ?11 1� � � �  (3.97) 
We see that �"(z), in (3.97), must also be single-valued because the derivative of 
the single-valued function �1*(z) given in (3.93) is also single valued, and so is the 
derivative of ln(z�zk), or 1/(z�zk), since zk is outside the body. Therefore, (3.97) 
indicates that ?'(z) must also be single-valued since the stresses on the left-hand 
side are single valued. 
 Consequently the argument leading to (3.93) can again be used to obtain 

*

1

( ) ( ) ln( )
m

k k
k

z z z z? ? .
�

1� � ��  (3.98) 

where .'k is a complex constant and ?*(z) is a single-valued function for the multi-
connected body. Substituting (3.93), (3.96), and (3.98) into (3.36) and considering 
a complete path around the inner boundary sk , the complex displacement will 
increase by: 

2 [(1 ) ]k k ki A z� / /. . 1� � �  (3.99) 
Thus, the single-value condition of the displacement field gives 

0, 0k k kA /. . 1� � �  (3.100) 
The traction boundary condition on sk provides another condition for .k and k. 1  to 
satisfy. In particular, (3.85) can be applied to the inner boundary sk such that 
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[ ( ) ( ) ( )] ( )
kS k kz z z z i X iY� � ?1� � � �  (3.101) 

where Xk and Yk are the components of the total resultant boundary force along the 
x1- and x2-axes, respectively. If we now take a complete cycle around sk in 
clockwise direction as shown in Fig. 3.5 (i.e., the normal n should always point to 
our right-hand side), then (3.101) becomes 

2 ( ) ( )k k k ki i X iY� . . 1� � � �  (3.102) 
Therefore, the second of (3.100) and (3.102) provides two equations for .k and k. 1
and the solution is 

( )
,

2 (1 ) 2 (1 )
k k k k

k k
X iY X iY/

. .
� / � /

� �1� � �
� �

 (3.103) 

Therefore, the analytic functions must have the following form: 

*
1

1( ) ( ) ln( ) ( )
2 (1 )

m

k k k
k

z X iY z z z� �
� / �

� � � � �
� �  (3.104) 

*
1

( ) ( ) ln( ) ( )
2 (1 )

m

k k k
k

z X iY z z z/? ?
� / �

� � � �
� �  (3.105) 

where �*(z) and ?*(z) are single-valued analytic functions for the multi-connected 
body. 

3.9 MULTI-CONNECTED BODY OF INFINITE EXTENT 

If we now let the exterior boundary sm+1 to be unbounded (i.e., the body becomes 
infinite in extent), (3.104) and (3.105) can be simplified. In particular, we can 
consider a circle sR of radius R such that all inner boundaries are embraced. For any 
point z outside sR we have kz z� , and the expansion of ln(z�zk) becomes 

21ln( ) ln ln(1 ) ln
2

k k k
k

z z z
z z z z

z z z
� �

� � � � � � � ��  
! "

�  (3.106) 

by virtue of ln(l� x) = � x� x2/2�… . If sR is chosen to be large enough (i.e., z & 
�), we have 

**( )( ) ln ( )
2 (1 )

X iYz z z� �
� /

�
� � �

�
 (3.107) 

**( )( ) ln ( )
2 (1 )

X iYz z z/? ?
� /

�
� �

�
 (3.108) 

where X and Y are the sums of the horizontal and vertical force components over 
all inner boundaries, respectively, and �**(z) and ?**(z) are the analytic functions 
outside sR. It is normally proposed to expand both functions in the Laurent series 
(Muskhelishvili, 1953) 

** **( ) , ( )n n
n nz a z z b z� ?

� �

�� ��

� �� �  (3.109) 

because the Laurent series converges uniform for all regions, except near infinity. 
Substituting (3.109) into (3.107) and (3.108), then into the stress expressions (3.34) 
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and (3.35), we find that all an and bn,, where n > 2 must vanish if the stresses are 
bounded at infinity. Therefore, we have 

1
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n
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aX iYz z Bz
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1
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bX iYz z B iC z
z

/?
� /

�� 1 1� � � �
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In obtaining (3.110) and (3.111), we have removed the constant term (i.e., C, a0 
and b0) since Section 3.6 has shown that arbitrary constants can be added to 
remove these terms without changing the resultant stresses. As will be shown in 
Section 3.11, B, B1 , and C1 are related to far field applied tractions.  

3.10 GENERAL TRANSFORMATION OF QUANTITIES 

For later consideration of problems of an elastic body with holes, we consider the 
general coordinate transformation here: 

( )z F A�  (3.112) 
which maps a body from the z-plane to a corresponding body in the A-plane. In the 
transformed plane, A can be expressed in polar form: 

(cos sin ) ii e 
A ( 
 
 (� � �  (3.113) 
The circles ( = C and the radial lines 
 = C2 (where both C1 and C2 are constants) 
in the A-plane will appear as a curvilinear coordinate on the z-plane after mapping, 
as shown in Fig. 3.6. 
As a consequence of conformal mapping, the coordinate lines ( = C1 and 
 = C2 in 
the z-plane will remain orthogonal. Let A be some vector in the z-plane, the 
projections of which on the x1- and x2-directions are A1 and A2 , respectively. 
Applying (3.52) in Section 3.4, we have 

1 2( ) iA iA A iA e �
( 


�� � �  (3.114) 
where A( and A
 are the projection of A along the (- and 
-directions and � is the 
angle between the x1- and (-directions (as shown in Fig. 3.6). If the point z is
displaced by dz along the (-direction, the corresponding point A in the A-plane will 
move by dA along the radial direction. Hence, 

Fig. 3.6 Polar coordinate in the A-plane to curvilinear coordinate in the z-plane 
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(cos sin ) idz dz i e dz�� �� � �  (3.115) 

(cos sin ) id d i e d
A A 
 
 A� � �  (3.116) 
Therefore, we have 
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i idz de e
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1 1 1
� � � �
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Taking the conjugate for both sides gives 
( )
( )

ie � AF A
( F A

� 1
�

1
 (3.118) 

Substitution of (3.118) into (3.114) yields 

1 2
( ) ( )
( )

A iA A iA( 

AF A
( F A

1
� � �

1
 (3.119) 

We now introduce �1(z) and ?1(z) to denote the functions which were earlier 
written as �(z) and ?(z). Then, we make the following definitions: 

1 1( ) ( ) [ ( )]z� A � � F A� �  (3.120) 

1 1( ) ( ) [ ( )]z? A ? ? F A� �  (3.121) 

1
'( )( ) ( )
( )

z � A8 A �
F A
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1

 (3.122) 

1
'( )( ) ( )
( )

z ? AG A ?
F A

1� �
1

 (3.123) 

1( ) ( ) ( )z8 A � F A1 11 1�  (3.124) 
such that the stresses and displacements can be expressed in terms of the new 
variable A. Consequently, (3.36) becomes 

1 2
( )2 ( ) ( ) ( ) ( )
( )

u iu F A$ /� A � A ? A
F A

1� � � �
1

 (3.125) 

The displacement in terms of the curvilinear coordinates u( and u
 is, according to 
(3.119),

1 2
( ) ( )
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u iu u iu( 

AF A
( F A

1
� � �

1
 (3.126) 

Consequently, we have 
1 ( ) ( )[ ( ) ) '( ) ( )]

2 ( ) ( )
u iu( 
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$ ( F A F A

1
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1 1
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Recalling (3.37) we get 

1 1 12[ ( ) ( )] 4 Re[ ( )]z z z

 ((� � � � �1 1 1� � � �  (3.128) 
'' 2
1 12 2[ ( ) ( )] ii z z z e �



 (( (
� � � � ? 1� � � �  (3.129) 
where
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( )z F A�

1( )z F A�

2 2 2
2

2 22

[ ( )] ( )
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ie � A F A A F A
( F A( F A

1 1
� �

11
 (3.130) 

Substitution of (3.130) into (3.129) and using (3.122) and (3.123), we get 
2[ ( ) ( )] 4 Re[ ( )]

 ((� � 8 A 8 A 8 A� � � �  (3.131) 
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i z
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A� � � F A 8 F A G A
( F A

1 1� � � �
1

 (3.132) 

3.11 ELASTIC BODY WITH HOLES 

Complex analysis has been found extremely useful in solving the stress 
concentration at a hole embedded in an infinite domain. This is because conformal 
mapping can be used to transform an opening of any shape in the z-plane into 
either the interior or exterior of a unit circle in the A-plane, as shown in Fig. 3.7. 
This section follows closely the presentation by Xu (1982). For mapping to the 
interior of a unit circle, F(A) can be expressed as 

0

1( ) ( )
n

k
k

k

z R cF A A
A �

� � ��  (3.133) 

where ck is a complex constant and the sum of �ck� (k from 0 to n) should be 
smaller than unity. The number of terms n required to describe a particular shape of 
holes is normally small (i.e., only a few terms in the series are needed). For 
mapping to the exterior, we have F1(A):

1
0

( ) ( )
n

k
k

k

b
z RF A A

A�

� � ��  (3.134) 

 

Figure 3.7 Mapping from the z-plane to either the interior or the exterior of a unit circle in the A-
plane 
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where R is a real constant relating to the size of the hole. Although both interior 
and exterior transformations can be used, to date most results are obtained by the 
former technique.  
 To transform (3.110) and (3.111) in terms of A, we consider 

2 1
0 1

2 1
0 1

ln ln[ (1 )]

ln ln ln[1 ( )]

n
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n
n
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R c c c

A A A
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�
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� � � � � � � �

�

�
 (3.135) 

Since within the unit circle, we have �A�< 1, thus 
2 1

0 1 1n
nc c cA A A �� � � =�  (3.136) 

Therefore, the logarithm can be expanded as: 
2 1

0 1

2 2 2
0 1 0 1
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n
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�

� � �
 (3.137) 

Thus, ln z equals �lnA plus some analytic functions within the circle. In addition, 
the first term in the sums in (3.110) and (3.111) can also be expanded as: 

1 1 1
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2
0 1

(1 )
(1 )

a a a c
Rz Rc c

A
A

A A
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Similar consideration also applies to the higher-order terms in the series. Therefore, 
finally we write 
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where
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? A 0 A
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�
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Both of these series are analytic and continuous everywhere inside and on the 
circle. Note that all the constant terms are deleted since they do not affect the 
resulting stress (see Section 3.6). 
 The boundary force condition given in (3.85) can be expressed as 

1 2
( )[ ( ) ( ) ( )] ( )
( ) s i T iT dsF A� A � A ? A

F A
1� � � �

1 �  (3.143) 

Now, on the circle’s boundary we have ( = 1, that is A = ei
 = � (which should not 
be mixed up with the stress term). Therefore, the boundary condition becomes 
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1 2
( )[ ( ) ( ) ( )] ( )
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However, setting A = � into (3.139) and (3.140) yields 
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Substitution of (3.145) and (3.146) into (3.144) gives 
'

0 0 0 0
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where f0 is defined as 
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Another boundary condition is the conjugate of (3.147): 

0 0 0 0
( )( ) ( ) ( )
( )

fF �� � � � ? �
F �

1� � �
1
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When the hole boundary is free of traction, we have T1 = T2 = 0 and X = Y = 0.
When the far field is considered (i.e., z & �), we can demonstrate by substituting 
(3.110) and (3.111) into (3.34) and (3.35) that: 

22 11 22 11 124 , 2 2( )B i B iC� � � � � 1 1� � � � � �  (3.150) 
The far field applied stress can be reflected by choosing B, B1 and C1. Conversely, 
if only stress is applied on the hole’s boundary, we have B = B1 = C1 = 0, and X and
Y are the horizontal and vertical resultant force on the hole’s surface. In any case, f0
and 0f  are prescribed, and we now have to decide on the forms for �0(A) and ?0(A).
In doing so, we apply the Cauchy integration formula to (3.147) and (3.149). In 
particular, we discuss here two types of Cauchy integration formulas: 

CASE (1):
When a function F(A) is analytic within the unit circle, and is continuous inside and 
on the circle (its boundary denoted by � ), then for every point A inside the unit 
circle we have 

1 ( ) ( )
2

F d F
i �

� � A
� � A

�
��  (3.151) 

which is the Cauchy formula for finite regions 

CASE (2):
When F(A) is analytic outside the unit circle, and is continuous everywhere outside 
and on the circle (its boundary denoted by �), then we have for every point A inside 
the circle 

1 ( ) ( )
2

F d F
i �

� �
� � A

� �
��  (3.152) 



 Complex Variable in 2-D Elasticity 81 

which is the Cauchy formula for infinite regions. The proof of these formulas can 
be found in Muskhelishvili (1975). 
 Multiplying both sides of (3.147) by [1/(2�i)][d�/(� � A)] and integrating 
around the hole’s boundary, we get 
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From the definition of �0(A) given in (3.141), it is obvious that �0(A) is analytic 
inside the unit circle and continuous everywhere inside and on the circle. 
Therefore, by Cauchy integral formula given in (3.151), we have 
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On the other hand, we find from (3.142) 
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And, it is obvious that 
1 2

2
0 0
� �

� ��  (3.156) 

is analytic outside the circle and is continuous everywhere outside and on the unit 
circle; therefore, (3.152) gives 
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Substituting (3.154) and (3.157) into (3.153), we have 
0 0
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Similar consideration to (3.149) yields 
0 0

0
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Therefore, problems for stress concentration at holes reduce to finding an 
appropriate mapping function F(A) for the hole boundary and finding the 
appropriate form of �0(A) and ?0(A). Fortunately, many useful functions for 
different shapes of holes have been tabulated in books on conformal mapping (e.g., 
Savin, 1961). In particular, substituting the appropriate F(A) and (3.141) into 
(3.158), the evaluation of the resulting equation using the Cauchy integration 
formula gives �0(A) which can be further substituted into (3.159) yielding ?0(A).
Then (3.139) and (3.140) can be used to find �(A) and ?(A). Subsequently, (3.122) 
and (3.123) can be used to yield 8(A) and G(A). Finally, the stress concentration 
can be found using (3.131) and (3.132). 
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3.12 STRESS CONCENTRATION AT A SQUARE HOLE 

Using the Schwarz Christoffel integral, one can show that the conformal mapping 
for the exterior of a square hole in the z-plane onto the interior of a unit circle in 
the A-plane is approximately (Savin, 1961) 

3 7 11 15 191 1 1 1 1 7( ) ( )
6 56 176 384 4864

z RF A A A A A A
A

� � � � � � � ��  (3.160) 

where R is a real constant indicating the size of the square hole. It can be shown 
that the sharpness of the four corners depends on the number of terms used in 
(3.160). For example, if we can retain the first two terms, we have 

31 1( ) ( )
6

z RF A A
A

� � �  (3.161) 

On the circle boundary, A = � = ei
 and 
31 1 1( ) (cos sin cos3 sin 3 )

6 6 6
i ix iy R e e R i i
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Equating the real and imaginary parts, we obtain the curve for the hole’s boundary 
in the z-plane:

1 1(cos cos3 ), (sin sin 3 )
6 6

x R y R
 
 
 
� � � � �  (3.163) 

Setting 
 to different values, we can sketch the hole’s boundary as shown in Fig. 
3.8(a). More specifically, when 
 = 0, x = 5R/6 and y = 0; when 
 = �/2, x = 0 and 
y = �5R/6; when 
 = �/4, x = �y = 7RH2/12. Therefore, at the center level, the 
width of the square is a = 5R/3 and the diagonal can be shown to be d = 1.4a.
According to mathematics books on analytic geometry (e.g., Britton et al., 1966), 
the parametric form of the radius of curvature is 
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 (3.164) 

Without showing the details, if we retain the first three terms in (3.160), we have IrI
= 0.025a; and the corresponding hole is shown in Fig. 3.8(b). If the first four terms 
in (289) are obtained, IrI becomes 0.014a; the corresponding hole is shown in Fig. 
3.8(c), which is essentially same as that shown in Fig. 3.8(b). 

                        (a)                                            (b)                                           (c) 
Figure 3.8 Shapes of the rectangular hole predicted by mapping functions of various terms  
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Using (3.110) and (3.111), it can be shown that the far field stresses �1 and �2 can
be related to B, B1, and C1 as (see Problem 3.4) 

22 11 1 2
2

22 11 12 1 2

4

2 ( ) 2( )i
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i e B iC�

� � � �
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� � � �
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 (3.165) 

where �1 and �2 are the principal stresses as shown in Fig. 3.9. 
 For a square hole subject to a far field compression q along the orientation 
measuring � from the horizontal (as shown in Fig. 3.10), we have 

2,
4 2

iq qB B iC e �1 1� � � �  (3.166) 

Since the hole is traction free, we also get 
1 2 0X Y T T� � � �  (3.167) 

Now, the mapping function (3.161) and its derivative and conjugate are 
3
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Therefore, (3.148) becomes 
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Substituting (3.171) into the right-hand side of (3.158), we get, in view of (3.151) 
and (3.152), 
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Similarly, the second term on the left-hand side of (3.158) becomes 

 
 
 
 

Fig. 3.9 The definitions for �, �1 and �2 
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Fig. 3.10 A square hole subject to far field compression q inclined at � 
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Therefore, (3.158) becomes 
2 3 2 2
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Comparing the same order of A on both sides gives: 
2

1 1 3 2 4 5
1 , , 0
6 2 12

iqR qRe �� � � � � �� � � � � � � � ��  (3.175) 

Hence, the �1 and �3 are 
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Thus, �0(A) becomes 
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Substitution of (3.170) and (3.171) and (3.177) into (3.159) gives 
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After integration, we get 
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Finally, substitution of (3.170) (3.172), (3.177), and (3.179) into (3.139) 
and(3.140) yields the following analytic functions: 
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If uniaxial compression is applied along the x-axis, we have � = 0 (i.e., �11 = �q,
�22 = �12 = 0) and the complex stress functions reduce to 
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Substitution of (3.182) into (3.122) yields 
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Then, (3.184) can be combined with (3.113) and (3.131) to give 
8 2 6
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14 56 (96 48 )cos 2

14(4 4 cos 4 )
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Since the far field in the z-plane is mapped to the origin in the A-plane, setting ( & 
0 gives �

+�(( = � q as expected. On the hole’s boundary (i.e., ( = 1), �(( is 
identically zero (traction-free hole boundary); thus the tangential stress on the hole 
boundary becomes 

72cos 2 21
7(5 4cos 4 )

q



�



2 3�

� 4 5�6 7
 (3.186) 

At point A shown in Fig. 3.11 (i.e., 
 = 0), the stress concentration is 

1, 0
51[ ] 0.81
63

q q

 ( 
� � � � � , (3.187) 

compared to � q for a circular hole (see Section 2.18). At the corner, shown as 
point B in Fig. 3.11, we have 
 = �/4 and the tangential stress becomes 

1, /4[ ] 3q

 ( 
 �� � � � �  (3.188) 
At the midpoint of the sides parallel to the compression (i.e., point C), we set 
 = 
�/2 and the tangential stress concentration becomes 
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Figure 3.11 A square hole subject to far field uniaxial compression 
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compared to �3q for a circular hole (see Section 2.18). However, it can be shown 
that neither is the maximum compressive tangential stress at corner point B nor is 
the maximum tensile tangential at point A (see Problem 3.5). In particular, the 
maximum compression occurs at 47.0870 measured from the x1-axis (compared to 
450 at the comer) and its magnitude is �3.857q; the maximum tensile occurs at 
30.290 measured from the x1-axis and its magnitude is 0.857q. 
 Similar to the discussion given in Section 2.18 for a circular hole, this result 
can readily be extended to biaxial compression (see Fig. 3.12). For the stress 
concentration at the boundary, we add (3.186) with another solution for the vertical 
stress 0q, which is obtained simply by replacing q and 
 by 0q and 
+�/2 in 
(3.186). The final stress concentration is 

72(1 )cos 2 21(1 )
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The stress concentrations at 
 = 0, �/4, and �/2 are 
17 31
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respectively. The maximum and minimum of the stress concentration can be shown 
to occur at 

2
1 7(1 ) 121(1 ) 461 cos

2 24(1 )
0 0 0
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We can also follow the argument by Terzaghi and Richart (1952) or (2.144) that 
the geostatic stress state is 

22 11 22,
1

z K z#� . � � .
#

� �� � � � ��  �! "
 (3.193) 

where . and z are the unit weight of the overlying rock and the depth of the square 
tunnel, respectively. Thus, we can set q = v.z/(1�v) and 0 = (1�v)/v into (3.190). 
For typical rocks, Poisson’s ratio v is 0.2, hence 0 becomes 4. For this case, the 
stress concentrations at 
 = 0, �/4, and �/2 are, respectively, 
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Fig. 3.12 A square hole subject to far field biaxial compression 
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In terms of .z, these concentrations are 
1.2725 , 3.75 , 0.44z z z
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The maximum compression occurs at 43.580 measured from the x1-axis and the 
maximum compression is �16.77q. Comparing this result with those for the 
circular tunnel (see Section 2.18), it can be concluded the stress concentration 
(both tensile and compression) is stronger around a square tunnel than around a 
circular tunnel. 

3.13 MAPPING FUNCTIONS FOR OTHER HOLES 

To conclude this chapter, we cite here some useful conformal mapping functions. 
To map the exterior of an elliptical hole onto the interior of a unit circle, we can 
use

1( ) ( )z R mF A A
A

� � �  (3.196) 

where

,
2

a b a bR m
a b

� �
� �

�
 (3.197) 

and 2a and 2b are the lengths of the major and minor axes of the ellipse, 
respectively. As a special case, to map the exterior of a 2-D crack onto the interior 
of a unit circle, we can use 

1( ) ( )
2
az F A A

A
� � �  (3.198) 

where a is half the length of the crack. To map the exterior of a rectangular hole 
with side ratio 3.2:1 (the long side is parallel to the x1-axis) onto the interior of a 
unit circle, we can use 

3 5 7 91 1 1 3 3 5( ) ( ...)
2 8 80 896 768

z RF A A A A A A
A

� � � � � � � �  (3.199) 
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where R indicates the size of the hole. When the side ratio of the rectangular hole 
becomes 5:1, the mapping function is 

3 5 71( ) ( 0.643 0.098 0.038 0.011 ...)z RF A A A A A
A

� � � � � � �  (3.200) 

More generally, for an arbitrary side ratio, the conformal mapping can be expressed 
as

(2 ) (1 ) (1 ) 1/2
21

( ) [( )( )( )( )]k i k i k i k i dtR t e t e t e t e
t
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where k characterizes the side ratio of the rectangular hole. Expanding the 
integrand and carrying out the integration gives (Savin, 1961) 
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where
ikik eaea �� 22 , ���  (3.203) 

For k < 1/4, the longer side of the rectangular hole will be parallel to x1; for k > 
1/4, the longer side will be parallel to x2; thus, k = 1/4 corresponds to a square. For 
k = 1/6, we will obtain (3.199); for k = 10/86, we will obtain (3.200). Therefore, 
any side ratio can be considered by setting appropriate values of k. 

3.14 SUMMARY AND FURTHER READING 

The majority of this chapter discusses the stress concentrations at holes subject to 
far field stresses. In fact, complex variable techniques can be used to solve other 2-
D problems in elasticity. For general discussions on complex variable technique, 
the reader should refer to the book by Muskhelishvili (1975) together with his book 
on singular integral equation (Muskhelishvili, 1953). Another Russian book by 
Kalandiya (1975) also discusses many useful solutions, including numerical 
technique for solving the resulting integral equations. However, these books are 
not intended for beginners. Readers are recommended to consult Silverman (1974), 
and Spiegel (1964) for general knowledge on complex variable analysis before 
reading Muskhelishvili (1953, 1975) more seriously. 
 Other books on this topic include Green and Zerna (1968), Milne-Thomson 
(1968), and England (1971). Many books also include an introduction to the 
complex variable method for elastic problems, such as Timoshenko and Goodier 
(1982), Little (1973), and Xu (1982). Broberg (1999) provides a short introduction 
of complex variable technique to crack and fracture problems. Savin (1961) applies 
the complex variable technique to stress concentration at holes in solids. 
 Rice and Cleary (1976) demonstrated that the complex variable technique can 
also be used to solve 2-D problems in poroelastic diffusive solids. However, such 
discussion is outside the scope of the present chapter. 
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3.15 PROBLEMS 

Problem 3.1 The problem provides a different proof of the result that the Airy 
stress function can be written in terms of two analytic functions as shown in (3.18). 
In particular, we assume two new variables, z = x1+ix2 and z  = x1�ix2, instead of x1
and x2.
(a)  Use this change of variables to show that 

1
( )

x z z
� �� � �

� �
� � �

 (3.204) 

2
( )i

x z z
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� �
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 (3.205) 

(b)  Use the result of (a) to further show that 
2

2 4
z z
�� �

� �
� �

 (3.206) 

(c)  Prove that the biharmonic equation for � becomes 

 
4

2 2 0
z z

��
�

� �
 (3.207) 

(d)  Finally, by integrating (3.207), show the validity of (3.18). 

Problem 3.2 Show the following identity between the displacements in 
Cartesian and cylindrical polar coordinates given in (3.52): 

1 22 ( ) 2 ( ) i
ru iu u iu e 



$ $ �� � �  (3.208) 

Problem 3.3 Use the complex variable technique to solve the stress and 
displacement fields for a hollow cylinder subject to internal pressure pi and 
external pressure pe . Hint: Assuming ( )z cz� �  and ( )z? � d/z.

Problem 3.4 Prove equation (3.165) in the text. 

Problem 3.5 Prove that, for an infinite solid containing a square hole and 
subject to far field uniaxial compression, the maximum compression occurs at 
47.0870 measured from the x1-axis (comparing to 450 at the corner) and its 
magnitude is �3.857q; the maximum tensile occurs at 30.290 measured from the x1-
axis and its magnitude is 0.857q. 
 
Problem 3.6 Plot the angular variation of the tangential stress on the boundary 
of a square hole subject to a far field uniaxial compression. 

Problem 3.7 In the text, the Muskhelishvili (1975) method of complex 
variables was discussed for solving problems of two-dimensional elasticity. In 
particular, the technique relies on the fact that Airy stress function can be expressed 
in terms of two analytic functions (the real and imaginary parts of these complex 
functions satisfy the Cauchy Riemann equations). But, the body force potential V 
can be incorporated with the Airy stress function to solve problems with nonzero 
body force. In this exercise, we want to extend the results of (3.34) (3.36) to 
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include the effect of body force. In particular, we want to prove the following 
equations in this problem: 
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where
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z

�
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�
 (3.212) 

Some useful equations are given below: the equilibrium equations along x1- and x2-
directions are 
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Assume that the body force is conservative such that  
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The two-dimensional Hooke’s law can be expressed as: 
1 3[ ( ) ]

2 4
�ij ij ijtr/� � �

$
�

� �  (3.216) 

where /  is same as that given in (2.112) of Chapter 2. Answer the following 
questions: 

 (i) We now introduce a change of variable: 
1 2 1 2,z x ix z x ix� � � �  (3.217) 

such that the new variables become z and z . Show that for any function f: 

1 2
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(ii) Use the result in (i) to show 

1 2 1 2
2 , 2f f f f f fi i

z x x z x x
� � � � � �

� � � �
� � � � � �

 (3.219) 

(iii) Use the equilibrium equations (3.213) and (3.214) and the result in (i), to show 
that 

11 22 12 11 22( 2 ) ( 2 ) 0i V
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(iv) Let
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and show that 

11 22 12( 2 )F i
z
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(v) We now define a complex displacement 1 2u u iu� � . Use the result of (ii) to 
show that 

11 22 122 2u i
z
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�
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(vi) Use Hooke’s law given in (3.216) and the result of (v), to show that 
4 ( , ) ( )u F z z f z$ � � �  (3.224) 

(vii) Use the result in (ii) and Hooke’s law to show 
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(viii) Show that differentiating (3.224) with respect to z and combining the 
resulting expression with (3.225) to eliminate �u/�z will yield 
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(ix) Let ( ) 2(1 ) ( )f z z/ �� �  and combine (3.226) with its conjugate to show the 
validity of (3.209). 
(x) Use (3.209) and the definition of ( , )F z z  given in (iv) to show that 

2(1 )( , ) 2[ ( ) ( )] 2 ( )
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where ?(z) is an arbitrary function of z.

(xi) Substitute (3.227) into (3.222) to show the validity of (3.210). 

(xii) Substitute (3.227) into (3.224) to show the validity of (3.211). 

Problem 3.8 Show that the following mapping can be used to map a triangular 
hole to a unit circle as shown in Fig. 3.13: 

21 1( ) [ ]
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RF A A
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Problem 3.9 Show that the radius of curvature at the corners of the triangular 
hole given by (3.228) is 

21
Rr �  (3.229) 

Problem 3.10 Show that the analytic functions for the triangular hole modeled 
by (3.228) subject to a far field inclined traction p shown in Fig. 3.14 are  
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Figure 3.13 A triangular hole mapped to a unit circle 
 

Figure 3.14 A triangular hole subject to far field compression p 



 
 
 

CHAPTER FOUR 
 

Method of Solution for 3-D Elasticity 

4.1 INTRODUCTION 

Real solids are always three dimensional (3-D) in nature; however, most textbooks 
on elasticity have been restricted to two-dimensional (2-D) situations (either plane 
strain or plane stress). The main reason is that the equations of motion or 
equilibrium (the so-called Navier equation in displacement formulation) or the 
compatibility equations (or the Beltrami Michell equation in stress formulation) 
for 3-D solids are difficult to solve. This chapter introduces the method of solution 
for 3-D elasticity. More specifically, three coupled differential equations have to 
be solved for three unknown variables in the displacement formulation. Two major 
approaches have been adopted to uncouple these equations by either introducing 
displacement potentials or stress functions. Even though the resulting governing 
equations for displacement potentials or stress functions are uncoupled, the method 
of solutions for them is by no means straightforward even for simple practical 
problems.   
 As discussed in Chapter 2, plane stress or plane strain condition is normally 
assumed to idealize real situations. The problem of 2-D elasticity is much simpler 
than 3-D elasticity. Even when numerical methods (such as the finite element 
method) are used to solve real problems, 2-D idealization is usually adopted. In 
geomechanics, 3-D solutions are, however, essential in engineering applications.  
Examples include the Kelvin problem (point force in a full space), Boussinesq’s 
problem (vertical surface point force applied on an elastic half-space), Cerruti’s 
problem (horizontal surface point force applied on an elastic half-space), and 
Mindlin’s problem (point force in an elastic half-space). These solutions have been 
used extensively to generate solutions for other practical problems. For example, 
the widely used Newmark influence charts and Fadum charts in soil mechanics 
were both obtained by superimposing (or integrating) the solution of Boussinesq’s 
problem. These solutions also provide the fundamental solutions to the Green’s 
method, the body force method, the boundary integral equation method, and the 
boundary element method.  
 Because of its mathematical complexity, the solution technique in solving 
these fundamental solutions is not covered in most textbooks in geomechanics or 
in elasticity. For example, the classical textbook on elasticity by Timoshenko and 
Goodier did not include a complete treatment on the method of solutions for 3-D 
elastic solid. Only some ad hoc 3-D elastic problems were considered. We believe, 
however, that the method of solutions for 3-D elasticity is of utmost importance 
and must be covered in a textbook on geomechanics or elasticity. This is the 
purpose of this chapter.  
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 Readers familiar with the method of solutions for 3-D elasticity summarized 
in this chapter will find themselves better equipped to understand and tackle more 
complicated 3-D problems in thermoelasticity and poroelasticity. The former is 
important when one deals with geothermal energy extraction problems while the 
latter is important when one deals with problems of saturated soils or rocks (such 
as subsidence problems in clay or well water-level fluctuations before and during 
earthquakes). 
 In this chapter, the Galerkin vector potential and Papkovitch�Neuber 
displacement potentials will be covered under displacement formulation whereas 
the Maxwell stress functions and Morera stress functions will be covered under 
stress formulation. Some of these methods are applied to obtain the solutions of the 
Kelvin problem, Boussinesq’s problem, Cerruti’s problem, and Mindlin’s problem. 
The general features of harmonic and biharmonic functions are discussed. The 
former finds applications in establishing solutions using the Papkovitch�Neuber 
potential, whilst the latter finds applications in establishing solutions using the 
Galerkin potential. The concept of indirect method is also introduced. Finally, the 
Muki (1960) vector potential for cylindrical coordinates is introduced together 
with the mathematical technique of the Hankel transform. 

4.2 DISPLACEMENT FORMULATION  

As shown in (2.72) in Chapter 2, the equations of equilibrium in the absence of 
body force can be expressed in terms of the displacement field u as 

 2 ( ) 0$ � $ �� � � � �u u  (4.1) 
This equation is called Navier’s equation. Recall that boldface indicates a vector or 
tensor. Various mathematical techniques will be discussed next in order to obtain 
the general solution of u. 

4.2.1 Helmholtz Decomposition  

It is well known from the Helmholtz theorem that any vector which is finite, 
continuous, and vanishes at infinity can be decomposed in an irrotational part and 
a solenodial part (Chou and Pagano, 1967). Note that a field A is called irrotational 
if � � A = 0, and a field B is called solenodial if � 	 B = 0. Therefore, a 
displacement field of a physically feasible solution can be decomposed into a 
scalar potential field � (x1, x2, x3) and a vector potential field ? (x1, x2, x3) as 

 �� �� � �?u  (4.2) 
The first term on the right of (4.2) is the irrotational part whereas the second term 
on the right of (4.2) is solenodial because of the following vector identities: 

 0�� �� �        0� � � �?  (4.3) 
which are given in (1.46) and (1.47) in Chapter 1. Since there are four scalar 
functions �, ?1, ?2, and ?3 in (4.2) but there are only three scalar functions for 
displacement u in (4.1); therefore, an additional constraint can be imposed on 
these potentials. Without loss of generality, the following condition is normally 
imposed on the vector potential: 
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 0�  �?       (4.4) 
 Substitute (4.2) into (4.1) and note that  

 2 2( )� � � � �� �R R     (4.5) 
in Cartesian coordinates yields the following governing equation for these 
potential functions: 

 2 2( 2 ) ( ) ( ) 0� $ � $� �� � � � � �?  (4.6) 
This is the equilibrium equation in terms of � and ?.  
 A particular solution of (4.6) is obviously: 

 2
1c�� �        2

2� �? c  (4.7) 
for any arbitrary scalar constant c1 and vector constant c2. This is known as 
Poisson’s equation. Therefore, any solution of (4.7) is also a solution for (4.6) but 
not vice versa. In other words, any solutions of Poisson’s equation can be used to 
find a particular solution u, but in general any solution u may not be expressible in 
terms of the solutions of Poisson’s equation. In Cartesian coordinates, (4.7) 
provides a system of four uncoupled differential equations for four potential 
functions �, ?1, ?2, and ?3. However, this is not true for curvilinear coordinates. 
That is, the components of ? do not satisfy Poisson’s equation. These components 
are in fact still coupled in the second equation of (4.7).  
 Another way of finding the general solution of � and ? is to take the 
divergence of (4.6): 

 2 2( 2 ) ( ) ( ) 0� $ � $� � � � � � � �� �?  (4.8) 
The second term on the left is clearly identically zero by virtue of the second 
equation of (4.3). Thus, the scalar potential must satisfy the biharmonic equation: 

 2 2 4( ) 0� �� � � � �  (4.9) 
Similarly, by taking the curl of (4.6), we have 

 2 2( 2 ) ( ) ( ) 0� $ � $� � � �� � � � � �� �?  (4.10) 
By vector identity (1.46) or the first equation of (4.3), the first term of (4.10) must 
vanish and, in view of (1.49), the second term of (4.10) can be expressed as 

 2 2 4( ) ( ) 0� � � � � �� � � ��? ? ? �  (4.11) 
The first term of the second part of (4.11) vanishes by the constraint imposed in 
(4.4), and thus the vector potential also satisfies the biharmonic equation. 
Therefore, in summary we have 

 4 0�� � ,  4 0� ? �  (4.12) 
Again all Cartesian components of ? are part of a biharmonic function, but the 
corresponding components in curvilinear coordinates do not satisfy the biharmonic 
equation. In fact, (4.12) is still a coupled differential equation for the components 
of ? in polar coordinates. Solving coupled differential equations is one of the most 
difficult problems in applied mathematics. Therefore, Helmholtz vector 
decomposition is only useful for solving problems in Cartesian coordinates.  
 Instead of solving the coupled differential equations (4.6), we now have a 
decoupled system of differential equations (4.12) in Cartesian coordinates to solve. 
There is of course a price to pay. In particular, we have to deal with fourth order of 
differentiation, comparing to third order of differentiation in (4.6).  
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 The corresponding stress components in terms of Helmholtz decomposition 
can be evaluated by using the following formulas: 

 [ ] 2 [ (T �� � �� ��� � �S� � � � � �u u ?� ?�  (4.13) 

 2 2tr � ��� � � �� � � � � � � �u) = u ?  (4.14) 
For isotropic solids, Hooke’s law can be expressed in terms of displacement as 

 (tr� $� � �� � � �u)I u + u�  (4.15) 
Substitution of (4.13) and (4.14) into (4.15) gives the dyadic form of the stress 
tensor as 

 2 [2 ( ( ]� � $ ��� � � � �� � � � � � � �I +� ? ?  (4.16) 
The corresponding Cartesian component form of (4.16) can be expressed as 

 2
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More explicitly, we can write 
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 (4.23) 

A special case of Helmholtz decomposition is Lamé’s strain potential. If we set ? 
= 0, we have the following Lamé’s strain potential (Malvern, 1969): 
  2

1c�� �          0�?  (4.24) 

4.2.2 Lamé’s Strain Potential for Incompressible Solids  

Another special case of Lamé’s strain potential given in (4.7) that deserves special 
attention is the case of incompressible solids. In geomechanics, the short-term 
behavior of saturated clay can clearly be considered incompressible. For such a 
situation, Lamé’s strain potential � satisfies the Laplace equation instead of 
Poisson’s equation: 

u ��� ,    2 0�� �     (4.25) 
The volumetric strain e can be shown as 
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 2tr( ) 0e u �� � � � � ��   (4.26) 
Therefore, (4.25) clearly corresponds to incompressible solids. The stress 
components for this special case are extremely simple: 
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 (4.27) 

Note that since the solid is incompressible or equivalently corresponding to # = 
1/2, the stress given in (4.27) is independent of #. As will be shown later, many 
special features of elastic solutions exist for incompressible solids.  
 In addition, as remarked by Fung (1965), Westergaard (1952) proposed a 
perturbation of elasticity solutions by a change of Poisson’s ratio. Thus, the 
solutions obtained by solving (4.25)�(4.27) for incompressible solids can be easily 
extended to compressible elastic solids with arbitrary #.  
 In particular, as shown by Fung (1965), the solutions in Cartesian 
coordinates for elastic solids with arbitrary # can be obtained by adding to this 
solution for incompressible solids with another stress field resulting from a 
“twinned gradient” �: 

 2
11 ,22=� � �� � ,   2

22 ,11=� � �� � ,   12 ,12=� �  (4.28) 
where � can be evaluated by using the incompressible solids solutions  

 2 0�� � ,   ,33
(2 1)

3
*
��

#� ��
�  (4.29) 

where �*�� is the sum of the normal stress of the incompressible solid. An example 
using this method can be found in Section 8.10 of Fung (1965) and Article 77 of 
Westergaard (1952).  

4.2.3 Galerkin Vector   

The Helmholtz decomposition discussed in Section 4.2.1 represents the 
displacement vector by a scalar potential and a vector potential. It is also possible 
to represent the displacement vector by a single vector potential called the 
Galerkin vector G: 

 22(1 )# �� � � � �u G G  (4.30) 
Note that 

 2 2 2 22(1 ) )# �� � � � � � �� �u G G  (4.31) 
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 (4.32) 

Substitution of (4.31) and (4.32) into (4.1) yields a biharmonic equation for G: 
  2 2 4 0� � � � �G G  (4.33) 
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Therefore, any biharmonic vector function may be used as the Galerkin vector. 
Comparison of (4.30) with (4.2) gives the following relation between the 
Helmholtz decomposition potential and the Galerkin vector: 

 � � �� G ,  22(1 2 )#�� � � �� G  (4.34) 
A subset of the general solution is, of course, that G is a harmonic function (i.e., 
�2G = 0). The second part of (4.34) implies that  

 0�� ��  (4.35) 
Taking the Laplacian of the first part of (4.34) shows that � is also harmonic. In 
summary,  

 u ��� ,    2 0�� �      (4.36) 
which is again the special case of Lamé’s strain function given in Section 4.2.2.  
 Without going into the details, we record here the stress tensor in terms of 
Galerkin vector as 

 2 22 [ ( (1 ) ( ]$ # #� �� � �� � � � � � � � � �G)I G G G)�  (4.37) 
In Cartesian coordinate, stress components are  

 , , , ,2 [ (1 )( ) ]ij k kmm ij j imm i jmm m mijG G G G� $ # � #� � � � �  (4.38) 
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 (4.40) 

where �, 0 = 1,2,3 (with no summation on � in (4.39)). 
 It is interesting to note that Galerkin started his academic career in prison. He 
also laid the mathematical foundation of today’s finite element method (see his 
brief biography at the end of this book). 

4.2.4 Love’s Displacement Potential for Cylindrical Solids  

A special case of the Galerkin vector is Love’s displacement potential which 
corresponds to only the case of the nonzero axial component: 

 z zG e�G ,    4 0zG� �     (4.41) 
In cylindrical coordinates, the corresponding displacement and stress tensors are 
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For the axisymmetric case or Gz = Gz(r, z), (4.43) can further be simplified. A.E.H. 
Love was a major contributor to three-dimensional elasticity and his book A 
Treatise on the Mathematical Theory of Elasticity remains a standard reference 
book on elasticity (see biography section at the end of this book). 

4.2.5 Papkovitch�Neuber Displacement Potential  

The Helmholtz scalar and vector potentials satisfy a coupled third-order equation 
(4.6) or uncoupled fourth-order system of (4.12), whereas the governing equation 
for the Galerkin vector satisfies the fourth-order biharmonic equation. It is 
therefore desirable to find a solution system composed of second-order equations 
which are of the same order as the original Navier’s equation given in (4.1). We 
have also remarked earlier that a harmonic function is also the solution of 
biharmonic equation (like Lamé’s strain potential discussed earlier), but they are 
not general. For this reason, a new displacement potential was proposed 
independently by P.F. Papkovitch in 1932 and by H. Neuber in 1934 (Mindlin, 
1936a). Goodman (1974) also cited a less-recognized Russian paper by Grodski 
from 1935 in which Grodski also independently proposed the same displacement 
potentials. We will, however, follow the more widely adopted term 
“Papkovitch�Neuber displacement potential” which can be derived from the 
Helmholtz decomposition given in (4.2). Taking the divergence of (4.2) gives 

 2u � �� � � � �  � � � � �?  (4.44) 
Substitution of (4.44) into (4.1) yields 

 2[( ) ] 0� $ � $�� � � �u  (4.45) 
Integrating (4.45) gives 

 ( )� $ � $ $�� � � 8u  (4.46) 
where 8 is a harmonic vector function. Rearranging (4.46) gives  

 (1 / )� $ ��� � �u 8  (4.47) 
Taking the divergence of (4.47) and in view of (4.44), we obtain 

 2 2(1 / )� � $ �� � � � � �8  (4.48) 
Solving for � gives 

 2 21(2 ) ( )
2

� �
$

�  � � � � � r8 8  (4.49) 

The last equation of (4.49) can be shown by using the following identity: 
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 (4.50) 

Recall from (4.46) that 8 is a harmonic vector function; therefore, the last term in 
(4.50) must vanish. This completes the proof of the last equation in (4.49). 
Rearranging (4.49) gives 

 2 2 ( )
2( 2 )

$�
� $

� � �
�

r 8  (4.51) 
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Integrating (4.51) twice finally gives 

 0 0
1 2( ) ( )

2( 2 ) 4(1 )
$ #� 8 8

� $ #
 

�
� � � �

� �
r r8 8  (4.52) 

where 80 is another harmonic function. Note that integration constants have been 
ignored in (4.52). The last equation of (4.52) can be verified by using (2.50) and 
(2.51) given in Chapter 2. Back substitution of (4.52) into (4.47) gives the 
Papkovitch Neuber displacement potential as 

 0
1

4(1 )
8

#
�� �� � 

�
u r8 8� ,   2

0 08� � ,    2 0� �8  (4.53) 

Comparison of (4.53) with the Galerkin vector given in (4.30) gives the following 
relation between the Papkovitch�Neuber displacement potential and the Galerkin 
vector: 

 22(1 )#� � � G8 ,  0 4(1 )#8 � 8 � � �G r  (4.54) 
This equivalence between the Papkovitch Neuber displacement potential and the 
Galerkin vector was first noted by Mindlin (1936a). 
 Substitution of (4.53) into (4.15) gives 
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where �, 0 = 1, 2, 3 (with no summation on � in (4.57)). A simplified form for �ij 
will be given later in (4.212). 
 There are, however, some disadvantages of using Papkovitch Neuber 
displacement potentials. For example, there were originally three unknown 
displacements, but now we have to find four displacement potentials (one scalar 
potential plus three components of vector potentials). It was shown by Sternberg 
(1960) that for an arbitrary three-dimensional convex domain, the four potentials 
are reducible to three. In addition, it is straightforward to show that 
Papkovitch�Neuber displacement potentials are not invariant upon translation of 
the origin.  
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 4.2.6 2-D Papkovitch Neuber vs. Kolosov�Muskhelisvili Methods  

The Papkovitch Neuber solution method can be specialized to two dimensional 
and can be shown to be equivalent to the complex variable method of Kolosov-
Muskhelisvili (Muskhelishvili, 1953) discussed in Chapter 3. First, we can rewrite 
(4.53) as  

 0
3 4 1 1

4(1 ) 4(1 ) 4(1 )
# 8
# # #

� �
�
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u r8 8    (4.59) 

In Cartesian coordinates, we consider the special case that u3 = 0 and 83 = 0 and 8 
is independent of x3, and introduce the following harmonic functions: 
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Using these harmonic functions, the displacement components of (4.59) can be 
rewritten as  
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These two equations can be combined as 
 2 22 ( ) (3 4 ) ( ) ( ) ( )u iu z z z z$ # � ? �1� � � � �  (4.64) 

where the superimposed bar means complex conjugate and the following 
definitions have been adopted: 

 1 2( )z i? ? ?� � ,    1 2( )z i� � �� � , (4.65) 
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 (4.66) 

This is the Kolosov Muskhelisvili complex variable method discussed in Chapter 
3. 

4.3 STRESS FORMULATION  

 4.3.1 Beltrami and Beltrami�Schaefer Stress Functions 

When the body force is zero, the equilibrium equation is expressed as (see (2.67)) 
 0�  ��  (4.67) 

and the Beltrami Michell compatibility equation is (see (2.83)) 

 2 1 0
1 kk�

#
��� � �

�
�  (4.68) 
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The equilibrium equation can be satisfied as long as � is expressed as a curl of 
some vector function, since the divergence of a curl vanishes identically. Since the 
stress tensor � is symmetric, we can define a symmetric dyadic function  

 � �� �� � G  (4.69) 
This form was first proposed by Beltrami in 1892 (Malvern, 1969, Wang, 2002). 
In Cartesian coordinates, the Beltrami stress function G can be evaluated as  
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Take the divergence of (4.71) yields 
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Since reversing the order of any two indices (i and l) of the permutation tensor will 
lead to a change of sign while the order of differentiation can be reversed 
arbitrarily, the vector given in (4.72) must be identically zero, as expected. 
Therefore, (4.67) is automatically satisfied by (4.69). 
 In view of the e-� identity (see (1.18) of Chapter 1), the trace of the stress 
tensor becomes 
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By virtue of (4.69) and (4.73), the Beltrami�Michell compatibility equation 
becomes 

 2 21[ ] 0
1 #

� �S � �� � �� � � � � � T � �
�

G G G  (4.74) 

There are six components of G, but only three of them are independent which is 
what we discussed for the compatibility condition in Chapter 2. In most of the 
elasticity books only two common choices of selecting components of G are 
discussed. If the diagonal terms are selected, the stress functions are called 
Maxwell stress functions. If the off-diagonal terms are selected, the stress 
functions are called Morera stress functions (Chou and Pagano, 1967; Fung, 
1965).  
 As summarized by Wang (2002), Schaefer in 1953 extended the Beltrami 
stress function to the following form: 

 � � � � � � � � � �h h I h� � G  (4.75) 
where h is a harmonic vector function. It can be seen that the terms involving h 
satisfy (4.67) exactly by observing the following identities: 

 � � �� � � � h ( h)  (4.76) 

 2� �� � � �h h  (4.77) 
 � � � � � ��� �  h hU  (4.78) 

With nonzero h in (4.75), the Beltrami Michell compatibility equation can be 
revised as 
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 2 21[ ] 0
1 #
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�

hG G G  (4.79) 

This stress function is called the Beltrami�Schaefer stress function by Wang 
(2002). Wang (2002) further showed that the Beltrami�Schaefer stress function 
can be refined as 

* 21 ( ) ( )]
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r h I r h h h I h� � G  (4.80) 

 * 2 1 ( )
1 #

� � � � �
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* *B I BG ,  4 � V� *B  ,  2 0� h =  (4.81) 

where B* is a symmetric biharmonic second-order tensor while h is a harmonic 
vector. Details of its proof will not be given here.  

 4.3.2 Maxwell Stress Functions 

To illustrate the nonzero terms used in the Maxwell stress function, we can use the 
matrix form to express the components of the second-order tensor G 

 T S
11 12 13

12 22 23

13 23 33

G G G
G G G
G G G

� �
�  � �  
�  
! "

G  (4.82) 

Note that Maxwell is more widely known for his mathematical theory coupling 
electricity, magnetism, and light (see biography section of this book). Then, the 
nonzero terms of the Maxwell stress function components of the tensor G can be 
expressed in matrix form as: 
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Note that there is only one way of choosing diagonal terms.  
 For the 2-D special case, we can express the Maxwell stress function as 
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The stress functions G0 and G1A correspond to plane stress and plane strain, 
respectively. In both cases, G33 is the negative of the Airy stress function. When 
G0 is chosen, the compatibility conditions along the x1- and x2-directions are not 
satisfied (recall from Chapter 2 that plane stress is an approximate solution). For 
the case of torsion, we have 

 T S
11
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where G11 and G22 relate to Prandtl’s stress function G as 
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 11,2 3 1,xG G� ,    22,1 3 2,xG G� �  (4.86) 

4.3.3 Morera Stress Function 

When nondiagonal terms were chosen, we have the Morera stress function. The 
nonzero terms of the Morera stress function components of the tensor G can be 
expressed in matrix form as 
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Again there is only one way of choosing nondiagonal terms.   
 For the 2-D special case, we can express Morera stress function as 
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where G equals half of the Airy stress function and  
2

12,12G # G� �  (4.89) 
Plane stress and plane strain cases are represented by Morera stress functions G2A 
and G2B, respectively. For the case of torsion, we have the following special case 
of Morera stress function: 
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where G23 relates to Prandtl’s stress function G as 
 23,1G G�  (4.91) 

4.3.4 Other Beltrami Stress Functions 

In addition to the Maxwell and Morera stress functions, Wang (2002) discussed 
the possibility of other choices. Explicit forms were not reported in Wang (2002), 
but they will be given here. In particular, four more types of stress functions can be 
selected: 
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 (4.92) 
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In the Type 3 case, two diagonal terms plus the off-diagonal terms associated with 
both diagonal terms are selected. Three different combinations are shown in 
(4.92). 
 
Type 4: 
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In the Type 4 case, one diagonal term plus two off-diagonal terms (one associated 
with the diagonal term, the other one not associated with the diagonal term). The 
six possible combinations are shown in (4.93).  
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In the Type 5 case, two diagonal terms plus one off-diagonal term associated with 
only one of the diagonal terms are selected. Six different combinations are shown 
in (4.94). 
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�  �2 36 7 �  
�  
! "
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In the Type 6 case, one diagonal term plus both off-diagonal terms associated with 
the diagonal term are selected. Three different combinations are shown in (4.95). 
There is a total of 20 combinations of choosing three components of the Beltrami 
stress functions. Types 1 and 2 are the Maxwell and Morera stress functions 
discussed in the last two sections. The completeness of the first 17 stress function 
matrices shown in (4.83), (4.87), and (4.92) (4.94) of Type 1 to Type 5 can be 
demonstrated (Wang, 2002). The last three stress functions given in (4.95) are 
rather restrictive. For example, substitution of G6A into (4.69) reveals that there is 
no contribution for �33 (or �33 = 0). Therefore, any problem with nonzero �33 
cannot be solved by using G6A. Similar conclusions can also be drawn for matrices 
G6B and G6C.   
 Note that a special form of either G4E or G4F can also be specialized to 
recover the plane strain problem. In particular, we have (either setting G23 = 0 in 
G4E or setting G13 = 0 in G4F): 
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where  

 2
12,12 33

1
2

G # G� � �  (4.97)  

4.4 SOME 3-D SOLUTIONS IN GEOMECHANICS  

In the last two sections, both displacement and strain potential methods in the 
displacement formulation and the stress function method in the stress formulation 
have been discussed. To illustrate how to use this technique, some useful and well-
known formulas for 3-D elasticity will be considered in this section. 

4.4.1 Hollow Sphere Subject to Internal and External Pressures  

To illustrate the use of this displacement potential, a hollow sphere subject to an 
internal pressure pa at radius r = a and an external pressure pb at radius r = b is 
considered, as shown in Fig. 4.1. For this case of spherical symmetry, Lamé’s 
strain potential given (4.25) can be used. 
 In view of symmetry, the following Lamé’s strain potential is assumed: 

 A( )
2

Br r
r

� � �  (4.98)  

Applying the Laplacian operator on (4.98) and in view of (1.85), we have 
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1( ) ( ) 3r r A
r rr

�� � �
� � �

� �
 (4.99)  

which is clearly Poisson’s equation, and thus potentially a solution for 
displacement u of the problem. Applying the first part of (4.25) gives 

 2( )r
Bu r Ar
r

� �  (4.100)  

The corresponding strain tensor becomes 

 ( ) ( )r ru ur
r r� �

�
� � �

�r r � �e e e e e e�  (4.101) 

and the stress tensor is 

( ) (2 ) 2 (2 ) ( )r r r ru u u ur
r r r r � �$ � � $ � �

� �2 3 2 3� � � � � � �4 5 4 5� �6 7 6 7
� r r � �e e e e e e

 (4.102) 
Therefore, the stress components are 

3
2( ) ( )

1 2 1rr
E E BA

r
�

# #
� �

� �
,    3( ) ( )

1 2 1
E E BA

r

 ��� �
# #

� � �
� �

 (4.103) 

As shown in Figure 4.1, the boundary conditions at r = a and r = b are  
 ( )rr r a ap� � � � ,    ( )rr r b bp� � � �  (4.104) 

 

 
 
 

Figure 4.1 A hollow sphere subject to internal and external pressures 

r=b 

r=a 

pb 
pa 
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Substituting the first part of (4.102) into (4.104) gives two simultaneous equations 
for determining A and B: 

  3
2

1 2 1 a
E E BA p

a# #
� � �

� �
,    3

2
1 2 1 b

E E BA p
b# #

� � �
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 (4.105) 

 
The solution of (4.105) gives 

   
3 3

3 3 (1 2 )
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a ba p b p
A
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�
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�
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3 3

3 3
( )

(1 )
2 ( )
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B

E b a
#

�
� �

�
 (4.106) 

Substituting these constants into (4.100) and (4.103) gives 

 3
3 3 3

(1 ) 1 1 2 1 1 2( ) ( )
1 1(1 ) 2 2r a b

ru p p
E

# # #�
# #� ( (

K L2 3 2 3� � �M M� � � �N O4 5 4 5� �� M M6 7 6 7P Q
 (4.107) 

 3
3 3 3

1 1 1( ) (1 )
1rr a bp p� �

� ( (

K LM M� � � � �N O
� M MP Q

 (4.108) 

 3
3 3 3

1 1 1( ) (1 )
1 2 2a bp p

 ��� � �

� ( (

K LM M� � � � �N O
� M MP Q

 (4.109) 

where � = a/b and ( = r/a. Note that 3-D elastic stress solutions are, in general, 
functions of Poisson’s ratio # whereas 2-D elastic stress solutions are independent 
of #. Equations (4.108) and (4.109) show that the present 3-D solution is clearly 
independent of #. To understand this observation, we can cut the sphere through 
any diametral plane in Fig. 4.1, and the resulting section is a section of 
axisymmetry. This effectively reduces the problem to 2-D mathematically. Thus, 
the stress solution is independent of # for this special case. 
 For the special case of a solid sphere subject to external pressure, we can set 
pa = 0 and a & 0, and we find 

 1 2( )bp r
E
#�

� � ru e ,   ( )bp 
 
 � �� � � �� r re e e e e e  (4.110) 

That is, only radial deformation occurs and its shrinks to zero at the center of the 
sphere, and the stress state is in isotropic (or hydrostatic) compression. If the 
sphere is incompressible (# = 1/2), radial deformation is identically zero, as 
expected. 
 Another special case of interest is a spherical hole subject to internal pressure 
in an infinite medium. We can set b & � and � & �, and the resulting solution is 

  2
1( )

2
aap

E
#

(
�

� ru e ,   3 3 ( )
2

a ap p

 
 � �( (

� � � �r re e e e e e�  (4.111) 

where ( � 1. On the surface of the spherical hole (r = a), the hoop stress equals 
pa/2. This result can be contrasted with the result of Chapter 2 for a 2-D hole 
subject to far field compression stress �T so that the maximum tensile hoop stress 
at a 2-D hole is T.  
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4.4.2 Kelvin’s Fundamental Solution 

One of the most commonly used elastic solutions is probably Kelvin’s solution or 
point force solution in a full space (or infinite domain). Kelvin’s problem is shown 
in Fig. 4.2. Its application is in the formulation of the boundary element method or 
in Green’s function method. This solution was obtained by Lord Kelvin in 1848 by 
using the method of singularities in the theory of Newtonian potentials. 
Apparently, Lord Kelvin was aware of its usefulness in Green’s function method, 
which was first recognized and publicised by himself shortly after the death of 
George Green in 1841 (see brief biography section at the end of the book). In this 
section, two different methods discussed earlier will be used to solve this problem, 
namely the Papkovitch�Neuber potential method and Love’s strain potential 
method. 

4.4.2.1 Papkovitch�Neuber Potential Method 
In general, if a point force vector P is applied at the origin, the following 
Papkovitch�Neuber potential can be assumed: 

 0 08 � ,      
4 R�$

�
P8  (4.112) 

where R is the distance of the observation point from the origin (or the magnitude 
of position vector r). It is straightforward to show that 1/R is harmonic:  

3
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��
� � � �

� �
  

 (4.113) 
where  

 2 2 2 1/2
1 2 3( )R x x x� � �  (4.114) 

 
Figure 4.2 Kelvin’s problem: A point force applied at the origin of a full space 
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Substitution of (4.112) into (4.53) yields 

  2
1 1[(3 4 ) ( )]

16 (1 )R R
#

�$ #
� � �

�
u P r r P  (4.115) 

In component form, the displacement can be expressed as 

 2[(3 4 ) ]
16 (1 )

j i j
i ij ij j

P x x
u G P

R R
# �

�$ #
� � � �

�
 (4.116) 

where Gij can be interpreted as the displacement Green’s tensor for infinite solid. 
The corresponding stress components are 

*
3 2

3
[ (1 2 )( )]

8 (1 )
i j mm

ij ij m im j jm i ijm m
x x xP

x x x G P
R R

� # � � �
� #

� � � � � � � �
�

 (4.117) 

where G*ijm can be interpreted as the stress Green’s tensor for an infinite solid. It is 
clear from (4.116) and (4.117) that both displacement and stress decay to zero at 
infinity, but are singular near the origin as R & 0. The stress singularity is in the 
order of R�2. For the case of vertical point force, we have P = (0, 0, P3). The 
displacement components is simplified to 

 1 3
1 3

x x
u A

R
� ,   2 3

2 3
x x

u A
R

� ,   
2
3

3 3
1[(3 4 ) ]

x
u A

R R
#� � �  (4.118) 

where  

 3

16 (1 )
P

A
�$ #

�
�

 (4.119) 

We now consider a sphere of radius R around the origin as shown in Fig. 4.2. The 
traction on the surface of the sphere can be evaluated as 

 ij j
i ij j

x
t n

R
�

�� �  (4.120) 

Substitution of (4.117) into (4.120) results in 

 3 1
1 46

x x
t A

R
$� � ,  3 2

2 46
x x

t A
R

$� � ,  
2
3

3 2 4
31 22 [ ]

x
t A

R R
#$ �

� � �  (4.121) 

The resultant force acting on the surface of the sphere can be determined from 

 
2 2

0 0
sini i i

S

F t dS t R d d
� �


 
 �� �� � �  (4.122) 

where a spherical coordinate has been used for the integration: 0 < � < 2� and 0 < 

 < �. Cartesian coordinates can be transformed to polar form by using 

 1 sin cosx R 
 �� ,   2 sin sinx R 
 �� ,  3 cosx R 
�  (4.123) 
The components of (4.122) become 
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 (4.126) 

Since the sphere must be in equilibrium, the resultant surface traction must balance 
the applied force at the origin. This verifies that the proposed solution given in 
(4.118) and (4.119) indeed provides the solution of Kelvin’s problem. Note that in 
the derivation R has been cancelled. That is, this force equilibrium is true for 
spheres of any size with the center at the origin. 
 From the mathematical form of displacement given in (4.118), it is obvious 
that similar results can be established for horizontal point forces P2 and P3. In 
addition, if the point force is applied at a point y (with Cartesian components y1, y2, 
and y3), the derivation is the same except is replaced x by x� y and R by  

 1/2[( )( )]i i i iR x y x y� � �  (4.127) 
In summary, Kelvin’s solution can be written as: 

   ( , )i ij ju G P� x y  (4.128) 
where 
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x y  (4.129) 

This is the elastostatic Green’s tensor or Green’s function for isotropic infinite 
elastic solid. It is obvious that G is symmetric with respect to x and y as well as 
with respect to indices i and j. 

4.4.2.2 Love’s Displacement Potential Method 
In this section, we will use Love’s displacement potential given in Section 4.2.4 to 
reconsider Kelvin’s problem presented in the last section. Recall that Love’s 
displacement potential is a special case of the Galerkin vector, and it is especially 
useful in solving axisymmetric problems. Kelvin’s problem is clearly one of those 
axisymmetric problems.  
 In particular, the following Love’s displacement potential is assumed: 

   2 2 1/2( )zG BR B z r� � �  (4.130) 
Note from the last section that 1/R is a harmonic function in 3-D domain. Then the 
Almansi theorem states that R = R2(1/R) must be biharmonic (see Section 8.11 of 
Fung, 1965). Using Cartesian coordinates, R can be demonstrated as biharmonic:  
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  (4.131) 
In polar coordinates, the derivation is somehow similar:   
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Thus, Gz given in (4.130) automatically satisfies the biharmonic equation (4.41). In 
polar coordinates, the displacement becomes 

        3r
rzu B
R

� ,    0u
 � ,   
2

3
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zu B
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The corresponding stresses are 
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These stresses are singular at the origin in the order of R�2, and vanish at infinity. 
This suggests a point force is applied at the origin. The axisymmetric nature of 
(4.133) suggests that the applied force is vertical.  
 To calculate the constant B, the applied point force at the origin is assumed to 
be enclosed in a circular cylinder of length 2a and radius r, as shown in Fig. 4.3. 
Since the cylinder must be in equilibrium, the resultant vertical surface traction on 
the surface of the cylinder must balance the applied vertical force at the origin. As 
r & �, this equilibrium is 

    
0 0

2 ( ) 2 ( ) lim 2
a

zz z a zz z a rzr a
P r dr r dr r dz� � � � � �

� �

� ��
&� �

� � � �� � �  (4.135) 

The last term vanishes as r & � and the first two integrals are the same. Using the 
identity R = (r2+z2)1/2 and rdr = RdR, (4.135) is simplified to 
 
 

 
 
 

Figure 4.3 Kelvin’s problem: A vertical point force applied at origin of a full space 
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Finally, we obtain 

 
16 (1 )

PB
�$ #

�
�

 (4.137) 

The solutions given in (4.133), (4.134), and (4.137) in cylindrical coordinates can 
be shown to be equivalent to the solution derived in the last section in Cartesian 
coordinate. 

4.4.3 Boussinesq’s Fundamental Solution 

Although Kelvin’s solution is probably the most useful formula in solid 
mechanics, Boussinesq’s problem considered in this section must be the most 
important solution in geomechanics. As shown in Fig. 4.4, Boussinesq’s problem 
deals with a vertical point force P applied on the surface of a half-space. The 
problem was first solved by Boussinesq in 1878, 30 years after Lord Kelvin 
obtained the point solution in a full space. Any surface vertical loading applied on 
the ground surface can be determined by integrating Boussinesq’s solution on a 
ground surface. Two particular results obtained from such integration, called 
Fadum chart and Newmark influence chart, are still used daily by geotechnical 
engineers in foundation engineering. Although Boussinesq’s solution was 
considered by some the start of geomechanics, Boussinesq is more widely 
recognized for his contributions to fluid mechanics and turbulence (see biography 
section at the end of this book). 
 The boundary condition on z = 0 must be traction free except at the origin: 

 ( )zz P r� �� � ,     0zr� �  (4.138) 
 
 

 
Figure 4.4 Boussinesq’s problem: A vertical point force applied on a half-space 
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The total vertical force resulting from �zz at any depth z must balance with the 
vertical force P. That is, 

 
0

2 ( ) 0zzr dr P� �
�

� ��  (4.139) 

4.4.3.1 Love’s and Lamé’s Strain Potential Methods  
We can start with the Love’s potential used in Section 4.4.2.2 for Kelvin’s 
problem since it satisfies the point force singularity at the origin: 
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The corresponding displacement and stress components are 
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As discussed earlier, these stresses are singular at the origin in the order of R�2, 
and vanish at infinity. The first part of (4.138) can be satisfied by this choice but 
the shear traction at z = 0 becomes 

 1 2
(1 2 )

rz A
r

#� �
� �    (4.143) 

which clearly does not satisfy the second part of (4.138). 
 In order to cancel out this shear stress distribution on the surface, we have to 
superimpose another function that gives rise to zero �zz on z = 0 but a nonzero 
shear stress distribution that cancels the shear stress given in (4.143). By 
inspection, we can use Lamé’s strain potential discussed in Section 4.2.2 in the 
following form: 

 2 ln( )
2
A R z�
$

� �    (4.144) 

A special discussion on the logarithmic function given in (4.144) is needed. 
Physically, the argument of a logarithmic function cannot have any unit, but 
unfortunately most of the authors in elasticity do not mention this explicitly. This 
can be easily seen by referring to the following Taylor series expansion of the 
natural logarithmic function: 

 
2 3 4

ln(1 ) ...
2 3 4
x x xx x� � � � � �    (4.145) 

It is obvious that a number with a unit of length cannot be added to a number with 
a unit of area, or to a number with a unit of volume, etc. Therefore, the length scale 
must be normalized first with respect to an arbitrary length scale, such that R and z 
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can be interpreted as normalized length. The displacement and stress components 
in cylindrical coordinates can be shown to be 
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Substitution of (4.144) into (4.146) and (4.147) results in 
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 (4.149) 
The stress components from these two solutions given in (4.143) and (4.149) are 
superimposed and the resulting stresses are enforced to satisfy boundary 
conditions (4.138) and (4.139). We have two equations for A1 and A2: 

  1 2(1 2 ) 0A A#� � � ,       1 24 (1 2 ) 2A A P� # �� � �  (4.150) 
Note that the second part of (4.150) is independent of the depth of the vertical 
stress being evaluated. That is, it is true at any depth. The solution of (4.150) gives 
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Finally, substituting (4.151) into the stress components and adding the two 
solutions, we have 
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4.4.3.2 Papkovitch�Neuber Potential Method 
In this section, we will follow another method to consider the Boussinesq problem. 
From Section 4.4.2.1 we can first use the following Papkovitch�Neuber potential 
for Kelvin’s problem: 
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Similar to the results in Section 4.4.2.1, the resulting stress tensor is  
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where i = 1,2. The shear stress on the boundary x3 = 0 becomes 



116   Analytic Methods in Geomechanics  

 1 1
31 3

(1 2 )
2(1 )

A x
r

# $
�

#
�

� �
�

,   1 2
32 3

(1 2 )
2(1 )

A x
r

# $
�

#
�

� �
�

 (4.156) 

Similar to the observation made in the previous section, we can consider another 
potential as 

 0 2 3ln( )A R x8 � � ,   0�8  (4.157) 
The stress associated with this potential is 
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Therefore, the stresses on the surface of the half-space become 
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To ensure the traction-free condition, the sum of (4.156) and (4.159) must vanish, 
and this leads to 

 2 1(1 2 )A A#� �  (4.160) 
The sum of (4.155) and (4.158) gives 
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Force equilibrium at any depth given by (4.139) can be used again as 
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Substitution of (4.161) into (4.162) gives 
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Therefore, we have 

 1 (1 ) PA #
�$

� �  (4.164) 

Finally,  
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where � = 1, 2. We can rewrite these displacement components in cylindrical 
coordinates by recalling (3.52): 
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� � �     (4.168) 

which are of course the same as those obtained by using Love’s displacement 
potential and Lamé’s strain potential given in (4.152). This completes the 
derivation. 
 As illustrated in Fig. 4.5, Boussinesq’s solution given in (4.152) and (4.165) 
predicts a cone of expansion under the point load. To see this, we first define z = 
Rcos
. Then an expanding zone can be defined as ur > 0 under the point load. For 
ur > 0, from (4.152) we must have  

 2cos cos (1 2 ) 0
 
 #� � � >     (4.169) 
Thus, ur > 0 (expanding zone) if 
 < 
0, where   

 2
0 0cos cos (1 2 ) 0
 
 #� � � �   (4.170) 

The size of the zone ranges from 51.8@ to 90@, depending on Poisson’s ratio: 

 0
1 1 4(1 2 )

cos
2

#



� ; � �
�   (4.171) 

 
 

 
Figure 4.5 Expansion zone in Boussinesq’s problem  
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For # = 0, we have 
0 = 51.8@. When # =1/4, 
0 increases to 68.5@. When # = 1/3, 

0 further increases to 74.7@ (note that this is a typical value assumed for rocks). 
For incompressible solids (i.e., # =1/2), 
0 becomes 90@. Therefore, the whole half-
space is expanding for an incompressible solid, like saturated clay. In a sense, the 
solid is being squeezed sideways axismmetrically by the surface point load.  
 Similarly, we can also consider the zones of compression and tension in the 
half-space. For example, the hoop stress �

 is found compressive within a cone 
under the point force: 

 2cos cos 1 0
 
� � >   (4.172) 
This equals precisely (4.169) for the case of # = 0. Therefore, the tensile zone is 
defined by a cone with 
0 = 51.8@, independent of the value of Poisson’s ratio. 
Instead, the value of tensile stress within the “fixed” cone varies with Poisson’s 
ratio as (1 � 2#). Similarly, there is also a compressive zone for radial stress within 
a cone under the point load. The size of the cone 
0 can be found by 

 2
0 0 03cos sin (1 cos ) (1 2 ) 0
 
 
 #� � � �   (4.173) 

The analytical solution for 
0 cannot be obtained for (4.173). Readers interested in 
the solution can find 
0 numerically using standard software.  

4.4.4 Cerruti’s Fundamental Solution 

Another fundamental solution of interest to geomechanics is a horizontal point 
force applied parallel to the surface of a half-space. The problem was obtained by 
Cerruti in 1882, 4 years after the Boussinesq problem was solved. The problem is 
illustrated in Fig. 4.6. There was an interesting encounter between V. Cerruti and 
C.A. Castigliano who was the originator of “Castigliano principle” in structural 
mechanics (see biography section).  
 To solve Cerruti’s problem, we can propose a combined solution from the 
Galerkin vector and from Lamé’s strain potential. In particular, the displacement 
vector is expressed as 

 22(1 ) ( )� # � � � � �� � �u G G   (4.174) 
and as before � and G satisfy the Laplace and biharmonic equations, respectively.  
 The boundary conditions of Cerruti’s problem are  

 33 0� � ,     31 0� � ,   32 0� �  (4.175) 
on x3 = 0 (except for �31 at the origin). In addition, force equilibrium requires 

 31 1 2 0dx dx P�
� �

�� ��
� �� �  (4.176) 

The following Galerkin vector is assumed: 
 1 1G A R� ,    2 0G � ,   3 2 1 3ln( )G A x R x� �  (4.177) 

In addition, the following Lamé’s strain potential is also assumed: 

 3 1

3

A x
R x

� �
�

 (4.178) 

The resulting stresses can be obtained by substitution of (4.177) into (4.39) and 
(4.40) and (4.178) into (4.27) and adding these stress components. The calculation 
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is rather tedious, and we will try to include the steps as much as possible so that 
the reader can work out the details themselves.   
 To aid the derivation, the following formulas are found useful repeatedly: 
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With these formulas, it is straightforward to show that 

 2 1
1

2AG
R

� � ,  2 1 2
3

3

2
( )

x AG
R R x

� �
�

,  1
1 2( )

x A A
R

�  � �G  (4.180) 

 1 1
1 23( )( )k k

k

x x
A A

x R R
�

� 
�

� � �
�

G  (4.181) 

 
2

21 2
1 1 1 15

( )
[ ( ) 3 ]m k k m mk m k

k m

A A R x x x x x x
x x R

� � �� 
��

� � � � �
� �

G  (4.182) 

 2 1 12 1
3 33

3 3

2
( ) [ ( )]

( )
m m m

m
m

x x xA xG
x R x R R R x RR

�
��

� � � � �
� � �

 (4.183) 

 3 1
1 3

3 3
[ ( )]

( )
k

k k
k

A xx
x R x R x R
� � ��

� � �
� � �

 (4.184) 

2
3

1 3 1 3 12 3
3

1
3 3

3

[ ( ) ( ) ( )
( )

2
( )( )]

( )

m k km k m
k m m k

k m

k m
k m

A x x x x
x

x x R R RR x R
x xx

R x R R

�� � � � �

� �

�
� � � � � � �

� � �

� � �
�

 (4.185) 

 

 
 

Figure 4.6 Cerruti’s problem: A horizontal point force applied at the origin of a half-space 
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With the help of (4.180)�(4.185), the vertical normal stress �33 resulting from 
(4.177) can be shown to be 
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The first of (4.175) requires that �33 vanishes at x3 = 0 (except at the origin) and 
this leads to the following equation: 

 3 2 2 14(1 ) (1 2 )( ) 0A A A A# #� � � � � �  (4.187) 
With the help of (4.180)�(4.185), �31 can be determined as 
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 (4.188) 
The second of (4.175) requires that �31 vanishes at x3 = 0 and this leads to 
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where r is defined in Fig. 4.6. Since both r and x1 can be arbitrary, the following 
equation must be satisfied: 

 3 22(1 )A A#� �  (4.190) 
With the help of (4.180)�(4.185), �32 can be determined as 
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The third part of (4.175) requires that �32 vanishes at x3 = 0 and this leads exactly 
to (4.190) again.   
 Before we consider the force equilibrium required by (4.176), we first 
substitute (4.190) into (4.187) to eliminate A3 and obtain the following relation 
between A1 and A2: 

 2 1(1 2 )A A#� �  (4.192) 
Then the expression for �31 given by (4.188) can be greatly simplified in view of 
(4.190), and the result is 
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Substitution of (4.193) into (4.176) gives 
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We now apply the following change of variable: 
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to the integration given in (4.194) 
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To evaluate the remaining integration, we can first apply partial fractions to 
rewrite the integrand as 
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With (4.197), the integrand given in (4.196) can then be determined using the 
standard method, and the result is (2/3x3). Substituting this result into (4.196) and 
then into (4.194), we find 
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Finally, combining equations (4.190), (4.192), and (4.198) give 
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Once the unknown constants are determined, all stress and displacements can be 
determined as 
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4.4.5 Mindlin’s Fundamental Solution in Half-Space  

Another useful solution was obtained by Mindlin in 1936 for a point force applied 
in the interior of a half-space. Mindlin solved the problem first by the method of 
images, but the physical meaning of all those images is, however, not clear 
(Mindlin, 1936b). In 1953, Mindlin rederived the solution by using the 
Papkovitch�Neuber displacement potential (Mindlin, 1953). Mindlin’s problem is 
illustrated in Fig. 4.7. This solution is very powerful generating other solutions for 
tunnels or cracks within the Earth. Of course, Boussinesq’s and Cerruti’s solutions 
can both be recovered as a special case for c & 0. If we consider the limit that c & 
�, Kelvin’s solution can also be recovered as a special case. Therefore, this is the 
most general solution of all these fundamental point force solutions for 
homogeneous solids. The Mindlin solution was R.D. Mindlin’s Ph.D. thesis, and 
more amazingly he obtained this solution without any guidance as a student at 
Columbia University (see biography section at the end of this book).  
 In this section, we adopt the Papkovitch�Neuber potential approach to solve 
Mindlin’s problem. The presentation here somewhat follows that of Wang (2002). 
Consider a force vector F with components F1, F2, and F3 applied at a point at the 
position (0,0,c), as shown in Fig. 4.7. Similar to the discussion about solving 
Boussinesq’s problem, we first consider Kelvin’s solution and superimpose 
another solution from the Papkovitch�Neuber potential that would result in 
stresses that cancel all stresses from Kelvin’s solution at the surface of the half-
space. 
 The final Papkovitch�Neuber potentials consists of two parts: 

                              0 0 08 ? �� � ,    � �8 ? �  (4.208) 
 
 

 
Figure 4.7 Mindlin’s problem: A point force applied at the interior of a half-space 



 3-D Elasticity   123 

 

 
The first pair is given as   
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where  

 2 2 2
1 2 3( )R x x x c� � � �      (4.210) 

When c = 0, this Papkovitch�Neuber potential is exactly the same as the one given 
previously for Kelvin’s problem when the point force was applied at the origin. 
The unknown harmonic functions �0 and � have to be determined from the 
traction-free boundary condition given by (4.175). 
 First, the displacement components given in (4.53) can be rewritten explicitly 
as 

  0, ,
1 [(3 4 ) ]

4(1 )i i i k k iu x# 8 8 8
#

� � � �
�

 (4.211) 

By virtue of the fact that both 80 and 8i are harmonic, (4.56) can be simplified to  
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Three particular components of the stress which would be used to satisfy the 
boundary conditions are 

 W X31 3,1 1,3 0,13 ,13(1 2 )( )
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 (4.213) 

 W X32 3,2 2,3 0,32 ,32(1 2 )( )
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 (4.214) 

W X33 1,1 2,2 3,3 0,33 ,332 ( ) 2(1 )
2(1 ) k kx$� # 8 8 # 8 8 8

#
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 (4.215) 

 For the following derivations, we first define a harmonic function A which is 
defined in the upper half-space x3 � 0. Then, a mirror image of it is defined for x3 � 
0 as 

 1 2 3 1 2 3( , , ) ( , , )A x x x A x x x� ��  (4.216) 
Then the image function must also be a harmonic function in the domain x3 � 0: 

 2 0A� ��    (x3 � 0) (4.217) 
At the plane x3 = 0, these two functions are connected as 
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Note that ? and ?0 have only singularity in the lower half-space and with no 
singularity in the upper half-space. Conversely, the mirror images of them will 
have no singularity in the lower half-space x3 � 0.  
 Substitution of (4.213) into (4.215) and the result into (4.175) yields the 
following equations on x3 = 0: 
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The remaining step is to find the appropriate �0 and � that satisfy the boundary 
conditions given in (4.219)�(4.221). For the lower half-space of x3 � 0, we first set 

 1 1� ?� � ,  2 2� ?� �  (4.222) 
By doing so, we do not impose any stress singularity for x3 � 0. In view of (4.222) 
and (4.218), the boundary conditions (4.219)�(4.221) can further be simplified as 
(on x3 = 0) 

 0,13 0,13 3,1 3,1(1 2 )( ) 0? � # ? �� � � � �� �  (4.223) 
 0,23 0,23 3,2 3,2(1 2 )( ) 0? � # ? �� � � � �� �  (4.224) 

1,1 2,2 3,3 3,3 1 1,33 2 2,33 0,33 0,334 ( ) 2(1 )( ) 2 2 0x x# ? ? # ? � ? ? ? �� � � � � � � � � �� � � � � �

 (4.225) 
By observation, we can set 

 0,3 0,3 3 3(1 2 )( )� ? # ? �� � � �� �  (4.226) 
for x3 � 0, then both (4.223) and (4.224) are satisfied identically. Substituting of 
(4.226) into (4.225), we have 

  3,3 1,1 2,2 3,3 1 1,33 2 2,33 0,334 ( ) (3 4 ) 2( ) 2x x� # ? ? # ? ? ? ?� � � � � � � �� � � � � �  (4.227) 
on x3 = 0.  
 Note, however, that (4.227) is only valid on the boundary. We could not 
simply integrate (4.227) to get the final unknown function �3 for x3 � 0, because 
the second-last term in (4.227) involving x1 and x2 does not satisfy the Laplace 
equation (or they are not harmonic). Evidently some terms which are functions of 
x3 disappear when we set x3 = 0 on the boundary in the original function �3. The 
most difficult step of solving (4.227) to get �3 for x3 � 0 is to figure out what has 
been set to zero when the surface boundary on x3 = 0 is approached.  

To remedy this problem, we observe that 
   2

1 1,3 3 1,1( ) 0x x? ?� � �� �  (4.228) 

   2
2 2,3 3 2,2( ) 0x x? ?� � �� �  (4.229) 

Therefore, these functions are harmonic, and more importantly they suggest what 
has been dropped when the boundary condition is assigned. We assert that 

   3 1 2 3 1 1,3 3 1,1 2 2,3 3 2,2( , , ) 2( )f x x x x x x x� ? ? ? ?� � � � �� � � �  (4.230) 
for x3 � 0 where f can be obtained by integrating other terms in (4.227). Taking the 
differentiation of (4.230) with respect to x3 leads to 

 3,3 ,3 1 1,33 1,1 3 1,13 2 2,33 2,2 3 2,232( ) 2( )f x x x x� ? ? ? ? ? ?� � � � � � �� � � � � �  (4.231) 
for x3 � 0. As we expected, two terms in (4.230) disappear when the boundary on 
x3 = 0 is considered. However, one more complication is observed. The 
differentiation leads to two extra terms which are grouped in the last brackets in 
the following equation:  

 3,3 ,3 1 1,33 3 1,13 2 2,33 3 2,23 1,1 2,22( ) 2( ) 2( )f x x x x� ? ? ? ? ? ?� � � � � � �� � � � � �  (4.232) 
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for x3 � 0. Therefore, in view of (4.227) and (4.232) we propose the following 
form: 

3 1,1 2,2 3 3 1 1,3 3 1,1 2 2,3 3 2,2 0,3( ) (3 4 ) 2( ) 2( ) 2C dx x x x x� ? ? # ? ? ? ? ? ?� � � � � � � � �� � � � � � � � �

 (4.233) 
for x3 � 0. Comparison of the coefficients of (4.227) and the differentiation of 
(4.233) with respect to x3 suggests that C must satisfy 

 2 4C #� � �  (4.234) 
That is, 

 3 1,1 2,2 3 3 1 1,3 3 1,1

2 2,3 3 2,2 0,3

2(1 2 ) ( ) (3 4 ) 2( )

2( ) 2

dx x x

x x

� # ? ? # ? ? ?

? ? ?

� � � � � � �

� � �
� � � � � �

� � �
 (4.235) 

Functions on the right-hand side of (4.235) can be found easily using the following 
identities: 

 , 3( )
4

ji
i j

RF
R

?
�$

� ��
� ,  3 3

0,3 3( )
4
cF x c

R
?

�$
�

��
�  (4.236) 

where  
 2 2 2 1/2

1 2 3[ ( ) ]R x x x c� � � �� ,  1 1 1R R x� �� ,   2 2 2R R x� �� ,   

  3 3R x c� �� ,   3 3R x c� �  (4.237) 

 

1 1 2 2
1,1 2,2 3 3

1 1 2 2

3 33 3

( ) ( )
4 4

[ ] [ ]
4 4( ) ( )

F x F x
R R

F x F x
x xR R x c R R x c

? ?
�$ �$

�$ �$

� � � �

� �
� �

� �� � � �

� �
� �

� � � �

 (4.238) 

By virtue of (4.236)�(4.238), (4.235) can now be determined as 

1 1 1 2 2 2
3 3 3

3 3

3 3
3

2 2
2(1 2 ) 2(1 2 )

4 4( ) ( )

2 ( )1(3 4 )
4

F x cx F x cx
R R x c R R x cR R

F c x c
R R

� # #
�$ �$

#
�$

2 3 2 3
� � � � � �4 5 4 5

� � � �6 7 6 7
�2 3� � �4 5

6 7

� � � �� �

� �

 (4.239) 
This solution can now be back substituted into (4.226) to integrate for �0. By 
applying the following integration formulas 

 3
3

3

1
( )

dx
R R x cR

� �
� �� � �� ,   3

3 3

1
( )

dx
R R x c R x c

� �
� � � �� � � � ,  

 3 3
3

( ) 1x c dx
RR

�
� �� �� ,   3

3ln( )
dx

R x c
R

� � �� �
�  (4.240)  

we finally obtain 
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2 2
1 1 1 2 2 2

0
3 3 3 3

3
3

2(1 2 ) 2(1 2 ) 2(1 2 ) 2(1 2 )
4 4( ) ( )

4(1 2 )(1 ) ln( ) (3 4 )
4

F x cx F x cx
R x c R R x c R x c R R x c

F cR x c
R

# # # #
�

�$ �$

# # #
�$

2 3 2 3� � � �
� � � � � �4 5 4 5

� � � � � � � �4 5 4 56 7 6 7
2 3� � � � � � �4 56 7

� � � � � �

�
�

 (4.241)  
Finally, the Papkovitch�Neuber potential for Mindlin’s problem can be obtained 
by substituting (4.209), (4.222), (4.239), and (4.241) into (4.208): 

1
1

1 1
4
F

R R
8

�$
2 3� �4 56 7� ,   2

2
1 1

4
F

R R
8

�$
2 3� �4 56 7�  (4.242)  

      

1 1 1 2 2 2
3 3 3

3 3

3 3
3

2(1 2 ) 2 2(1 2 ) 2
4 4( ) ( )

2 ( )1 1(3 4 )
4

F x cx F x cx
R R x c R R x cR R

F c x c
RR R

# #
8

�$ �$

#
�$

2 3 2 3� �
� � � �4 5 4 5

� � � �6 7 6 7
�2 3� � � �4 5

6 7

� � � �� �

� �

 (4.243)  

2 2
1 1 1 2 2 2

0
3 3 3 3

3 3
3

2(1 2 ) 2(1 2 ) 2(1 2 ) 2(1 2 )
4 4( ) ( )

14(1 2 )(1 ) ln( ) (3 4 ) ( )
4 4

F x cx F x cx
R x c R R x c R x c R R x c

F cFcR x c
RR

# # # #
8

�$ �$

# # #
�$ �$

2 3 2 3� � � �
� � � � � �4 5 4 5

� � � � � � � �4 5 4 56 7 6 7
2 3� � � � � � � �4 56 7

� � � � � �

�
�

 (4.244)  
The displacement can then be evaluated by substituting (4.242)�(4.244) into 
(4.211). The calculation is straightforward but rather tedious, and the resulting 
formula is rather lengthy. The best way is to group the displacement according to 
the force condition: 

 
3

(1) (2) (3) ( )
1 2 3

1

( ) ( ) ( ) ( )j
i i i i i j

j

u u F u F u F u F
�

� � � ��  (4.245)  

for i = 1,2,3. Under applied force F1, the three displacement components are: 
22 2

(1) 3 1 31 1 1
1 3 3 3 5

2
1

2
3 3

2 61 1{(3 4 )( )
16 (1 )

14(1 )(1 2 )[ ]}
( )

cx cx xF x xu
R RR R R R

x
R x c R R x c

#
�$ #

# #

� � � � � � �
�

� � � �
� � � �

�� � �

� � �

 (4.246)  

(1) 1 2 31 1 2 1 2 1 2
2 3 3 5 2

3

6
{ (3 4 ) 4(1 )(1 2 ) }

16 (1 ) ( )
cx x xF x x x x x xu

R R R R R x c
# # #

�$ #
� � � � � � �

� � �� � � �

 (4.247)  
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(1) 1 3 1 3 1 3 31
3 3 3 5

1

3

( ) ( ) 6 ( )
{ (3 4 )

16 (1 )

4(1 )(1 2 ) }
( )

x x c x x c cx x x cFu
R R R

x
R R x c

#
�$ #

# #

� � �
� � � �

�

� � �
� �

� �

� �

 (4.248)  

Under the applied force F2, the three displacement components are 
(2) 1 2 32 1 2 1 2 1 2
1 3 3 5 2

3

6
{ (3 4 ) 4(1 )(1 2 ) }

16 (1 ) ( )
cx x xF x x x x x xu

R R R R R x c
# # #

�$ #
� � � � � � �

� � �� � � �

 (4.249)  
22 2

(2) 3 2 32 2 2
2 3 3 3 5

2
2

2
3 3

2 61 1{(3 4 )( )
16 (1 )

14(1 )(1 2 )[ ]}
( )

cx cx xF x xu
R RR R R R

x
R x c R R x c

#
�$ #

# #

� � � � � � �
�

� � � �
� � � �

�� � �

� � �

 (4.250)  

(2) 2 3 2 3 2 3 32
3 3 3 5

2

3

( ) ( ) 6 ( )
{ (3 4 )

16 (1 )

4(1 )(1 2 ) }
( )

x x c x x c cx x x cFu
R R R

x
R R x c

#
�$ #

# #

� � �
� � � �

�

� � �
� �

� �

� �

 (4.251)  

Under the applied force F3, the three displacement components are 
(3) 3 1 3 1 3 1 3 3
1 3 3 5

1

3

( ) ( ) 6 ( )
{ (3 4 )

16 (1 )

4(1 )(1 2 ) }
( )

F x x c x x c cx x x c
u

R R R
x

R R x c

#
�$ #

# #

� � �
� � � �

�

� � �
� �

� �

� �

 (4.252)  

(3) 3 2 3 2 3 2 3 3
2 3 3 5

2

3

( ) ( ) 6 ( )
{ (3 4 )

16 (1 )

4(1 )(1 2 ) }
( )

F x x c x x c cx x x c
u

R R R
x

R R x c

#
�$ #

# #

� � �
� � � �

�

� � �
� �

� �

� �

 (4.253)  

2 2
(3) 3 3 3
3 3 3

2
3 3 3

3 5

( ) ( )1 1{(3 4 )[ ] [1 4(1 )(1 2 )]
16 (1 )

2 6 ( )
}

F x c x c
u

R RR R
cx cx x c
R R

# # #
�$ #

� �
� � � � � � � �

�

�
� �

��

� �
 (4.254)  
There are similarities in these expressions and it is possible to rewrite in a unified 
form as 
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x2 
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R 
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� c 

Fixed surface 

x1 

 

( )
3 3 3

3 33
3

3 3
3 3

3

1 1 1{[(3 4 ) ] 4(1 )(1 2 )
16 (1 )

(1 ) 4(1 )(1 2 )(3 4 ) ( )(1 )
( )

4(1 )(1 2 ) [ ](1 )(1 )
( )

2

j i jj
i ij i j

i j ij i j ij
i j j i ij

i j
ij i j

F R R
u

R R R R
R R R R

R R
R R RR

R R
R R R R R

cx

# � # # � �
�$ #

� � # ## � � �

# # � � �

� � � � � � �
�

� � � �
� � � � � �

�

� �
� � � �

� �

�

� �
� �

� �
� � ��

� �
� � � �

2
35 ( 3 )(1 2 )}ij i j jR R R

R
� �� �� � �

�
 (4.255)  
where i, j = 1, 2, 3 with no summation on double indices. The corresponding stress 
components are given in Mindlin (1936b, 1953) and Westergaard (1952), and they 
will not be given here. 

4.4.6 Lorentz’s Fundamental Solution  

The problem that surface of the half-space is fixed (or zero displacement), instead 
of traction free, was considered by Lorentz in 1907 (see Fig. 4.8). The original 
reference can be found in Wang (2002). This problem is of less practical interest in 
geomechanics, but may find application in solving problems with soils under large 
rigid mat footing. The method of solution is similar to that used in the last section 
for Mindlin’s problem. Therefore, only the key steps are reported briefly here.  
  The boundary condition for Lorentz’s problem on x3 = 0 

 0�u  (4.256)  
 We again determine the Papkovitch�Neuber potentials in the following form: 

                              0 0 08 ? �� � ,    � �8 ? �  (4.257)  
 

 
Figure 4.8 Lorentz’s problem: A point force applied at the interior of a half-space with fixed 

surface 
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The unknown harmonic functions �0 and � have to be determined from the fixed 
boundary condition given by (4.256). 
The first pair is given as  

  3
0

1
4

cF
R

?
�$

� � ,    1
4 R�$

�
F?  (4.258) 

The three displacement components are 

1 1 0,1 1 1,1 2 2,1 2 3,1
1 [(3 4 ) ]

4(1 )
u x x x# 8 8 8 8 8

#
� � � � � �

�
 (4.259) 

2 2 0,2 1 1,2 2 2,2 3 3,2
1 [(3 4 ) ]

4(1 )
u x x x# 8 8 8 8 8

#
� � � � � �

�
 (4.260) 

3 3 0,3 1 1,3 2 2,3 3 3,3
1 [(3 4 ) ]

4(1 )
u x x x# 8 8 8 8 8

#
� � � � � �

�
 (4.261) 

Substitution of (4.257) and (4.259)�(4.261) into (4.256) yields 
1 1 0,1 0,1 1 1,1 1,1 2 2,1 2,1(3 4 )( ) ( ) ( ) ( ) 0x x# ? � ? � ? � ? �� � � � � � � � �  (4.262) 

2 2 0,2 0,2 1 1,2 1,2 2 2,2 2,2(3 4 )( ) ( ) ( ) ( ) 0x x# ? � ? � ? � ? �� � � � � � � � �  (4.263) 

3 3 0,3 0,3 1 1,3 1,3 2 2,3 2,3(3 4 )( ) ( ) ( ) ( ) 0x x# ? � ? � ? � ? �� � � � � � � � �  (4.264) 
on x3 = 0. For the lower half-space x3 � 0, we first select the following harmonic 
functions: 

 i i� ?� � � ,    (i = 0,1,2) (4.265) 
With this selection, it is obvious that both (4.262) and (4.263) are satisfied. 
Substitution of (4.265) into (4.264) gives 

 3 3 0,3 1 1,3 2 2,3(3 4 )( ) 2 2 2 0x x# ? � ? ? ?� � � � � �� � �  (4.266) 
on x3 = 0. As in the previous section, the second-last two terms in (4.266) 
involving x1 and x2 do not satisfy the Laplace equation (or they are not harmonic 
functions). To add back the missing terms, we must have 

 3 3 0,3 1 1,3 3 1,1 2 2,3 3 2,2
2 { }

(3 4 )
x x x x� ? ? ? ? ? ?

#
� � � � � � �

�
� � � � �  (4.267) 

Note that the added extra terms will vanish on x3 = 0, and thus (4.266) is recovered 
on the boundary. 
 With this result, the final Papkovitch�Neuber potentials are 

3
0

1 1
4
cF

R R
8

�$
2 3� � �4 56 7� , 1

1
1 1

4
F

R R
8

�$
2 3� �4 56 7� ,   2

2
1 1

4
F

R R
8

�$
2 3� �4 56 7�  (4.268) 

     3 31 2
3 1 2 33 3 3

( )1 1 2 1( )
4 (3 4 ) 4
F c x ccx cxF F F

R R R R R
8

�$ # �$
�2 3

� � � � �4 5� 6 7� � � �  (4.269) 

The associated displacements can also be given in a compact form: 
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To �� 

To +� 

( )
3 3

3 3
3 3 3 33 5

(1 )1 1{(3 4 )( )
16 (1 )

62 1(2 ) ( 2 )}
3 4 3 4

j i j i j ij i j ijj
i ij

i
i j ij j j

F R R R R R R
u

R R R R
cx cx R

R R
R R

� �
# �

�$ #

� � � �
# #

� �
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�

� � � �
� �

� �
� �

� � �
� �

 (4.270) 

where i, j = 1, 2, 3 with no summation on double indices. 

4.4.7 Melan’s Fundamental Solution  

In 1932, Melan derived a 2-D line load F solution within a half-plane, as shown in 
Fig. 4.9. In this case, u2 = 0 and all functions do not depend on x2. The 2-D 
traction-free boundary conditions are 

 13 0� � ,      33 0� �  (4.271) 
on x3 = 0. The 2-D Papkovitch�Neuber potentials consist of two parts, 

 0 0 0 ,8 ? �� � � �8 ? �  (4.272) 
where   

  3
0 ln

2
cF

r?
�$

� ,    ln
2

i
i

F
r?

�$
� �  (4.273) 

where i = 1,2 and 

 2 2
1 3( )r x x c� � �    (4.274) 

The stress components now become 

W X31 3,1 1,3 0,13 ,13(1 2 )( )
2(1 ) k kx$� # 8 8 8 8

#
� � � � �

�
 (4.275) 

W X33 1,1 3,3 0,33 ,332 2(1 )
2(1 ) k kx$� #8 # 8 8 8

#
� � � � �

�
 (4.276) 

 

 
Figure 4.9 Melan problem: A 2-D line load F applied parallel to the x2-axis and at a depth c 
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where k =1, 2. The boundary conditions on x3 = 0 for the image function become 

 A A�� ,     
1 1

A A
x x

� �
�

� �

�
,           

3 3

A A
x x
� �

� �
� �

�
 (4.277) 

Substitution of (4.275) and (4.276) into (4.271) gives two equations for x3 = 0: 
 1 1,13 1,13 0,13 0,13 3,1 3,1 1,3 1,3( ) ( ) (1 2 )( ) 0x ? � ? � # ? � ? �� � � � � � � � � �  (4.278) 

1,1 1,1 3,3 3,3 1 1,33 1,33 0,33 0,332 ( ) 2(1 )( ) ( ) ( ) 0x# ? � # ? � ? � ? �� � � � � � � � �

 (4.279) 
We can first set 

 1 1� ?� �  (4.280) 
With this setting, (4.278) and (4.279) become 

  0,13 0,13 3,1 3,1
1 ( ) ( ) 0

(1 2 )
? � ? �

#
� � � � �

�
� �  (4.281)  

 1,1 3,3 3,3 1 1,33 0,33 0,334 ( ) 2(1 )( ) 2 ( ) 0x# ? # ? � ? ? �� � � � � � � �� � � �  (4.282)  
We assume �3 equals 

  3 3 0,3 0,3
1 ( )

1 2
� ? ? �

#
� � � � �

�
� �  (4.283)  

for x3 � 0. We can see that (4.283) satisfies (4.281) exactly, and (4.282) becomes 
0,33 0,33 1 1,33 1,1 3,3(3 4 ) 2(1 2 ) 4 (1 2 ) 4(1 2 )(1 )x� # ? # ? # # ? # # ?� � � � � � � � �� � � �

 (4.284)  
Similar to the previous arguments for seeking harmonic function and matching 
coefficients, we have 

 

3

0,3 0,3 1 1,3 3 1,1

2
1,1 3 3

(3 4 ) 2(1 2 )( )

2(1 2 ) 4(1 2 )(1 )
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x x
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�
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� �
 (4.285)  

Substitution of (4.273) into (4.285) gives 

 

2 11 1 1
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 (4.286)  

Integrating this equation results in 
2 1 11 1 1

0 1 3
3 3

12 1
3 3 1

3

{2(1 2 ) [ ln ( ) tan ( )] 2(1 2 ) tan ( )}
2
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� �

�

� � � � � �
� �
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�

� �

�

�

�
 (4.287)  
The final Papkovitch�Neuber potentials are 

 1
1 ln( )

2
F rr8
�$

� � � ,  (4.288)  
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  (4.289)  
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 (4.290) 

The associated displacements can also be given in a compact form as 
( )

2 2

2 13 1
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 (4.291) 
where �, 0 = 1, 3 with no summation on double indices. 

4.5 HARMONIC FUNCTIONS AND INDIRECT METHOD  

We have seen that the Papkovitch�Neuber displacement potentials have been 
useful in obtaining 3-D solutions and they are harmonic functions. The Lamé 
strain potential is also a harmonic function. It is instructive to give an overall 
introduction to harmonic functions. The following presentation mainly follows the 
Elasticity II class notes of John Dundurs of Northwestern University delivered in 
1988 (Dundurs, 1988).  
 It was shown in Section 4.4.2 that the appropriate Papkovitch�Neuber 
displacement potential for Kelvin’s fundamental point force solutions in full-space 
is 1/R, where 
 2 2 2 1/2

1 2 3( )R x x x� � �  (4.292) 
Recall from (4.113) that it is straightforward to show that 1/R is harmonic. 
Actually, 1/R can be considered the granddaddy of many harmonic functions. For 
example, the partial derivative with respect to xj and the Laplacian operator is 
commutative: 

 2 2 ( )
j j

ff
x x
� �

� � �
� �

 (4.293) 

Thus, it is obvious that  
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  (4.294) 

Therefore, we obtain a new harmonic function xj/R3. Following the same logic, we 
can take more derivatives of 1/R as: 
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31 1( ) [ ( )] ( ) 0ij i j

j i j i

x x
x x R x x R R R

�� �
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� � � �
 (4.295) 

Thus, we obtain another set of harmonic functions. We can continue this process 
of differentiation and obtain an infinite set of harmonic functions. All these 
harmonic functions can be considered as point singularity of higher order since all 
these functions are singular at R = 0.  
 The next question that we ask is whether integration of 1/R leads to another 
family of harmonic functions. First, we integrate 1/R with respect to x1: 

 1
1ln[ ]

dx R x
R

� ��  (4.296) 

Differentiation of the right-hand side of (4.296) gives 

  1 1
1

1ln[ ] ( )j
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x
R x

x R x R
��

� � �
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  (4.297) 

Applying the second differentiation to (4.297) gives 
2

1 1 1 12 3
1

1ln[ ] [ ( )( ) ( )( )]
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j kj k ji
j i

j i

x x xx
R x R x

x x R R RR x R

�
� ��

� � � � � � � �
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 (4.298) 

Thus, the Laplacian of ln(R+x1) becomes 

 
2

2
1 1 2

1

1ln[ ] ln[ ] ( 2 3 1) 0
( )k k

R x R x
x x R x
�

� � � � � � � � �
� � �

 (4.299) 

Indeed, ln(R + x1) is a harmonic function. Similarly, we can obtain other harmonic 
functions by integrating 1/R with respect to x2 and x3. Therefore, we have another 
series of harmonic functions: 
 1ln[ ]R x� ,  2ln[ ]R x� ,   3ln[ ]R x�  (4.300) 
Similarly, we have the following series of  
 1ln[ ]R x� ,  2ln[ ]R x� ,   3ln[ ]R x�  (4.301) 
Since integration can be interpreted as superposition, the Boussinesq potentials can 
be considered a superposition of 1/R along certain axes. If we add the line of 
singularities of the positive axis to the negative axis, we have 

 2 2 2 2
1 1 1 2 3ln( ) ln( ) ln( ) 2 ln( ) 2 lnR x R x R x x x r� � � � � � � �  (4.302) 

The last of (4.302) is independent of x1 and is actually the line of singularity for 
the 2-D plane of x2-x3 space (i.e., for 2-D problems). 
 We can continue this integration (or superposition) process as 
 1 1 1 1ln[ ] ln( )R x dx x R x R� � � ��  (4.303) 

 1 1 1 1ln[ ] ln( )R x dx x R x R� � � ��  (4.304) 
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Thus, the new series of harmonic functions are 
  1 1ln( )x R x R� � ,  2 2ln( )x R x R� � ,  3 3ln( )x R x R� �  (4.305) 
and  
 1 1ln( )x R x R� � ,  2 2ln( )x R x R� � ,   3 3ln( )x R x R� �  (4.306) 
We can continue this integration process. For example, integrate (4.302) one more 
time gives 

 2 2 2 2
1 1 1 1 1 1 1

1[ ln( ) ] {(3 ) ln( ) 3 }
4

x R x R dx x R R x x x R R� � � � � � � ��  (4.307) 

Following a similar procedure, we can simply replace x1 by x2 and x3 in (4.306) for 
another series of harmonic functions: 
 2 2 2 2

1 1 1 1(3 ) ln( ) 3x R R x x x R R� � � � �  (4.308) 

 2 2 2 2
2 2 2 2(3 ) ln( ) 3x R R x x x R R� � � � �  (4.309) 

 2 2 2 2
3 3 3 3(3 ) ln( ) 3x R R x x x R R� � � � �  (4.310) 

We note that ln(R + x1) is singular along the negative x1-axis, and it has been used 
in (4.157) in solving Boussinesq’s problem in elastic half-space. Similarly, ln(R � 

x1) is singular along the positive x1 axis. Therefore, it is a line of singularity as 
illustrated in Fig. 4.10. All these logarithmic functions can thus be considered as 
lines of singularities. 
 Since the integration and differentiation processes are interchangeable, the 
function on the right of (4.307) is again harmonic. We can also differentiate the 
right of (4.296) to get another series of harmonic function 

 2
1

2 1

1ln[ ] ( )
xR x

x R x R
�

� �
� �

 (4.311) 

Therefore, we have a new series of harmonic functions: 
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1 ( )
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 (4.312) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10 Lines of singularities   
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Further differentiation of (4.311) with respect to x2 gives us a new series of 
harmonic functions: 
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 (4.313) 

Thus, other series of harmonic functions are: 
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 (4.316) 

If we differentiate (4.311) with respect to x3, we have another series of harmonic 
functions: 
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 (4.317) 

Thus, we have 
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  (4.318) 
This process of integrating and differentiating harmonic functions provides a 
systematic way to generate infinite series of harmonic functions, as shown in Fig. 
4.11. 
 Another family of harmonic functions is polynomials in x1, x2, and x3: 
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 (4.319) 

Of course, the method of generating harmonic functions discussed in this section 
does not allow us to solve a particular boundary value problem in 3-D elasticity. 
However, a table of 3-D displacement and stress fields resulting from these series 
of harmonic functions can be used to inspect the form of Papkovitch�Neuber 
displacement potential that could be used to cancel out stresses at certain boundary 
(say the surface of a half-space, etc.). This approach can be called the indirect 
method. Apparently, the original derivation of the Mindlin solution (Mindlin, 
1936b) followed this indirect method. A lot of image functions (line of 
singularities, etc.) have been used to cancel out the stress on the surface of the 
half-space induced by the point force. Mindlin ingeniously recognized from his 
tables of biharmonic functions what kind of singular functions can be used for 
superposition. Apparently, J. Dundurs of Northwestern University also employed 
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such an indirect method in obtaining many of his solution in 3-D elasticity. One 
example is the point force solution for two jointed half-spaces (Dundurs and 
Hetenyi, 1965). Such a method is also discussed in the books by Karasudhi (1991) 
and Barber (2002). 

4.6 HARMONIC FUNCTIONS IN SPHERICAL COORDINATES  

As shown by Little (1973) and Barber (2002), the family of harmonic functions in 
spherical coordinates can be done more systematically. In particular, the Laplacian 
in polar coordinate is 

  
2

22
2 2 2 22

1 1 1( ) (sin ) 0
sin sin

   R   R RR R R
� � �� 



 

 
 �
� � � � �
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� � � � �

 (4.320) 

Assuming a Fourier sine or cosine expansion of sin(m
) and cos(m
), we have 
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Substitution of (4.321) into (4.320) gives 
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2 1 cot 0
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 (4.322) 

Adopting the following change of variable, 
  cosx 
�  (4.323) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.11 Illustration of generating a series of harmonic functions from 1/R 
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we have  
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 (4.324) 

We can further expand fm in power series of R: 

  ( , ) ( )n
m mn

n

f R x   R g x
�

���

� �  (4.325) 

Substitution of (4.325) into (4.324) leads to the following Legendre equation 
(Abramowitz and Stegun, 1964): 

  
2 2

2
2 2(1 ) 2 [ ( 1) ] 0

(1 )
mn mn

mn
d g dg mx x n n  g

dxdx x
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�
 (4.326) 

The solution of (4.326) is the Legendre function. The Laplace equation and 
function has its origin in celestial mechanics (see the biography of A.M. Legendre 
at the end of this book). Note also that if we define 
  1n p� � �  (4.327) 
we find that (4.326) becomes 
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 (4.328) 

Thus, we have another series of harmonic functions. Finally, the harmonic 
functions or spherical harmonics for polar coordinates are (Hobson, 1955) 
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The first few harmonics are 

  11
cos

sin
sin

R
�

� 

�

K
� � N

P
,  11 2

cos1 sin
sinR

�
� 


��
K

� � N
P

 (4.330) 

  2
12

cos3 sin(2 )
sin2

R
�

� 

�

K
� � N

P
,   12 3

cos3 1 sin(2 )
sin2 R

�
� 


��
K

� � N
P

 (4.331) 

  2
22

cos 23 [1 cos(2 )]
sin 22

R
�

� 

�

K
� � N

P
,   22 3

cos 23 1 [1 cos(2 )]
sin 22 R

�
� 


��
K

� � N
P

 (4.332) 

Therefore, an infinite series of harmonic functions can be generated automatically. 

4.7 HARMONIC FUNCTIONS IN CYLINDRICAL COORDINATES  

Similar to spherical coordinates, harmonic functions in cylindrical coordinate can 
also be generated systematically (Little, 1973). In particular, the Laplace equation 
in cylindrical coordinates is 

  
2 2 2

2
2 2 2 2

1 1 0     r rr r z
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� � � �
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 (4.333) 

Assuming a Fourier sine or cosine expansion of sin(m
) and cos(m
), we have 
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Substitution of (4.334) into (4.333) gives 
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 (4.335) 

A simple recursive formula can be derived as follows. Assume a harmonic 
function �m, and define �m+1 as 
  1 1( , ) cos[( 1) ]m mf r z m� 
� �� �  (4.336) 
We can show that it is also harmonic if  
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 (4.337) 

This equation provides a simple way to generate infinite series of harmonic 
functions. We can start with  

  2 2 2 4
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1( , ) (8 24 3 )
8

f r z z z r r� � �  (4.338) 

Thus, the first three harmonic functions are 
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In this way, infinite series of harmonic functions can be generated. 

4.8 BIHARMONIC FUNCTIONS  

In the last few sections, we have learned that there are infinite series of harmonic 
functions and their generations can be made systematically in Cartesian 
coordinates, in cylindrical coordinates and in spherical coordinates. Thus, 
Papkovitch�Neuber displacement potentials can be generated systematically 
although an indirect method has to be used to solve any practical problem. 
Sometimes, it may be more preferable to solve 3-D elasticity problems by Love’s 
strain potential (such as Kelvin’s problem) and the Galerkin vector. Since both 
Love’s strain potential and the Galerkin vector satisfy biharmonic equations, it is 
informative to discuss the generation of biharmonic functions.  
 Earlier in this chapter, we mentioned one particular form of the Almansi 
theorems.  
 
Theorem 1: If �1 and �2 are harmonic functions,  
  1 1 2x� � �� �  (4.342) 
is biharmonic. The proof was given by Fung (1965). 
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Theorem 2: If �1 and �2 are harmonic functions,  
  2 2

0 1 2( )R R� � �� � �  (4.343) 
is biharmonic, and R0 is an arbitrary constant. The proof was given by Fung 
(1965). 
 For cylindrical coordinates, by applying the Almansi theorem, the following 
functions are biharmonic (Fung, 1965): 
  nz� ?� ,   2 2( ) nz r� ?� �  (4.344) 
where n = 2, 3, 4, … and  
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For example, for the special case that R0 = 0 and �2 = 0, and �1 = 1/R, we have 

  2 1R R
R

� � �  (4.350) 

This is the Love’s strain potential for Kelvin’s solution discussed in Section 
4.4.2.2. For the infinite series of harmonic functions given in the last section, the 
corresponding infinite series of biharmonic functions can also be generated.  
 Other applications of biharmonic equations in engineering can be found in 
Selvadurai (2000), and the most general review article on biharmonic functions 
used in elasticity is given by Meleshko (2003).  

4.9 MUKI’S FORMULATION IN CYLINDRICAL COORDINATES   

Three-dimensional problems in cylindrical coordinates were formulated by Muki 
(1960), and his formalism will be introduced in this section. As discussed earlier in 
Section 4.2.1, the Galerkin vector in terms of cylindrical coordinates does not lead 
to uncoupling governing equations of biharmonic type. That is, the cylindrical 
components of the Galerkin vector do not satisfy the biharmonic equation (see also 
Problem 4.6). Muki (1960) proposed a combination of the Galerkin vector plus the 
solenodial part of the Helmholtz vector to represent the displacement vector and 
was able to uncouple the equilibrium equations in displacements into two 
differential equations. In particular, Muki (1960) used the z-component of the 
Galerkin vector and z-component of the irrotational vector component of 
Helmholtz. These vector components satisfy the biharmonic equation and the 
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Laplace equation, respectively. Then, Hankel transform is introduced to solve 
boundary value problems in cylindrical coordinates. As an example, the 
Boussinesq problem will be reconsidered using Muki’s potentials and the Hankel 
transform. 
 
4.9.1 Muki’s Vector Potentials  

The equilibrium equations in cylindrical coordinates have been derived and given 
in (1.99) to (1.101) in Chapter 1 as problems for the reader. For the case of zero 
body force, we have  
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where # is Poisson’s ratio and the Laplacian operator has been defined in (1.72).  
 In order to uncouple the equilibrium equations in cylindrical coordinates, we 
can propose the following form of vector potentials: 
 22(1 2 ) ( )# � � � � �u G G A� � � �  (4.355) 
Note that G is the Galerkin vector given in (4.30) and A is the irrotational part of 
the Helmholtz decomposition given in (4.2). However, Muki (1960) showed that 
only the z-components of these vectors were needed (i.e., Gz =8 and Az = 2?). 
That is, Muki (1960) proposed the following vector potentials: 
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These displacement potentials will be called Muki’s (1960) displacement 
potentials. The governing equations for these vector potentials are 
 4 08� � ,   2 0?� �  (4.359) 
The validity of (4.356) to (4.358) can be demonstrated by direct substitution of 
them into (4.351) to (4.353). The corresponding stress field is: 
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 (4.361) 
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4.9.2 Method of Solution by the Hankel Transform  

For general 3-D solutions, we can expand the tangential dependence of Muki’s 
(1960) displacement potentials in cosine and sine series as 
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It is clear from (4.366) and (4.367) that m = 0 and ? = 0 corresponds to the case 
axisymmetric problems (Love’s displacement potential is recovered), such as 
Boussinesq’s problem considered in Section 4.4.3, and m = 1 corresponds to 
antisymmetric problems, such as Cerruti’s problem considered earlier in Section 
4.4.4.  
 Without loss of generality, we now only consider the first term in the series 
expansions in (4.366) and (4.367). In particular, substitution of (4.366) and (4.367) 
gives 
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We can now apply the Hankel transform to these equations as 
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In obtaining (4.370) and (4.371), we have used the following Bessel equation 
(Abramowitz and Stegun, 1964): 
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The Bessel equation has its origin in planetary and stellar motions (see biography 
section), but it also appears naturally as the solution of the Laplace equation in 
cylindrical coordinates. We can define the Hankel transform of these displacement 
potentials as (Sneddon, 1951): 
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With these Hankel transforms, the differentiation with respect to r in (4.368) and 
(4.369) becomes an algebraic operation in parameter < in the transform space. 
Thus, the following ordinary differential equations result: 
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The general solutions of (4.375) and (4.376) are 
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where these unknown constants have to be determined by boundary conditions. 
Once they are obtained, the inverse Hankel transform can be applied as (Sneddon, 
1951) 
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Next, we can express all displacements and stresses in terms of Gm and Hm, and 
evaluate their inverse either analytically or numerically. For example, the 
displacement in terms of the m term in the series solution is 
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We can multiply both sides of (4.358) by rJm(<r) and integrate from 0 to � to get 
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Inversion of this Hankel transform gives 

  
2

2
20

[(1 2 ) 2(1 ) ] cos ( )m
z m m

d G
u G m J r d

dz
# # < < � < <

�
� � � ��  (4.383) 

Similarly, all other displacement and stress components can be expressed in 
inverse Hankel transforms as (Muki, 1960) 
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In deriving these expressions, we have used the following identities (Watson, 
1952): 
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Once we know the contribution from each m, the displacement components can 
now be summed from 0 to � as 
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where 

  2
1 1

0
( , ) [ 2 ] ( )m

m m m
dG

U r z H J r d
dz

< < <
�

� �� ��  (4.398) 

  2
1 10
( , ) [ 2 ] ( )m

m m m
dG

V r z H J r d
dz

< < <
�

� �� ��  (4.399) 

Similarly, the stress components are 
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For axisymmetric cases, we have both Hm = 0 and m = 0, and obviously, the Love 
displacement discussed in Section 4.2.4 is recovered. Therefore, it can be 
concluded that the Hankel transform technique can be applied equally well to the 
Love potential. For problems formulated in Cartesian coordinate, we can apply 
Fourier transform in a similar manner. The details are referred to in Sneddon 
(1951).  
 
4.9.3 Boussinesq Solution by Hankel Transform  

In this section, Boussinesq’s problem will be reconsidered by using the Hankel 
transform. For this axisymmetric case, Hm = 0 and m = 0, and only the Love 
displacement potential is needed.  
 Consider the case that surface tractions are applied on the surface of a half-
space z = 0: 
 ( )zz f r� � ,  ( )rz g r� �  (4.406) 
In view of (4.402), the normal traction boundary condition in the Hankel transform 
space is  
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Similarly, the shear traction boundary condition in the Hankel transform space is  
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Substitution of (4.377) into (4.407) gives 
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Substitution of (4.377) into (4.408) leads to 
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The solutions of (4.409) and (4.410) are 
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Back substitution of A and B into (4.377) gives 
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As shown in Fig. 4.12, the Boussinesq problem can be modeled by a uniform f(r) 
within a circular patch with the radius a approaching zero as 
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Thus, the Hankel transform of (4.414) gives 
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Figure 4.12 Boussinesq problem modeled as uniform circular vertical loads 
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Now all stress components can be expressed in terms of the inverse Hankel 
transform as 
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To evaluate this inverse, we note the following formula (6.621 of Gradshteyn and 
Ryzhik, 1980): 
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where the associated Legendre function becomes Legendre polynomials for m = 0. 
For n = 1, we further have (Spiegel, 1968) 
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Applying (4.424) and (4.425), we have 
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Taking the differentiation of (4.426) with respect to z gives 
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Considering the differentiation of (4.426) with respect to r, we obtain  
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Substitution of (4.426)�(4.428) into (4.417) and (4.418) gives 
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where 
 2 2 1/2( )R r z� �  (4.431) 
These equations are of course equal to those given in (4.153). Other stress and 
displacement components of Boussinesq’s problem given in (4.152) and (4.153) 
can be obtained by carrying out the integration in (4.419) to (4.422) (see Problem 
4.17). This completes the evaluation of the Boussinesq solution by the Hankel 
transform. According to Little (1973), the Hankel transform calculations discussed 
in this section were first given by Lamb (1902). Apparently, Lamb (1902) was the 
first to introduce the use of the Hankel transform in 3-D elasticity problems 
(Goodman, 1974).  

4.10 SUMMARY AND FURTHER READING  

4.10.1 Summary  

In this chapter, we introduce 3-D elasticity through both displacement and stress 
formulations. For the displacement approach, we present the Helmholtz 
decomposition, the Galerkin vector, and the Papkovitch�Neuber displacement 
potential. The special cases of Lamé’s strain potential for incompressible solids 
and Love’s displacement potential for cylindrical solids are also included in the 
discussion. For stress approach, we summarize the Beltrami and 
Beltrami�Schaefer stress functions, the Maxwell stress functions, the Morera 
stress function, and other combinations of Beltrami stress functions which are not 
covered in most elasticity textbooks. Various 3-D elasticity problems are 
presented, including hollow sphere subject to internal and external pressures, 
Kelvin’s problem, Boussinesq’s fundamental solution, Cerruti’s fundamental 
solution, Mindlin’s fundamental solution, Lorentz’s fundamental solution, and 
Melan’s fundamental solution. A systematic method of generating harmonic and 
biharmonic functions is introduced and its use as an “indirect method” is 
discussed. 
 
  



148   Analytic Methods in Geomechanics  

4.10.2 Further reading  

4.10.2.1 General Method of Solutions for 3-D Elasticity  
Chapter 6 of Westergaard (1952) is devoted entirely to the Galerkin vector 
approach for 3-D elasticity. Chapter 13 of Chou and Pagano gives a 
comprehensive introduction to both displacement and stress approaches to solve 3-
D elasticity problems. Although a systematic approach to solving 3-D problems is 
not presented, many results of 3-D elasticity are included in Love (1944). The 
book by Little (1973) also provides a concise introduction to 3-D elasticity. The 
nearly 500-pages book of Luré (1964) is devoted entirely to three-dimensional 
elasticity problems. Although the book introduced both displacement and stress 
approaches, the majority of the problems considered in the book are solved by 
using the Papkovitch�Neuber displacement potential. It should be mentioned that 
the Sadowsky and Sternberg (1949) stress components in curvilinear coordinate 
resulting from the Papkovitch�Neuber displacement potential are also included. 
These expressions may be used for very special problems. The book compiled 
some advanced topics in 3-D elasticity. Wang (2002) and Wang et al. (2008) 
discuss general solution of elasticity with applications. Some 3-D problems can be 
found in Kupradze (1979). The short review article by Goodman (1974) also 
discussed the important development of potential theory in 3-D elasticity, 
including the complex potential methods.  

4.10.2.2 Integral Transform in Solving 3-D Problems 
According to Goodman (1974), integral transform methods were introduced to 3-D 
elasticity by Lamb (1902). Only the Hankel transform is introduced in the present 
chapter. The mixed boundary value problems in 3-D elasticity can be solved using 
the systematic approach by taking the Hankel transform (e.g., Muki, 1960; 
Sneddon, 1951; Chan et al., 1974), leading to a pair of dual integral equations for 
inner and outer regions (Keer, 1967; Gladwell, 1980). For example, penny-shaped 
crack problems can be considered by using this approach (Westmann, 1965a,b). 
The Hankel and Fourier approaches can also be used to solve half-space problems 
of poroelasticity (e.g., Senjuntichai, 1994a,b; Rajapakse and Senjuntichai, 1993). 
Due to space limitations, such approach will not be discussed here but will be 
covered briefly in Chapter 8 when we deal with poroelasticity. 

4.10.2.3 General Method of Solutions for Circular Cylinders  
Because of its application of the uniaxial compression test for rocks and the 
triaxial test for both soils and rocks, solutions for solid circular cylinders have 
been found useful. Early papers include those of Filon (1902), Lure (1964), 
Roberts and Keer (1987a,b), and Watanabe (1996), to name a few. The most 
comprehensive approach to solving finite circular cylinder problems is given by 
Chau and Wei (2000). Diffuse mode bifurcations (such as buckling, barrelling, and 
surface instabilities) of circular cylinders under compressions are considered in a 
series of papers by Chau (1992, 1993, 1995a), by Bardet and Iai (2002), and by 
Sulem and Vardoulakis (1990). The effect of end constraint on the non-uniform 
stress in solid cylinders is given by Chau (1997) and Wei and Chau (2009). The 
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stress analysis for the double punch test on solid cylinders is considered by Wei 
and Chau (2000). For axial point load tests, the stress analysis is given by Wei et 
al. (1999) and Wei and Chau (2002). For diametral point load tests, the stress 
analysis is given by Chau (1998c) and Chau and Wei (2001a).  

4.10.2.4 General Method of Solutions for Spheres  
The general method of solution for isotropic spheres subject to arbitrary traction 
and prescribed displacement is given by Lure (1964). The application to the 
diametral point load test on spheres is given by Chau and Wei (1999). Diametral 
impacts on spheres was considered by Chau et al. (2000), Wu et al. (2004), and 
Wu and Chau (2006). Another problem of elastic spheres relates to the vibrations 
of the Earth. It was recorded that after the 1952 Kamchatka earthquake and the 
1960 Chile earthquake the natural period of oscillations of the Earth was measured 
at about 58 minutes. Vibrations of spheres can be classified into toroidal and 
spheroidal modes (Chau, 1998b). For a more detailed analysis of the vibrations of 
the Earth see Ben-Menahem and Singh (2000). 

4.11 PROBLEMS  

Problem 4.1. Show that a uniform tensile field T applied along the x3-direction in 
a solid can be represented by the following Papkovitch�Neuber potentials: 
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Problem 4.2.  Consider the Southwell problem shown in Fig. 4.13 (Southwell and 
Gough, 1926). Show that a uniform tensile field T applied along the x3-direction in 
a solid containing a spherical cavity with radius a (shown in Fig. 4.13) can be 
modeled by the following Papkovitch�Neuber potentials: 
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Problem 4.3.  Solve Cerruti’s problem shown in Fig. 4.6 by using the following 
Papkovitch�Neuber potentials: 
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  (4.434) 
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Figure 4.13 Spherical cavity under far field uniform tension 

 
Problem 4.4.  Solve Mindlin’s problem of a vertical point force P3 in a half-space 
by using the following Papkovitch�Neuber potentials: 
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Problem 4.5.  Solve Mindlin’s problem of a horizontal point force P1 in a half-
space by using the following Papkovitch�Neuber potentials: 
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Problem 4.6.  Show that the component form of (4.12) in cylindrical coordinates 
can be expressed as 
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where Lr and L
 are nonzero functions. 
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Problem 4.7.  As shown in Fig. 4.14, Mindlin’s problem is reconsidered for a 
mixed boundary condition imposed on the surface. Physically, this problem can be 
related to problems of a soil half-space subject with an incompressible but flexible 
membrane glued to the surface, that is, the problem of point force F applied at a 
point (0,0,c) within a half-space subject to the following mixed boundary 
conditions on the surface x3 = 0: 

1 0u � ,  2 0u � ,   33 0� �  (4.442) 
(i) Show that the appropriate Papkovitch�Neuber potentials in solving this 
problem are 
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(ii) Show that the associated displacement can be written as 
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(no sum on i, j) 
 
Problem 4.8.  As shown in Fig. 4.15, Mindlin’s problem is reconsidered for a 
mixed boundary condition imposed on the surface. Physically, this problem can be 
related to problems of a soil half-space subject to a large smooth rigid footing, that 
is, the problem of point force F applied at a point (0,0,c) within a half-space 
subject to the following mixed boundary conditions on the surface x3 = 0: 

31 0� � ,  32 0� � ,   3 0u �  (4.445) 

 
Figure 4.14 Mixed boundary problem: Mindlin’s problem with a flexible incompressible 

membrane on the surface 
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Figure 4.15 Mixed boundary problem: Mindlin’s problem with a smooth rigid contact on the 

surface 
 
(i) Show that the appropriate Papkovitch�Neuber potentials in solving this 
problem are 
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 (ii) Show that the associated displacement can be written as 

( )
3 33 3

1 1{(3 4 )[ (1 2 ) ] (1 2 )}
16 (1 )

j i j i jj
i j ij j

F R R R R
u

R R R R
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�$ #
� � � � � � �

�

� �
� �    

 (4.447) 
(no sum on i, j) 
 
Problem 4.9.  A modification of Melan’s problem was considered in this problem, 
as shown in Fig. 4.16. The 2-D traction-free boundary conditions are 

 1 3 0u u� �  (4.448) 
on x3 = 0. Again the 2-D Papkovitch�Neuber potentials consist of two parts: 

 0 0 08 ? �� � ,    � �8 ? �  (4.449) 
where    

  3
0 ln

2
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r?
�$

� ,    ln
2

i
i

F
r?

�$
� �  (4.450) 

where i = 1,3 and 

 2 2
1 3( )r x x c� � �      (4.451) 

(i) Show that the unknown harmonic functions �0 and � satisfying (4.448) are 
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Figure 4.16 Modified Melan’s problem: A 2-D line load F applied parallel to the x2-axis on a fixed 
boundary 
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(ii) Show that the associated displacements are 
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where �, 0 = 1, 3 with no summation on double indices. 
 

Problem 4.10.  Referring to Fig. 4.17, show that the following 
Papkovitch�Neuber function satisfies Rongved’s (1955) problem, an interior 
perpendicular force Pz applied to two perfectly bonded half-spaces: 
Region 1: 
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where 
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for i = 1, 2. The subscripts for $ and / and the superscripts for the Papkovitch 
�Neuber function denote the region number. 
 
Problem 4.11.  Referring to Fig. 4.17, show that the following 
Papkovitch�Neuber function satisfies Rongved’s (1955) problem, an interior 
parallel force Px applied to two perfectly bonded half-spaces: 
Region 1: 
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Figure 4.17 Rongved and Dundurs-Hetenyi problem: Force transmission between two half-spaces 
with  smooth interface 
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with i = 1,2. 
 
Problem 4.12.  Referring to Fig. 4.17, show that the following 
Papkovitch�Neuber function satisfies Dundurs�Hetenyi’s (1965) problem, an 
interior perpendicular force Pz applied to two half-spaces with smooth contact 
(zero shear tractions between the two half-spaces): 
Region 1: 
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with i = 1,2. 
     
Problem 4.13.  Referring to Fig. 4.17, show that the following 
Papkovitch�Neuber function satisfies Dundurs�Hetenyi’s (1965) problem, an 
interior parallel force Px applied to two half-spaces with smooth contact (zero 
shear tractions between the two half-spaces): 
Region 1: 
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2 0x8 �  (4.477) 
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with i = 1, 2. 
 
Problem 4.14.  Show that (4.344) satisfies cylindrical biharmonic equations. 
 
Problem 4.15.  Prove (4.59) from (4.53). 
 
Problem 4.16.  Prove (4.79). 
 
Problem 4.17.  Carry out the integration in (4.418) to (4.421) to obtain all stress 
and displacement components of Boussinesq’s problem given in (4.152) and 
(4.153). 
 
Hints: 
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Problem 4.18.  Solve Cerruti’s Problem discussed in Section 4.4.4 again by using 
the Hankel transform formalism of Muki (1960) given in Section 4.9.  Note that it 
is an antisymmetric problem, and as shown in Fig. 4.18 we can set the following 
tractions on z = 0 (with limit a & 0) and m = 1 in (4.394) to (4.404): 
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� �  (4.481) 
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Figure 4.18  Cerruti problem modeled by uniform circular patch load  
 
Problem 4.19.  Show that Papkovitch�Neuber displacement potentials are not 
invariant upon translation of the origin. 
 
Problem 4.20.  Show the equivalence of (4.116) and (4.133) with (4.137) in view 
of (4.166). 
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   CHAPTER FIVE 
 

Plasticity and Its Applications 

5.1 INTRODUCTION 

Plasticity was originally developed for modeling the behavior of a wide variety of 
metals, which are pressure-insensitive and incompressible. Figure 5.1 shows some 
idealizations of these material responses, including both elastic and plastic 
materials: (a) nonlinearly elastic; (b) linearly elastic; (c) inelastic or plastic; (d) 
rigid, perfectly plastic; (e) elastic, perfectly plastic; (f) rigid, work-hardening; and 
(g) elastic, work-hardening. The traditional plastic materials were assumed to 
satisfy associated flow rule or normality law during plastic deformation. This, 
however, is not true for geomaterials, such as soil and rocks. For geomaterials, 
terms like non-associated flow rule or non-normality rule emerge naturally due to 
their constitutive properties, including pressure-sensitivity (i.e., frictional effect), 
compressibility, and plastic dilatancy. The application of plasticity to soil 
mechanics starts probably with Drucker and Prager (1952), who extended the 
classical form of Coulomb criteria to three-dimensional cases (Pietruszczak, 2010), 
and its application to rock-like materials is more recent (Rudnicki and Rice, 1975). 
In this chapter, we will present a generalized constitutive form which is applicable 
to both soils and rocks. 
 

 
Figure 5.1 Some idealizations of stress-strain responses 
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 There are some features of soil plasticity that are quite different metal 
plasticity. Under external applied load, soil particles may undergo crushing, 
rearrangement, interlocking, and shear-induced dilatancy. Many of these processes 
are irreversible. Soil may also yield under isotropic compression, and such 
phenomenon is not observed in metal and other materials. Soil which is initially 
densely packed may behave differently from loosely packed soils. Dense soil 
normally dilates before failure while loose soil compresses until failure. A key 
feature is that regardless of whether the soil is initially densely packed or loosely 
packed, the final volume (or void ratio) at failure is normally a constant value. This 
constant volume state is called critical state in soil mechanics. Cap models have 
been proposed to model such phenomena. We will start this chapter with some 
basic concepts of plasticity theory before we discuss cap models and Cam-clay 
models. Internal variables formulation based on thermodynamics is also 
introduced. The chapter concludes with an introduction to viscoplasticity.  

5.2 FLOW THEORY AND DEFORMATION THEORY 

There are two main types of theories for plasticity: flow theory or incremental 
theory and deformation theory.  
 Deformation theory assumes that the total plastic strain is related to the final 
stress, and that the total strain of a solid can be subdivided into two parts, the 
elastic part and plastic part: 

 )  e p e F(� �
� � � �

�
�� � � �
�

  (5.1) 

where the superscripts e and p denote the elastic and plastic parts of the total strain, 
respectively and � is a scalar function. The second part of (5.1) implicitly assumes that 
the total plastic strain relates to the final stress state by a scalar function of the stress 
state F(�). Strictly speaking, deformation theory applies only to proportional loading 
case (i.e., the loading path does not change direction during the whole loading process 
in the stress space), although Budiansky (1959) illustrated that slight deviation from 
the proportional loading should not restrict the applicability of the deformation theory. 
Equation (5.1) is essentially nonlinear elastic stress-strain relations of the secant type. 
 Flow or incremental theory, on the other hand, assumes that the increment of 
strain is related to the increments of stress, and that the strain increments can be 
decomposed into elastic and plastic parts: 
 ,          e p e pd d d or� � � �� � �� � � � � �  (5.2) 
The second part of (5.2) simply rewrites the increments of strains in terms of the rate 
of strain; both forms are, however, essentially the same if small deformation is 
considered. In flow and incremental theory, it is normally assumed that both elastic 
and plastic strains are proportional to the stress increment or stress rate: 
 ( ) :e p� �� �� �M M  (5.3) 
where Me and Mp are the elastic and plastic tangential compliance tensors, 
respectively. Inversion of this equation gives: 
 ( + ) :e p� �� �� C C  (5.4) 
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where C 
e and C 

p are the elastic and plastic tangential stiffness tensors, 
respectively. For finite deformation, the strain rate is normally replaced by the rate 
of deformation and Jaumann’s rate of Kirchhoff stress, in view of the frame-
indifference requirement: 
 e p� � =  :  = ( + ) :D M M M, ,  (5.5) 
where ,� is defined in (2.106) of Chapter 2. 

5.3 YIELD FUNCTION AND PLASTIC POTENTIAL 

To determine M 
p, we must introduce two scalar functions of stress: the yield 

function f (�) and the plastic potential g(�). When the yield function is satisfied, 
that is, 
 ( ) 0f ��  (5.6) 
then the material starts to yield. However, for strain-hardening models the yield 
surface on the stress space can evolve (normally expand for strain-hardening models) 
as the stress increases such that the stress state must always be on or within the current 
yield surface. Mathematically, this requirement yields the following consistency 
requirement: 

 0 , 0: ij ij ij
ij

f fdf   d      or   df   d   Q d   � �
�

� �
� � � � >

� �
�

�
 (5.7) 

where Qij are the normal to the yield surface in the stress space. When Qijd�ij = 0, the 
stress increment is tangential to the yield surface, and only elastic response is possible. 
Such a case is normally referred to as neutral loading. On the other hand, the plastic 
potential governs the direction of the plastic strain increments: 

     p p
ij ij

ij

gD   d   P   d     or   d� � �
�
�
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�

PD  (5.8) 

where d� is a scalar parameter. Equation (5.8) is normally referred to as the flow rule. 
When Pij = Qij, the flow rule is called the associative flow rule. In addition, for this 
case the normal to yield surface will parallel the normal to the plastic potential; 
therefore, this is also called the normality rule. However, for geomaterials we must 
have Pij � Qij if the yielding behavior is to be described properly. There is plenty of 
experimental evidence to support this assertion.  
 We now examine the possible form of d�. Since, according to the consistency 
requirement (5.7), plastic deformation only takes place when the Qijd�ij > 0, and 
Qijd�ij is precisely the component of stress tensor pointing outward of the yield surface 
f = 0. Therefore, it is natural to postulate that the plastic strain (5.8) will only be 
proportional to the part of stress tensor which is normal to the yield surface, but not the 
components of stress tensor tangential to the yield surface. In particular, we have 

 
1 0

0 0

d
  d d
h

d

� >

� =

� �

�

Q : Q :

Q :
 (5.9) 

where h is a kind of hardening modulus. It is also called the Kuhn-Tucker condition 
(Lubliner, 1990).  
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 So far, we have assumed that yield surface is smooth, or no vertex is formed at 
the yield surface. Rudnicki and Rice (1975) argued, based on the mechanism of sliding 
of fissures in rock, that yield vertex may be formed in the yield surface if the loading is 
applied beyond the initial yield surface. If this is the case, (5.9) will no longer be valid 
and modification is needed. Rudnicki and Rice (1975) also proposed a simple model to 
account for such a yield-vertex effect, and the details will be given in later sections.  

5.4 ELASTO-PLASTIC CONSTITUTIVE MODEL 

Combining (5.5), (5.8), and (5.9), we can write the compliance tensor as 

 1 1( ) ( )    :e e
ij ij kl klijkl   Q     or    D M Ph h

, � �� � � ��D P QM ,  (5.10) 

where h is the hardening modulus. This form can inverted to give 

 ( )( ): : :
: :

e e
e

eh
� 2 3

� �4 5
�4 56 7

C P Q CC D
Q C P

,  (5.11) 

The proof of (5.11) can be done by applying Ce to both side of (5.10) such that 

 1 1[ ( ) ] [ ( ) ]:  : :   :   :    :e e e ee
h h

� �� � � �D P Q I P QC C C CM , ,  (5.12) 

since C 
e = (M 

e)�1 and I is the fourth-order unit tensor. Applying the dot product of Q 
to both sides of (5.12) gives 

 1[1 ( )] : :   :  :     :e e
h

�� �Q D Q P QC C ,  (5.13) 

Note that (5.13) is a scalar equation and normal algebraic analysis applies. Therefore, 
we have 

    : ::     
:  :   

e

e
h

h
� �

�
Q DCQ
Q PC

,  (5.14) 

Rearranging the second part of (5.12) gives 

 1 : :   :e e
h

� �� �D P QC C, ,  (5.15) 

Finally, substitution of (5.14) into (5.15) gives (5.11). This completes the proof. 
 Alternatively, (5.11) can be obtained using the well-known 
Sherman�Morrison formula in linear algebra (e.g., Noble and Daniel, 1988; 
Campbell, 1980), which states 
 1[ ] [ ]     0�� � �I a b I a b  (5.16) 
where 0 = 1+ a:b. In particular, the second part of (5.12) can be recognized as: 

 1[ ]:    :e
h

�� �D I R QC ,  (5.17) 

where R = C 
e:P, and then (5.16) can be applied to show the validity of (5.11). The 

validity of the Sherman�Morrison formula will be left as a problem for the readers 
(Problem 5.1). 
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5.5 RUDNICKI�RICE (1975) MODEL 

Rudnicki and Rice (1975) derived the condition of localization of deformation in 
rock-like solids, and in doing so they proposed an attractive model incorporating 
the effects of frictional and plastic dilatancy effects. As mentioned in Rudnicki 
(1982), the Rudnicki and Rice (1975) model can be interpreted as the deformation 
theory of plasticity. In particular, as shown by Senseny et al. (1983), the 
Rudnicki�Rice model can be obtained by setting 
 e ef  = + k = 0 ,    g = + k  = 0, $� , 0� 1� �  (5.18) 
where ,e = (J21)1/2 = [½s:s]1/2, and � = 1/3 tr(�), then 

 1 1
2 3 2 3e e

  + �  ,    = + �
 

�
s sQ I P I  (5.19) 

Note that the deviatoric stress tensor is defined as 
 1

3  � tr �= ( )�s I  (5.20) 
Professor J.R. Rice is one of the most versatile researchers in solid mechanics and a 
recipient of the Timoshenko medal. Professor J.W. Rudnicki made seminal 
contributions to localization analysis in geomaterials (see biography section at the end 
of this book).  
 Substituting (5.19) into (5.11), the famous model by Rudnicki and Rice (1975) is 
recovered: 
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e e
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 Dh G K
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$ 0
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� �
�

� �

 (5.21) 

where 0 and $ are the coefficient of plastic dilatancy and the frictional coefficient, 
G and K are the elastic shear and bulk moduli, respectively, and h is the plastic 
hardening modulus. Experimental calibration of the Rudnicki�Rice (1975) model 
was done by Wawersik et al. (1990) and Holcomb and Rudnicki (2001). A similar 
constitutive model proposed by Nemat-Nasser and Shokoon (1980) was found 
appropriate for granular materials as well (see also the discussion by Rudnicki, 
1982). Note that when 0 = $, we have Pij = Qij or the normality flow rule; the 
Drucker�Prager (1952) model is recovered as a special case. When 0 = $ = 0, the 
Prandtl�Ruess elastic-plastic model or the J2-flow theory for metals is recovered 
(Hill, 1950). Their paper also presents the classic solution for the condition of 
localization of deformation. This pioneering work and that of Rice (1976) have 
triggered intense interest on the localization of deformation and bifurcation 
analyses in geomechanics (e.g., Chau and Rudnicki, 1990; Chau, 1992, 1993, 
1994a, 1995a,b).  

5.6 DRUCKER’S POSTULATE, PMPR, AND IL’IUSHIN’S POSTULATE 

In this section, we will summarize a number of postulates about plastic strain 
increment in plasticity. They are related to uniqueness, normality, strain hardening, 
and the direction of plastic strain. Their main consequences are in metal plasticity 
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Softening Hardening Perfectly 
plastic 

satisfying the associated flow rule, which is clearly inappropriate for geomaterials. 
Their importance to hardening and yield vertex effect deserves coverage in this 
chapter.  
 One of the most important inequalities in plasticity is called Drucker’s 
postulate (Lubliner, 1990): 
 0p

ij ij� � ���  (5.22) 
The postulate is best illustrated in the one-dimensional case shown in Fig. 5.2. 
Professor D.C. Drucker was the first Ph.D. student of R. Mindlin, and together 
with Prager he had made fundamental contributions to soil plasticity (see 
biography section). It is clear from Fig. 5.2 that the larger than zero sign in (5.22) 
applies in the hardening regime, the equal sign applies in the perfectly plastic 
regime, and (5.22) would be violated in the softening regime. Thus, the first 
obvious consequence of Drucker’s postulate is the existence of work-hardening or 
softening implies instability. It also implies that the work done during incremental 
loading is positive and the work done during a loading-unloading cycle is non-
negative. The left-hand side of (5.22) is related to work increment, and it is often 
referred to as the thermodynamic requirement although it is independent of basic 
laws of thermodynamics. The strain rate and stress rate must also be of the same 
direction. Actually, the stress increment can start from an internal stress point, and 
thus the stress rate can be written as 
  *( ) 0p

ij ij ij� � �� ��  (5.23) 
This equation is actually called the principle of maximum plastic resistance 
(PMPR), and it was proposed independently by R. von Mises, G.I. Taylor, and R. 
Hill (see Lubliner, 1990). It is also sometimes referred to as the principle of 
maximum plastic work. This is a special case of Drucker’s postulate. A direct 
consequence can be shown in Fig. 5.3. Two main consequences of PMPR are the 
normality of flow rule (which may be violated in geomaterials) and the convexity 
of the yield surface, as shown in Fig. 5.4.  
 Another related postulate is called Il’iushin’s postulate (Lubliner, 1990): 
 0ij ijd� � ���  (5.24) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.2 Drucker’s postulate (1-D illustration) 
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Figure 5.3 Stress-strain behavior violating PMPR 

 

 

 

 

 
 

Figure 5.4 Normality requirement and convexity requirement  
 
It requires that the work done is positive in any strain cycle. Il’iushin’s postulate 
can be shown implying the PMPR (Lubliner, 1990), but it only works for isotropic 
hardening. Thus, in a sense it is a stronger (less general) hypothesis than the 
PMPR. 

5.7 YIELD VERTEX  

Based on the arguments of multiple slip plane theory in metal plasticity 
(Budiansky, 1959) or based on the multiple fissure plane argument in rock mass 
(Rudnicki and Rice, 1975), it is speculated that a vertex will be formed under 
continuous proportional loading. The loading induced yield vertex is illustrated in 
Fig. 5.5, together with the yield surface of the isotropic hardening model and the 
kinematic hardening model. Isotropic hardening is showed by a uniform expansion 
of the yield stress in all directions even through proportional loading is only 
applied along a particular loading path. Kinematic hardening is showed as a lateral 
translation of the yield surface, and it is the consequence of the Bauschinger effect 
(Sanders, 1954).  
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Figure 5.5 Yield vertex formation vs. isotropic hardening and kinematic hardening 
 

 There is experimental evidence of the existence of the yield vertex effect on 
the yield surface, but it is inconclusive (Bertsch and Findley, 1962; Phillips and 
Gray, 1961; Sewell, 1974). Theoretical arguments do lead to the prediction of a 
vertex in the yield surface (Christoffersen and Hutchinson, 1979; Hill, 1967; 
Cleary and Rudnicki, 1976; Pan and Rice, 1983). For both slip theory and the 
independent loading plane hypothesis (no interaction between loading planes), the 
point representing the current stress state carries a pointed sharp vertex or corner 
with it during continuous plastic deformation. The admissible loading cones for 
further plastic deformation are illustrated in Fig. 5.6. The outer admissible zone is 
bounded by the normals of the two slip planes at the vertex as required by the 
PMPR or Drucker’s postulate, discussed in the previous section. The inner zone is 
that given by Sanders, formed by extending the slip planes at the sharp corner. In 
the context of deformation theory, the intermediate zone is that given by 
Budiansky (1959), with � given by  

 � 0� ,   and 
2

1 tantan [ ]
tan

0�
0

��  (5.25) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.6 Admissible loading directions by Sanders (1954) and Budiansky (1959) at the vertex 
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where 0 is defined in Fig. 5.6. The following definitions have been used: 
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where E, Et, and Es are defined as the elastic, tangent, and second modulus, 
respectively (Budiansky, 1959). These moduli are defined as: 

 3 1 1( )
2

p
ij ij

s
s

E E
� � �  (5.27) 

 3 1 1 1 1 3( ) ( ) ( )
2 2

p e
ij ij ij

s t s e
s s

E E E E
,

�
,

� � � �
�� �  (5.28) 

where ,e is the equivalent shear stress defined after (5.18). For uniaxial 
compression, these moduli are depicted in Fig. 5.7. In (5.25), we assumed that the 
angle 0 at the yield vertex is known as shown in Fig. 5.6. It is obvious that even 
from the deformation theory, we have seen that the loading cone should be smaller 
than the admissible zone suggested by Drucker’s postulate. 
 In the context of damage in rocks, based on the microcrack model of Costin 
(1983, 1985) Holcomb and Costin (1986) demonstrated how the damage surface in 
the stress space (equivalent to the yield surface in the stress space discussed here) 
evolves with loading and how corners developed under continuous loading. The 
details can be found in Holcomb and Costin (1986). 
 For the case of rock mass containing an isotropic infinite set of frictional 
sliding fissures, the yield vertex expected is similar to that shown in Fig. 5.6. 
Rudnicki and Rice (1975) proposed that the tangential stress increment on the 
idealized isotropic hardening surface will also induce plastic deformation at the 
yield vertex. The main concept of the plastic strain component is demonstrated in 
Fig. 5.8 (after Rudnicki, 1984). In the smooth yield stress, stress increment tangent 
to the yield surface leads to elastic response (Fig. 5.8(a)), whereas in the yield 
vertex model shown in Fig. 5.8(b) the plastic response is controlled by modulus h1, 
which is much smaller than the elastic modulus G. In general, we expect: 
 1h h G=	  (5.29) 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5.7 Definitions of elastic, secant, and tangent moduli in Budiansky’s (1959) theory 
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Figure 5.8 Smooth and cornered yield surface (after Rudnicki, 1984; with permission from The 
Society of Rheology) 

 
It can be shown that subject to the tangent stress increment the smooth yield 
surface response is stiffer than the yield vertex response.  
 By adding this additional term and for the case of 0 = $ = 0, the deviatoric 
part of the rate of the deformation tensor becomes  

 
1

1 1( ) [ ( )]
2G h h

�
� � �11 � � � �1 1  : :  D N N N N� � � ��  (5.30) 

where 
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2
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1
� ,   and  1/21( )
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where �1 is the deviatoric stress. Note that the second term and the third term in 
(5.30) are perpendicular, that is 
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 (5.32) 

Apparently, the yield vertex theory of Rudnicki and Rice (1975) can easily be 
incorporated into numerical codes and is better accepted than other yield vertex 
theories (Yu, 2006). 

5.8 MOHR�COULOMB MODEL 

The following form of the Mohr�Coulomb model is given by Senseny et al. 
(1983). In particular, f and g are given as: 

 

*(cos sin ) * * 0
3
*(cos sin ) * 0
3

e

*
e

f  =  � � + � k  =  ,   

 g =  � � + � k  = �

$ $

$

� �

1� �
 (5.33) 
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where � = �kk/3 and 
 is the Lode angle measured in the �-plane or octahedral plane 
shown in Fig. 5.9. The Lode angle was proposed by German engineer W. Lode in 
1926. The concept of Lode angle 
 and the �-plane will be discussed in Sections 5.9 
and 5.10. The tensors P and Q are 

 1 2 2
1 1( )

2 3 32
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e e
 = + + �� �

 
1 1 1
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�Q I I� � �  (5.34) 
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where 

 1 cos [(1 tan tan 3 ) (tan 3 tan )]
3

*� = � + � � + � �� �  (5.36) 
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�
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The parameters $* and k* can be related to the parameters for the usual Mohr-
Coulomb law 
 tane = c +� �1  (5.38) 
as: 
 * sin , * 2 cos      k   c$ � �1� �  (5.39) 
To derive (5.33), we have to first consider the Lode angle 
. The details are given in 
the next section. 

5.9 LODE ANGLE OR PARAMETER 

The origin of the Lode angle relates to the finding of the principal deviatoric stress. 
In particular, the principal deviatoric stress s must satisfy the following eigenvalue 
problem: 
 det 0ij ij| s | = s ��  (5.40) 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5.9 Drucker�Prager and Mohr�Coulomb yield surface in the �-plane 
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Expanding this determinant results in the following eigenvalue equation for s: 
 23

2 31 0J s J  =  ,J ss � � �  (5.41) 
where 
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 (5.42) 

where s1, s2, and s2 are the principal values of s. The key factor that leads to the 
introduction of the Lode angle is the similarity between (5.41) and the following 
trigonometry identity: 
 3 33 1

4 4sin 3 3sin 4sin sin sin 3sin� = �  ,    or   � � + � = 0
� �  (5.43) 
If we let s = rsin
, (5.41) becomes 

 323 33
32 2 3sin 0 sin 0sin sin

JJ J r        or     Jr
r r


 
 
 
� � � � � �  (5.44) 

Comparing (5.43) and (5.44), we immediately identify that 

 32
2 3

3 1, sin 3
4 4

JJ
        

r r

� � �  (5.45) 

Solving (5.44) gives 

 2 3
3
2

2 3 3, sin 3 ( )
23

J J
r         

J

� ; �  (5.46) 

where 
 is called the Lode angle. It provides an attractive alternative to the J3 invariant 
and is also a quantitative indicator of the relative magnitude of the intermediate 
principal stress to the maximum and minimum principal stresses, �2/�1 and �3/�1. 
Physically, r and 
 correspond to the polar coordinates in the �-plane, which will be 
discussed in the next section. Since sin3
 is periodic such that sin3
 = sin(3
+2�); 
Nayak and Zienkiewicz (1972) proposed the following solutions for s: 

 1 2
2 4sin( )

33
s   J �
� � �  (5.47) 

 2 2
2 sin
3

s  = J ��  (5.48) 

 3 2
2 2sin( )

33
�s  = J �� �  (5.49) 

The validity of (5.47)�(5.49) can be checked easily by substituting them into (5.41). 
Then, the principal stresses become 

 1 2
2 4 1sin( )

3 33 kk J �� 
 �� � � �  (5.50) 

 2 2
2 1sin

33 kk  J� 
 �� � �  (5.51) 



 Plasticity   171 

 

 3 2
2 2 1sin( )

3 33 kk  J �� 
 �� � � �  (5.52) 

Equation (5.51) can be rearranged to give a simple definition for the Lode angle 
: 

 1 3 2

2

2
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2 3
+

� = 
J
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 (5.53) 

Using the Mohr circle, the traditional Mohr�Coulomb failure criteria can be expressed 
as 

 1 3

1 3

( ) 2
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1 �
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Rearranging (5.54) gives 
 1 3 1 3( )sin 2 cos  c  � � � � � �1� � � �  (5.55) 
We now note that 

1 3 1 3 1 2 3
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� � � � � �
 (5.56) 

The last part of (5.56) is the result of utilizing (5.53). Substitution of (5.56) into (5.55) 
leads to 

 1 3
2 3 sin sin 2 cos 2 sin

3 e    c    , 
 � � � �� � 1� � � �  (5.57) 

Finally substitution of (5.50) and (5.52) into (5.57) yields 

 sin(cos sin ) sin cos 0
3e � � � c  = � � �1� � � . (5.58) 

If we now replace � by � � (i.e., � is the mean compression), comparison of (5.58) and 
(5.33) gives the required results given in (5.39). 

5.10 YIELD CRITERIA ON THE �-PLANE 

One of the most popular ways to visualize the yield function in plasticity is the use 
of the �-plane (see Fig. 5.9). Note that the Mohr�Coulomb yield criterion is an 
irregular hexagonal pyramid. Compression has been taken as positive in Fig. 5.9. 
The construction of Fig. 5.9 will be considered as problems at the end of the 
chapter. In particular, any stress field � can be expressed in terms of its principal 
stresses, say �1, �2, and �3. Thus, the yield stress may be depicted by a three-
dimensional surface in the principal stress-space, which is also called the Haigh-
Westergaard space (Hill, 1950). Since all yield conditions are more or less 
governed by the magnitude of deviatoric stress or equivalently J2, it is 
advantageous to see the yield surface through the hydrostatic axis, which is 
defined as the line 
 1 2 3   � � �� �  (5.59) 
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We then can define a cylindrical coordinate (r, 
, z) with the hydrostatic axis as the 
z-axis (see Fig. 5.10). The plane perpendicular to the hydrostatic axis is called the 
deviatoric or octahedral plane, and is given by 
 1 2 3 C� � �� � �  (5.60) 
where C is a constant. When C = 0, the octahedral plane passes through the origin 
and is called the �-plane. The shape of the yield surface can be projected onto the 
�-plane for different levels of mean stress. The polar coordinates (r, 
) locates any 
stress point on the deviatoric plane. 
 By proper transformation any � can be expressed in polar coordinates (r, 
, 
z). The angle between the hydrostatic axis and the �1-, �2-, and �3-axis is 54.74@ [) 
cos�1(1/H3)] (see Fig. 5.10). As shown in Fig. 5.11, any stress state (�1, �2, �3) can 
be represented by a vector OA. The unit normal along the hydrostatic axis < is 

 1 2 3
1 ( )
3

� � �n e e e  (5.61) 

The projection of OA onto the <-axis is OB and its magnitude is 

 11 2 3
1 1| | ( ) 3
3 3i iOB   n       pI� � � �� � � � � �  (5.62) 

 
As shown in Fig. 5.11, OB = (p, p, p) and OA = (�1, �2, �3). Therefore, BA = OA 
� OB = (�1 � p, �2 � p, �3 � p) = (s1, s2, s3). Then, the length of vector BA is 

 2 2 2
1 2 3 22 3 / 2  s s s   J   r( � � � � �  (5.63) 

where r is the Lode parameter discussed earlier in Section 5.9. Thus, physically r 
relates to the distance of the stress state from the origin of the �-plane. We now refer to 
the �-plane given in Fig. 5.12, in which the axes �11, �21, and �31 are the projection of 
�1, �2 and �3 on the �-plane. Let the unit vector along the �11-axis be n(1), which is 
perpendicular to n and therefore must satisfy: 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.10 Yield surface representation in Haigh�Westergaard space and the �-plane  
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where ei (i = 1, 2, 3) is the base vector in the Haigh�Westergaard stress space. 
However, we also have �n(1)�= 1 or 
 2 2

1 22 1n n   � �  (5.65) 
Solving (5.64) and (5.65), we obtain the following unit vector along �11-axis: 

 (1)
1 2 3

1 (2 )
6

� � �e e en  (5.66) 

Note that BA = B1A1, thus B1C1 equals 
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1 1 2 2 3 3 1 2 3
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Figure 5.11 Stress state in principal stress space (after Chen and Mizuno (1990) with permission 

from Elsevier)   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.12 Stress state on the �-plane with �1 > �2 > �3 (after Chen and Mizuno (1990) with 
permission from Elsevier)  
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Since J1 = s1+s2+s3 = 0, therefore we have 

 1 1
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3 3cos
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J



(

� �  (5.68) 

The second part of (5.68) is obtained by using the result in (5.63). Using the 
trigonometric identity cos3
 = 4cos3
�3cos
, we have 

 3
1 1 23 2

2

3 3cos3 ( )
2 /

 � = s s J
 J

�  (5.69) 

Noting that J2 = � (s1s2+s2s3+s3s1), s1+s2+s3 = 0 and J3 = s1s2s3, we get 

 31
3 2
2

1 3[3 ] where   0 / 3cos
3 2 /

J� =      
J


 �� � �  (5.70) 

for �1 � �2 � �3. This is another form of the Lode angle discussed in Section 5.9. 

5.11 OTHER SOIL YIELD MODELS 

The main disadvantage of the Mohr�Coulomb failure model is that there are sharp 
corners on the yield surface, as shown in Fig. 5.9. When numerical methods are 
used to solve plasticity problems, special care is needed to handle yield stress at 
the corner. Therefore, various models have been proposed to smooth out the yield 
corners. For example, Lade and Duncan (1975) proposed the following form of 
yield function: 
 3

1 3 1/ 0f I I  k� � �  (5.71) 
This yield function can be rewritten as (Chen and Saleeb, 1988) 
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Matsuoka and Nakai (1974) proposed 

 21 2

3
(9 8 tan ) 0

I If  
I

�� � � �  (5.74) 

 
 
 
 
 
 
 
 

 
 

Figure 5.13 Comparison of Lade�Duncan, Matsuoka�Nakai, and Mohr�Coulomb yield functions 
(after Davis and Selvadurai (2002) with permission from Cambridge University Press) 
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In both of these models, the sharp corners on the yield surface have been smoothed 
out, while the shape of the Coulomb yield surface remains, as shown in Fig. 5.13.  

5.12 CAP MODELS 

For both granular and cohesive soils, one main restriction of the previous models 
is that the so-called critical state concept is not incorporated. The critical state idea 
can be illustrated using Figs. 5.14 and 5.15 (Schofield and Wroth, 1968; Atkinson 
and Bransby, 1978). In particular, we consider a normally consolidated soil 2 and 
an overconsolidated soil 1 having the same void ratio, and both are loaded by the 
conventional triaxial test to failure. Note that the triaxial test was originally 
proposed by von Karman, the father of rocket science, in 1910 for testing Carrara 
marble and Mutenberg sandstone (von Karman and Edison, 1967; Van and 
Vasarhelyi, 2010). It was subsequently adopted for soil testing. When an 
undrained compression is applied, both specimens fail at point A (following the 
solid lines in Fig. 5.14). The normally consolidated soil fails with a positive pore 
pressure, and the overconsolidated soil fails with a negative pore pressure. 
However, for drained compression test specimens 1 and 2 behave quite 
differently. Specimen 2 contracts under drained compression and fails at point B in 
Figs. 5.14 and 5.15, while specimen 1 initially contracts before reaching its peak 
strength at point C, then dilates as it reaches the residual strength point D 
(following the dotted lines in Fig. 5.14). The important fact is that all specimens 
whether normally consolidated or overconsolidated will fail along the critical state 
line in the p-q plane as shown in Fig. 5.14, provided that all soil specimens have 
the same void ratio. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 5.14 The loading response in the e-p plane (after Chen and Mizuno (1990) with permission 
from Elsevier)    
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Figure 5.15 Drain response in the p-q plane (after Chen and Mizuno (1990) with permission from 

Elsevier)   
 
 To capture such a void ratio dependency, a cap model was proposed by 
Drucker et al. (1957). As shown in Fig. 5.16, a spherical cap is introduced to 
restrict the plastic dilatancy in the model. Note that the level of the spherical cap 
depends on the current density or void ratio of the soils. Now, the yield surface 
consists of two surfaces:the usual failure surface ff and a strain-hardening cap fc. 
Mathematically, they are 
 1 12 2( , ) 0 , ( , , ) 0    f cf          f     J JI I A� �  (5.75) 
where A is a strain-hardening parameter and depends on the plastic volumetric strain as 
 [ )](� p= trA A  (5.76) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.16 Drucker�Prager type of strain-hardening cap model (after Chen and Mizuno (1990) 

with permission from Elsevier)  
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5.13 PHYSICAL MEANING OF CAM-CLAY MODEL  

With all the cap-type models, the Cam-clay model developed by Roscoe and co-
workers at Cambridge (U.K.) is probably the most popular model. The Cam-clay 
model can capture the experimentally observed critical state. Following the 
presentation by Davis and Selvadurai (2002), we illustrate in this section a 
physical meaning of the Cam-clay model before we discuss the modified Cam-clay 
model in the next section. 
 Consider the shear experiment shown in Fig. 5.17 where shear stress , is 
applied with normal stress �. There is no lateral normal strain in the experiment 
but dilatancy is allowed. The yield condition is only a function of � and ,, or f(�, 
,). The rate of plastic work for the specimen shown in Fig. 5.17 can be written as: 
 p p pW �� ,.� �� � �  (5.77) 
At a constant stress �, the rate of dissipation D can be assumed proportional to the 
shear strain rate as well as the stress level as 
 pD k�.�� �  (5.78) 
With this equation, we can equate (5.77) and (5.78) to give 

 p

p
k

� ,
. �

� �
�
�

 (5.79) 

where k is a material constant. According to Drucker’s postulate discussed in 
Section 5.6, a small perturbation of the stress state from an equilibrium state must 
result in a positive rate of plastic work: 
 0p p pW� ��� �,.� � �� � �  (5.80) 
For the case of normality (taking the equality sign in (5.80)), we have the 
following differential equation by replacing the incremental form by the 
differential form: 

 0p

p

d d k
d d

�, , ,
� . � �

� � � � �
�
�

 (5.81) 

The second part of (5.81) is a consequence of (5.79). Integrating the equation 
gives 
 1( ln )C k, � �� �  (5.82) 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 5.17 Response of idealized soil to hydrostatic pressure 
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To find the constant C1, we can observe from (5.79) that � > ,/k implies 
compression, and � < ,/k implies dilation. Clearly, when � equals ,/k, there is no 
volume change or it is at its so-called critical state. Using this condition, we find 
that  
 1 (1 ln )cC k k �� �  (5.83) 
where �c =,/k. Substitution of (5.83) into (5.82) leads to 

 ln( ) 1 0
c

k �, �
�

2 3
� � �4 5

6 7
 (5.84) 

If we extend this idea of yielding for simple shear test shown in Fig. 5.17 to the 3-
D situations, we can replace � and , by p and q and the yield function given in 
(5.84) becomes 

 ln( ) 1 0
c

pq Mp
p

2 3
� � �4 5

6 7
 (5.85) 

where M is a material parameter and p and q are defined as  

 1 3q � �� � ,    1 2 3
1 ( )
3

q � � �� � �  (5.86) 

The yield function (5.85) of the Cam-clay model can be visualized in Fig. 5.18. A 
modified version of Cam-clay model has been proposed by dropping the natural 
logarithm as 
  ( / ) 1 0cq Mp p p� � �2 36 7  (5.87) 
which is also plotted in Fig. 5.18.  
 Equations (5.85) and (5.87) are the yield functions for the Cam-clay and 
modified Cam-clay models. 

5.14 MODIFIED CAM-CLAY MODEL 

We present in this section the modified Cam-clay model by Roscoe et al. (1958) 
and Roscoe and Burland (1968). In particular, the equation for the virgin 
consolidation line shown in Fig. 5.19 is: 
 1 ln( )e e pZ� � �  (5.88) 
 

 
Figure 5.18 Yield functions for the Cam-clay model and modified Cam-clay model 
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where e is the void ratio and e1 and Z are material constants. Note that positive p is 
considered tension in (5.88). The rebound-reloading curve is similarly defined by 
 2 ln( )e  e   pB� � �  (5.89) 
where e2 and B are material constants. 
 The void ratio changes associated with the increase and the decrease in the 
hydrostatic pressure are, respectively, 

 dp dpde = �  ,    de = �
p p

� �  (5.90) 

Since the volumetric strain can be related to the void ratio, we have 

 
1 (1 )kk
de �dpd  =  = �
+e +e p

�  (5.91) 

The recoverable or elastic volumetric change is 

 
(1 )

e
kk

dpd   
e p

B
� � �

�
 (5.92) 

Combining (5.91) and (5.92) gives the irrecoverable or plastic volumetric strain: 

 ( )
(1 )

p e
kkkk kk

dpd   d d   
e p

Z B
� � �

�
� � � �

�
 (5.93) 

By (5.92) and the definition of the tangential elastic bulk modulus, we have 

 (1 )
e
kk

dp e pK    
d B�

�
� � �  (5.94) 

In this model, the elastic distortion is assumed negligible, i.e., G » K. 
 The modified Cam-clay yield surface and the critical state line are shown in 
Fig. 5.20. The yield curve is assumed to be elliptic shaped and is given as 

 2 2
0 2 0Jf    p   p p

M
� � � �  (5.95) 

where M is a material constant and p0 is a strain-hardening parameter. As shown in 
(5.42), the physical meaning of J2 relates closely to the magnitude of deviatoric stress, 
and in turn to shear stress. Thus, (5.95) is equivalent to (5.87) and its origin was 
illustrated in Section 5.13. Alternatively, (5.95) can be expressed in terms of I1 as 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.19 Response of idealized soil to hydrostatic pressure (after Chen and Mizuno (1990) with 

permission from Elsevier)   
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where I1
o is the value of I1 at the yield cap, as shown in Fig. 5.20. In addition, since I1

o 

= 3 po, we have, using (5.93) 

 
0

0 1
1

(1 ) p
kk

+e I
dI  = d �

� �
�

�
 (5.97) 

On the other hand, the critical state line, which controls the failure of the material, can 
be expressed as 
 2 = MpJ �  (5.98) 
Then, the stress state of soil must be within the region bounded by the elliptic curve 
and the critical state line, as shown in Fig. 5.21. In particular, Fig. 5.21 shows the 
loading path for a slightly overconsolidated clay at A to failure point at D, where the 
critical state line is reached (the lower curve passing point D in Fig. 5.21(a) and the 
inclined line passing point D in Fig. 5.21(b). The initial yielding starts at point B on the 
initial cap surface. Then, isotropic hardening occurs with the enlarged cap surface at C 
and D.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.20 Modified Cam-clay yield surface in p-HJ2 space (after Chen and Mizuno (1990) with 
permission from Elsevier)  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.21 Modified Cam-clay in the e-p plane and q-p plane (after Chen and Mizuno (1990) with 

permission from Elsevier)  
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5.15 A CAM-CLAY MODEL FOR FINITE STRAIN 

In this section, we present a generalized form of the Cam-clay model for finite 
strain that agrees with the form given in (5.11). This model is proposed by Yatomi 
et al. (1989). For the sake of simplicity, compression is treated as positive in this 
section. For fully saturated clay, the effective Cauchy stress tensor �1 is defined as 
 u1� �  I� �  (5.99) 
where u is the pore water pressure in the clay, � is the total stress, and I is again the 
second-order unit tensor. 
 The effective mean normal stress p1 and the generalized stress deviator q are 
defined as 

 1/21 3( ) , ( 3)
3 2

 ij ij ep   tr    q   s s ,1 1� � ��  (5.100) 

where ,e is the stress as defined in (5.18). 
 We now recall the deformation tensor defined in (2.32) of Chapter 2 (i.e., dx 
= F 	 dX), and consider its time derivative as 
 1d d d d d� � T =  =   =  = ( )� �� � � � �v F X F F x L x v x  (5.101) 
where L is the velocity gradient tensor defined in (2.31). The deformation gradient F is 
assumed to be smooth and the determinant is strictly positive, i.e., 
 det 0 J =   >  F  (5.102) 
Thus, the stretching tensor and spin tensors become 

 1 1( ) , ( )
2 2

T T  � � � �     D L L L L+  (5.103) 

Again the decomposition of D into the elastic and plastic parts is presumed to be 
 e p�= D D D  (5.104) 
Equation (5.90) for the void ratio change is first rewritten as 

 pe = 

p
1

�
1

��  (5.105) 

Similarly, the total and elastic volumetric strains given in (5.91 and 5.92) can be 
expressed as 

 ( ) ,
1 1 1

e
 p e pv = tr v  = 
+e p e +e p

/1 1
� �

1 1�
� � �� �D  (5.106) 

where the slopes Z and B in Fig. 5.19 are rewritten as � and / in (5.106). Then, the 
bulk and shear moduli are given as 

 1 3(1 2 ),
2(1 )

eK  p     G  K#
/ #
� �1� �

�
�� �  (5.107) 

The inelastic volumetric strain given in (5.93) becomes 

 
1

p 
 � p = v
+e p

1�
1

�
�  (5.108) 

which, however, only takes into account the inelastic term due to the difference 
between the loading and unloading terms. Yatomi et al. (1989) proposed one more 
plastic volumetric strain term due to dilatancy (i.e., volumetric change due to shear) as 
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 ( ) ( )
1

p d q 
 � d q = D  = v
dt p M( +e) dt p

�
1 1

�  (5.109) 

where D is the coefficient of dilatancy. The last term of (5.109) results from the 
definition of M given in Fig. 5.15 (i.e., q = Mp1 ). Therefore, the total volumetric 
plastic strain becomes 

 ( )
1

p 
 � p d q = + Dv
+e p dt p

1�
1 1

�
�  (5.110) 

In general, for finite strain e is not equal to e0. Let us consider the change in 
volume of a small element of the original volume dV0 = dX1dX2dX3 due to the 
displacement r (e.g., Spiegel, 1963): 

 1 2 3 0
1 2 3 1 2 3

1 2 3 0 0 0

( )

det( )

jm i
mij

mij m i j

xx x
dV dX dX dX e dV

X X X X X X
e F F F dV dV JdV

�� �� � �
� � �

� � � � � �

� � �

�r r r

F
 (5.111) 

where J is defined in (5.102) and also in (2.10) of Chapter 2, and (1.17) of Chapter 1 is 
used in obtaining (5.111). Consequently, we have equivalently: 1 + e = J(1 + e0). 
Then, the time derivative of (5.111) yields 

 0
JdV = J dV    dV
J

�
�� �  (5.112) 

Therefore, we have 

 ( )J  tr
J

�
�

D  (5.113) 

Then, integration of (5.113) leads to 
 0exp[ tr( ) ]tJ  dt� � D  (5.114) 
Then the current volume or void ratio e can be calculated using (5.114). Similarly to 
the definition for yield function for small strain, Yatomi et al. (1989) proposed the 
following yield function for finite strain theory 

 0 ( )
1

t p
 � pf  = + D� dt v
+e p

1�
�� 1

� �  (5.115) 

where v 
p = 0 at t = 0, and B = q/p1. Differentiating (5.115) with respect to time gives 

 ij p
ijf P v

t
� 1�

� �
�

� �  (5.116) 

where Pij can be found to be (see Problem 5.3): 

   3 1
2 3

ij
ij ij

ijij

sM p � D = D( + )  ( + � )�P p p � p��
1� �

�
1 1 1 1�1�

 (5.117) 

and 0 = M � B. 
 The elastic part of D can be defined as (see (5.5)) 
 e� �  : DC�  (5.118) 
while the plastic part of D is defined as 
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 (5.119) 
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depending on whether continuous loading or unloading occurs. By using (see Problem 
5.4) 
 ij ij ijij�  = �P P �1�  (5.120) 
and (5.104), (5.116) with f = 0, (5.118), and (5.119), we finally have (see Problem 5.5) 

 
tr

e

e� � : :
: : + ( )
P DC

P P PC
 (5.121) 

Finally, we have the following generalized form of constitutive law similar to the 
Rudnicki�Rice (1975) model given in (5.21): 
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 (5.122) 

where 0 = 0/H3 and h is the hardening modulus given by 

 
3

ph  
D
01

�  (5.123) 

When comparing to (5.21), it is clear that this model is associative. A non-coaxial 
model (i.e., the inelastic strain increment is not directly parallel to the stress 
increment in the strain and stress spaces, respectively) similar to that of Rudnicki 
and Rice (1975) was also given by Yatomi et al. (1989), but the details will not be 
discussed here. More discussion on finite deformation plasticity is given by 
Nemat-Nasser (1983, 2004).  

5.16 PLASTICITY BY INTERNAL VARIABLES 

Instead of assuming the existence of plastic potential and yield function (i.e., g and 
f introduced in Section 5.3), a more recent approach for estimating the plastic or 
inelastic deformations in nonlinear solids is to formulate the macroscopic 
deformation as a function of the internal variable change (such as the change in 
damage or slippage at the microscopic level). Mechanisms of the deformation at 
the microscopic level, say involving changes in microcracks, micropores, or 
microdefects, and their relationship to the macroscopic deformation form a new 
branch of mechanics called micromechanics. We refer the reader to the 
comprehensive book by Mura (1987). 
 In this section, we will summarize briefly the essential form being used for 
the approach (e.g., Rice, 1971, 1975; Hill and Rice, 1973; Nemat-Nasser, 1983). 
The formulation starts with the Helmholtz free energy, which is assumed to be a 
function of a strain measure E (a second-order tensor), the temperature 
, and a set 
of internal variables < (a first-order tensor): 
 ( , , )� � 
� <E  (5.124) 
Then, the stress S conjugate to the strain measure (i.e., the double dot product 
between dE and S equals the external work), entropy B, and the thermodynamic 
force Z acting on < are 
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The total change in � can be written as 
 [ : ] � �e ind d d d d d� � � B 
� � � � � 	S E  (5.126) 
The elastic deformation only leads to de� (the change in � due to elastic 
deformation), while inelastic deformation at constant E and � contributes only to 
din� (the change in � due to inelastic deformation). The time derivative of S can be 
expressed as 

 :e in
i

i
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 <
� �K L� � � � �N O� �P Q

� � � � �� S SS S S L E  (5.127) 

where 
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L
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 (5.128) 

is the tangential elastic modulus tensor, which in general changes with the 
deformation process. As shown by Hill and Rice (1973), the inelastic stress rate 
can also be written as 
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 (5.129) 

Conversely, by applying the following Legendre transformation for the 
complementary potential (see Appendix C) 
 ( , , ):? � ? 
 <� � �S E S  (5.130) 
we have 
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where 
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M  (5.132) 

This approach looks very promising in estimating the constitutive response of 
rocks with respect to the damage evolution. As shown by Chau and Wong (1997), 
the effective moduli of a solid containing microcracks can be found by following a 
similar idea. See also Section 6.16 for the formulation of continuum damage 
mechanics by following a similar approach. 

5.17 VISCOPLASTICITY  

5.17.1 One-Dimensional Model 

The simplest form of dynamic constitutive law of a viscoplastic solid is the 
Bingham fluid model (Lubliner, 1990). For a more general form, the constitutive 
form can be written as 
 ( , )p vp� �� � � �  (5.133) 
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That is, the stress is a function of both plastic strain and viscoplastic strain rate. 
For the case of a one-dimensional problem, the simplest viscoplastic model can be 
modeled by the dashpot-spring model with a yield stress Y, as shown in Fig. 5.22. 
The elastic deformation is modeled by the spring with Young’s modulus of E 
when the applied stress � is less than the yield stress Y. Once Y is exceeded, 
viscoplastic yielding occurs and the additional deformation is modeled by the 
dashpot. Except for the yield stress lock, the model is exactly same as that for the 
Maxwell viscoelastic model to be discussed in Chapter 7. The strain rate of the 
model can be formulated as 

 sgn( )e vp

E
8

�
B

� � �
�� � � �� � � �  (5.134) 

where the viscosity is given by B and 8 is the overstress function. The second 
term in (5.134) leads to an inhomogeneous equation between the rate of stress and 
the rate of strain. It is this term that leads to creeping. The Macauley bracket \ ] has 
the following definition: 

 
0

0 0
8 8 8

8

� >

� �
 (5.135) 

The simplest form of overstress function is given as 
 Y8 �� �  (5.136) 
This is equivalent to the Bingham flow model. Malvern (1951) gave the following 
form of viscoplastic strain based on experimental results: 

 1 ( )[exp( ) 1]vp f
a

� ��
B

�
� ��  (5.137) 

where a and B are material parameters. The static stress-strain function is given by 
f(�). To examine the time effect, we can consider a sudden imposed strain on the 
Bingham model as 
 0 ( )H t� ��  (5.138) 
The associated stress is then 
 0 0E� ��  (5.139) 
This is a relaxation problem and it can be shown by taking the Laplace transform 
of (5.134) that the solution is (see Chapter 7 and Appendix B for details of the 
Laplace transform) 
  /

0( ) EtY Y e B� � �� � �  (5.140) 
 
 
 
 
 
 
 
 

Figure 5.22 One-dimensional viscoplastic model 
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It is obvious that for t & 0 we have � = �0 and when t & � we have � & Y. One 
main feature of viscoplasticity is that the stress can (actually must) go outside the 
yield surface in order to have viscoplastic response, whereas for plasticity the 
applied stress can only be on the yield surface and cannot go beyond the yield 
surface.  

5.17.2 Three-Dimensional Models 

We can now extend (5.134) to the three-dimensional case: 

 e vp e
ij ij ij ij

ij

8 8� � � �
B �

�
� � � �

�
� � � �  (5.141) 

where 8 is the viscoplastic potential (Lubliner, 1990). The simplest model is given 
by the overstress function of (compare (5.136)) 
 Y8 �� �  (5.142) 
where Y is the yield stress and  

 1/2 1/2
2

3( ) (3 )
2 ij ijs s J� � �  (5.143) 

When 8 is given by 
 2 / 1J k8 � �  (5.144) 
where k is the yield shear stress, we recover the Hohenemser�Prager (1932) 
model. When the power law is used,  

 0 ( 1)mY
Y
�8 � �  (5.145) 

where m is the rate sensitivity exponent, we recover the Bodner and Symonds 
(1960) model. Therefore, with (5.141) we have 

 ( )e
ij ijkl kl

ij
C

8 8� �
B �

�
� �

�
��  (5.146) 

Another popular viscoplastic model is given by Perzyna (1963), and various 
versions of this model have also been used for clay and other geomaterials (e.g., 
Adachi and Oka, 1982; Kimoto et al., 2004). In particular, for isotropic solids, the 
Perzyna (1963) model is in the following form: 

 1 1 2 ( )
2 3ij ij kk ij

ij

fs F
E
#� � � . 8

$ �
� �

� � �
�

� � �  (5.147) 

where . is the viscosity of soil and F is the static yield function and is defined as 

 1 ( , ) 1vp
ij ijF f � �

/
� �  (5.148) 

The function 8(F) should be determined by experiments but is expected as a 
function of stress difference (or the so-called overstress function as defined in 
(5.144) or (5.145)). The material constant / is a function of the hardening 
parameter. When there is no viscoplastic effect, we have the yield function as 
 ( , , ) ( , ) 0vp vp

ij ij ij ijF f� � � / / � � /� � � �  (5.149) 



 Plasticity   187 

 

Therefore, when F = 0, we have the static yielding, whereas when F > 0, we have 
a dynamic effect with viscoplastic behavior. We can take the self-product of the 
plastic strain from (5.147) and obtain 

 2
1 1( )
2 2

vp vp
ij ij

ij ij

f fI F� � .8
� �
� �

� �
� �

� � �  (5.150) 

If the inversion of 8 exists, we can write f as 

  1
2

1{1 [ 2 / ( ) ]}
ij ij

f ff I/ 8
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�  (5.151) 

since for static yielding 
 ( , ) ( ) 0p

ij ijF f/ � � / �� � ��  (5.152) 
where  
 p

ij ijd� � �� �  (5.153) 

The static and dynamic yielding overlaps for the case of zero viscoplastic strain. 
For dynamic yielding, we can assume 
 2( , , , ) ( , , ) ( ) 0vp vp vp

ij ij ij ij ijF H I� � � / � � � /� � ���  (5.154) 
It is clear from (5.154) and (5.151) that  

 1
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f fH I I8
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� �
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The yield surface � = 0 expands uniformly with the loading. The viscoplastic 
strain rate of the Perzyna (1963) can be expressed as 

 2[ 2 / ( ) ]vp
ij

mn mn ij

f f fI�
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�
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��  (5.156) 

The behavior of the Perzyna (1963) model is somewhat similar to the Maxwell 
model shown in Fig. 5.22. It is also clear from (5.154) and (5.151) that the 
normality rule has been assumed in the Perzyna (1963) model. We can also 
consider the special case that F = 0 (static yielding), 8(F) & 0, and . & � such 
that 8(F) . = d�. It is clear that the mathematical form for the plastic strain given 
in (5.8) is recovered. 
 For geomaterials, the following power law has been adopted for 8(f) as 
(Desai and Zhang, 1987) 

 ( ) ( )mff
Y

8 �  (5.157) 

where m � 1 and Y is the initial yield stress.  

5.17.3 Consistency Condition for Perzyna Model 

Instead of assuming the yield function and plastic potential are the same, we can 
also modify Perzyna’s formulation slightly to the non-normality rule. In particular, 
we can assume 
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To consider the consistency condition for the Perzyna model, we now use the 
normality flow rule for the viscoplastic strain as 

 vp
ij

ij

g� �
�
�

�
�

��  (5.159) 

The consistency parameter can be related to Perzyna’s formulation given in 
(5.158) for the case of loading as 
 ( )f� .8��  (5.160) 
Taking the derivative of (5.160) one more time gives 

 d f
df
8� .� ���  (5.161) 

The function f in Perzyna’s formulation is only a function of stress � and �, and 
thus 

 :ff h��
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� ���

�
 (5.162) 

Substitution of (5.162) into (5.161) gives 

 1: ( ) 0f dh
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�

� ����
�

 (5.163) 

5.17.4 Consistency Model of Wang et al. (1997) 

On the other hand, a rate-dependent yield function has been proposed by Wang et 
al. (1997) as: 
  ( , , ) 0rd ijf � / / ��  (5.164) 
where  
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3
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Substitution of (5.159) into (5.165) gives 

  2 :
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� ��
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 (5.166) 

Then (5.164) can be written as  
 ( , , ) 0rd ijf � � � ��  (5.167) 
The consistency condition requires 

 : 0rd
rd

f
f h� A�

�
� � � �

�
� � ����

�
 (5.168) 

where  

 rdf
h

�
�

� �
�

,  rdf
A

�
�

� �
� �  (5.169) 
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Comparing (5.163) with (5.168), we have  

 rdff ��
�

� �� �
,   1( )d

df
8A . ��  (5.170) 

Thus, although Perzyna’s formulation given in (5.158) appears quite different from 
the consistency model of viscoplasticity, they are actually the same. This proof 
was first noted by Heeres et al. (2002). However, for the unloading behavior, these 
models are not the same. 
 If the yield function is independent of the strain-rate (i.e., A = 0), we can 
recover the rate-independent plasticity model as 

 1p
ij kl

kl ij

f g
h

� �
� �
� �

�
� �

� �  (5.171) 

Similar to our discussion for the Rudnicki�Rice model, we can take the inverse 
constitutive model as 

 
e e

e
eh

2 3
� �4 5

�4 56 7

( : )( : ) :
: :

�� C P Q C� C
Q C P

�  (5.172) 

where  

 ij
ij

gP
�
�

�
�

,   ij
ij

fQ
�
�

�
�

 (5.173) 

5.17.5 Adachi-Oka (1982) Model 

Based on experimental data on clay under constant strain rate, the following form 
of Perzyna’s model is given by Adachi and Oka (1982) as: 
 ( ) exp{ ' }f c m f. 8 �  (5.174) 

where c and m1 are material constants and f is the yield function of the Cam-clay 
model. The following form of f is given by Kimoto et al. (2004): 

 * *
(0) ln( )m

my
f M

�
B

�
1

� �
1

�  (5.175) 

The mean stress is denoted by �1m and �1my is the mean effective stress in the static 
equilibrium state. The deviatoric stress to mean effective stress ratio is defined as 

 * * *
mn mnB B B� ,   * ij

ij
m

s
B

�
�

1
 (5.176) 

The subscript (0) indicates the state at the end of consolidation. In the normal 
consolidated (NC) region, we have 
 * constantM ��    (5.177) 
and in the overconsolidated (OC) region, we have 

                

* *

* * 1/2

' '

0

( )
0

ln( / )

m b

ij ij
b

m mc

M M f

f
B B

� �

� �

� � =

�

    (5.178) 
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'
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Thus, f = 0 implies no viscoplastic deformation. The viscoplastic potential is 
defined similarly to (5.175) as 

 * *
(0) ln( )m

mp
g M

�
B

�
1

� �
1

�  (5.179) 

In this model, it was assumed that there exists a boundary between the NC region 
and the OC region. This boundary is depicted by fb = 0 with  

 * *
(0) ln( )m

b
mb

f M
�

B
�

1
� �

1
�  (5.180) 

As shown in (5.178), the NC and OC regions are defined, respectively, by  
 0bf � ,   and 0bf =  (5.181) 
The physical meaning of the yield function, viscoplastic potential, and OC 
boundary used in the model is illustrated in Figs. 5.23 and 5.24 (Kimoto et al., 
2004). 
 These functions eventually lead to the following viscoplastic strain (Kimoto 
et al., 2004): 

 
* *

(0)* *
0 (0) *

(0)

( )
exp [ ln( )] ij ijvp m

ij
mb

c m M
B B�

� B
� B

�K L1M M1� �N O1M MP Q
��  (5.182) 

where c0 and m1 are constants to be determined by experiments. Note that in this 
model the stress state always exists outside the static yield function, and this is the 
feature of the so-called overstress model discussed earlier.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 5.23 OC boundary, static yield function, and potential function in the NC region (after 
Kimoto et al. (2004) with permission from Elsevier) 

 
 



 Plasticity   191 

 

ij ijs s

0g �

0f �

0bf �

Current State 

'
m�

'
my�

OC 

*
mM

*M�

' '
mb mc� ��

 

 

 

 
 

 
 

Figure 5.24 OC boundary, static yield function, and potential function in the OC region (after 
Kimoto et al. (2004) with permission from Elsevier) 

5.18 SUMMARY AND FURTHER READING 

One of the classic books on the mathematical theory of plasticity is by Hill (1950). 
The most up-to-date book on the mathematical theory of plasticity theory is by 
Lubliner (1990). These books do not pay special attention to geomaterials. There 
are a number of excellent and comprehensive books on soil plasticity. The most 
notable ones are by Chen (1975), Salencon (1974), Chen and Baladi (1985), Chen 
and Mizuno (1990), Yu (2006), Chen and Saleeb (1988), Davis and Selvadurai 
(2002), Pietruszczak (2010), Nakai (2012). The application of viscoplasticity to 
geomaterials is discussed by Cristescu (1994).  
 Some important topics in soil plasticity have not been included in this 
chapter. They are limit analysis for perfectly plastic materials, slip line theory, and 
numerical implementation. These topics have been covered in many of these books 
and outside of the scope of the present chapter. For example, Chen and Liu (1990) 
write extensively on limit analysis in soil mechanics.  
 Another important topic related to soil and rock plasticity is material 
instability and strain localization (see Section 9.8.2 for a brief discussion on the 
equivalence of strain localization and stationary acceleration wave). In soil, this 
strain localization is typically observed in the form of shear banding. A more 
recently recognized form of localization is called compaction band in porous rocks 
and has prompted considerable interest in this problem again (Issen and Rudnicki, 
2000; Rudnicki, 2002; Wong and Baud, 1999; Wong et al., 2001). A tremendous 
amount of work has been conducted since the classic work of Rudnicki and Rice 
(1975). Instability of geomaterials due to geometry and boundary conditions can 
also appear in the form of diffuse mode bifurcations, including barreling and 
surface instability (Chau and Rudnicki, 1990; Chau, 1992, 1993, 1994a, 1995a; 
Vardoulakis, 1979, 1983). For bifurcation analysis in geomechanics, the readers 
are referred to the comprehensive book by Vardoulakis and Sulem (1996) and the 
review paper by Besuelle and Rudnicki (2004). 
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5.19 PROBLEMS 

Problem  5.1 Show the validity of the Sherman�Morrison equation given in 
(5.16). 
 
Problem  5.2 Show the validity of (5.21) for the Rudnicki�Rice (1975) model. 
 
Problem  5.3 Show that (5.47)�(5.49) are the solution of (5.41).   
 
Problem  5.4 Show the validity of (5.117) for Pij in Yatomi’s (1989) model by 
using the chain rule of differentiation. 
 
Problem  5.5 Show the validity of (5.120). (Hint: it is a scalar equation and the 
effective Cauchy stress is symmetric.) 
 
Problem  5.6 Show the validity of (5.121) for Z in Yatomi's (1989) model 
(Hint: see the technique used in Section 5.4.) 
 
Problem  5.7 The principal stress states at three different points (A, B, and C) 
in a solid are given as (�1, �2, �3) = (12, 2, 4), (2, 4, 12), (2, 12, 4).  They are given 
in the stress space in Fig. 5.25.   Use (5.42) to find I1 (= �1 + �2 + �3), J2, and J3 for 
all stress points A, B, and C. 
 
Problem  5.8 Show the validity of the following vectors in the �-plane shown 
in Fig. 5.26: 
 (6,6,6)OD �




�
 (5.183) 

 (6, 4, 2)DA OA OD� � � � �



� 


� 


�

 (5.184) 

 ( 4, 2,6)DB OB OD� � � � �



� 


� 


�

 (5.185) 

 ( 4,6, 2)DC OC OD� � � � �



� 


� 


�

 (5.186) 
 
Problem  5.9 This problem continues from Problem 5.7. Prove that the 
distance of stress points A1, B1, and C1 from the origin in the �-plane are the same.  
Use (5.42) and (5.70) to show ( and 
 in Fig. 5.26 as 
 2 14( � ,   10.89
 � �  (5.187) 
 
Problem  5.10 The principal stress states at three different points (E, F, and G) 
in a solid are given as (�1, �2, �3) = (12, 9, 3), (9, 3, 12), (9, 12, 3). Use (5.42) to 
find I1 (= �1 + �2 + �3), J2 and J3 for all stress points E, F, and G. 
 
Problem  5.11 Show the validity of the following vectors in the �-plane 
illustrated in Fig. 5.27: 
 ( 4,1, 5)HE � � �




�
 (5.188) 

 (1, 5,4)HF � �



�

 (5.189) 

 (1,4, 5)HG � �



�

 (5.190) 



 Plasticity   193 

 

1�

3��

2�

1��
3�

2��

C1

B1

A1

(

(

(







 D

1�

3��

2�

1��
3�

2��

'C

'B

'A

(

(
(










'E

'F

'G

H

A

B

C

O

D

3�

1�

2�

15

15

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.25  Locations of three points in stress space 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.26  Stress points A, B, and C on the �-plane 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.27  Stress points A, B, and C on the �-plane 
 
Problem  5.12 Prove that the distance of stress points E1, F1, and G1 from the 
origin in the �-plane are the same.  Use (5.42) and (5.70) to show ( and 
 in Fig. 
5.27 as 
 42( � ,   40.89
 � �  (5.191) 
 



194   Analytic Methods in Geomechanics  

1�

2�3�

1 2 3� � �> >

2 1 3� � �> >

2 3 1� � �> >

1 3 2� � �> >

3 1 2� � �> >

3 2 1� � �> >

2�

2�

3�
n

1�

2� 3�

1e
Y

X

3e2e

ye

ye

xe

ye
xe

z �e n
ZY

X

Problem  5.13 From the results of Problems 5.7�5.12 show that the stress 
points A1, B1, C1, E1, F1, and G1 satisfy the domain classification shown in Fig. 
5.28. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.28  Domain classification of stress on the �-plane 
 
Problem  5.14 Show that the base vectors along the X- and Y-axes of the �-
plane as shown in Fig. 5.29 are 

 1 2 3
2 1 1
3 6 6y � � �e e e e  (5.192) 

 2 3
1 1
2 2x � � �e e e  (5.193) 

(Hint:  the base vector for n is given in (5.61).) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 5.29  Domain classification of stress on the �-plane 
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Problem  5.15 With the base vectors found in Problem 5.14 show that the 
following transformation between stresses X, Y, and Z (note that Z = 0 on the �-
plane) and �1, �2, and �3 are 

 
1

2

3

1 10
2 2

2 1 1
6 6 6

1 1 1
3 3 3

X
Y
Z

�
�
�

2 3
�4 5

4 5 K LK L
4 5M M M M� � �N O N O4 5

M M M M4 5
P Q P Q4 5

4 5
6 7

 (5.194) 

 
Problem  5.16 Show that the inverse of (5.194) is 

 
1

2

3

2 10
6 3

1 1 1
2 6 3

1 1 1
2 6 3

X
Y
Z

�
�
�

2 3
4 5
4 5K L K L
4 5M M M M� � �N O N O4 5

M M M M4 5
P QP Q 4 5

�4 5
6 7

 (5.195) 

 
Problem  5.17 Assuming  �1 > �2 > �3, use the result in Problem 5.16 to show 
that the following equation of the Mohr�Coulomb failure criterion: 

 
1 3

1 3

1 ( )
2sin

1cot ( )
2

c

� �
�

� � �

�
�

� �
 (5.196) 

can be expressed in the �-plane as 

 3(1 sin ) 2 6 cos
(3 sin ) (3 sin )

cY X� �
� �

�
� �

� �
 (5.197) 

 
Problem  5.18    Assuming  �1 > �3 > �2 , use the result in Problem 5.16 to show 
that Mohr-Coulomb failure criterion can be expressed in the �-plane as: 

 3(1 sin ) 2 6 cos
(3 sin ) (3 sin )

cY X� �
� �

�
� � �

� �
 (5.198) 

 
Problem  5.19 Find the coordinates at the vertex points 1, 2, and 3 on the 
Mohr�Coulomb yield surface shown in Fig. 5.30. 
 
Answer: 

 1 0X � ,   1
2 6 cos
(3 sin )

cY �
�

�
�

 (5.199) 
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 3
3 2 cos
(3 sin )

cX �
�

�
�

,   3
6 cos

(3 sin )
cY �

�
�

�
 (5.201) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.30  Domain classification of stress on the �-plane 
 
Problem  5.20 Find the ratio between <1 and <2 shown in Fig. 5.30. 
 
Answer:  2  
 
 
Problem  5.21 Use symmetric properties to show the validity of the yield 
surface for the Mohr�Coulomb failure criterion shown in Fig. 5.9. 
 
 
 
 



 
 

CHAPTER SIX 
 

Fracture Mechanics and Its Applications 
 

6.1 INTRODUCTION 

The first analytical result for fracture mechanics is the stress concentration at crack 
tips and sharp corners obtained by Inglis (1913). The main result of Inglis (1913) 
is that the stress singularity near the crack tip is 1/r1/2, where r is the distance from 
the crack tip. Based upon this result, Griffith (1920) presented his celebrated 
fracture criteria for ideally brittle solids using the concept of “minimum potential 
energy”, in which surface energy was incorporated. In this classic paper, Griffith 
used his results to explain why glass and quartz crystals have tensile strength that 
is much smaller than that for the perfect solids containing no cracks. Although 
Griffith’s classic paper was originally motivated by its applications to brittle 
materials, most of the developments in fracture mechanics were, however, fostered 
by its application to ductile metallic solids. For example, the concept of energy 
release rate, G, was originally proposed by Irwin (1956) for steel and aluminum 
alloys. The application of fracture mechanics to rock-like solids remains a 
relatively new area of research; and many fundamental issues remain to be 
resolved. The main difficulty in applying classical fracture mechanics to rocks is 
due to the fact that rock masses are normally subjected to all-round compressions 
when tensile fractures start to grow. It is usually believed that the deviatoric stress 
and stress difference will cause a local tensile stress field near the crack tip. 
However, the relation between the local tensile stress and the far field 
compressions remains uncertain. Although various wing crack models have been 
commonly adopted to account for the micromechanics of tensile cracks under 
compression (e.g., Nemat-Nasser and Obata, 1988; Ashby and Hallam, 1986), 
actual wing cracks are seldom observed in real rocks (e.g., Tapponnier and Brace, 
1976; Kranz, 1979). 
 We will start the chapter by following the tradition approach. We will first 
consider the stress concentration at an elliptical hole subject to tensile stress, then 
specialize the solution to crack geometry (i.e., the size of the minor axis is very 
small compared to the major axis). This consideration then extends to shear crack 
and tearing crack. The universality of the order of stress singularity at the crack tip 
by Williams (1957, 1959) will be discussed for all mode I, mode II, and mode III. 
The idea of energy release rate is then introduced, followed by the discussion on 
the J-integral. The method of superposition using the Westergaard stress function 
is summarized. The concept of cohesive crack is introduced through the growth of 
slip surface in slopes and in fault zones. The wing crack model is demonstrated by 
considering the local tensile stress induced by compression. Bažant’s model of size 
effect on compressive strength is formulated via the application of the J-integral. 
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The last topic in this chapter is the application of fracture mechanics to damages 
and microcrack models. 

6.2 STRESS CONCENTRATION AT AN ELLIPTICAL HOLE 

We apply here the Muskhelishvili method discussed in Chapter 2 to obtain the 
stress concentration at the boundary of an elliptical hole. This solution will then be 
specialized to model the crack problem in the next section. The following 
discussion follows closely the presentation by Xu (1982) and Savin (1962).  
 In particular, we consider the following conformal mapping: 

 1( ) ( )z    R mF A A
A

� � �   (6.1) 

where z = x1+ix2 and A = (ei�. Substitution of these definitions into (6.1) and 
comparing the real and imaginary parts give 

 1 2
1 1( )cos , ( )sin .  R m       R m  x x( 
 ( 

( (

� � � � �  (6.2) 

Elimination of 
 from (6.2) gives 

 
2 2
1 2

2 22 2
1

1 1( () )

x x  
m mR R( (

( (

� �
� �

 (6.3) 

which depicts the locus of an ellipse on the physical plane. When 
 = 0, we have x1 = 
a and when 
 = �/2, we have x2 = b; therefore, the major and minor axes of the 
ellipse are 
 (1 ) , (1 )a  R m     b  R m� � � �  (6.4) 
Rewriting R and m in terms of a and b, we have 

 ,
2

a b a bR      m  
a b

� �
� �

�
 (6.5) 

Therefore, as expected, the boundary of an elliptical hole is mapped onto a circle on A 
= � = ei� (with ( = 1). Conversely, if we eliminate ( from (6.2), we have 

 
2 2
1 2

2 22 2 1
4 4cos sin

x x  
m mR R
 


� �  (6.6) 

which is a hyperbola for the 
 = const. on the z-plane. By setting x2 = 0, the focal 
length of the ellipse is 2RHm cos
. As shown in Fig. 6.1, the points A, B, C and D in 
the z-plane are mapped to A1, B1, C1, and D1 in the A-plane, respectively. These points 
are tabulated in Table 6.1 below. 
The following derivatives and their conjugates for the mapping function in (6.1) are 
given here for later reference: 

 1( ) ( ), ( ) ( )m  R m     RF � � F � �
� �

� � � �  (6.7) 

 2
2

1( ) ( ) , ' ( ) ( )  R m       R mF � F � �
�

1 � � � �  (6.8) 
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Figure 6.1 The mapping of an ellipse to a unit circle 
 
 

Table 6.1 
 


 x1 x2 . 
0 R(1 + m) 0 0 
�/2 0 �R(1 � m) ��/2 
� �R(1 + m) 0 � 
3�/2 0 R(1 � m) �/2 

 

 
2 2

2 2
( ) 1 1 ( )( ), ( )
( ) ( ) 1

m m
m m

F � � F � ��
F � � F �� �

� �
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1 1� �
 (6.9) 

Recalling (3.158) and (3.141) of Chapter 3, we have 
2

2 3 0
10 2 2

1 1 1 1( ) [ ( )]( 2 3 )
2 2� �

d�fm + d��+ + + +...  = 
�i � � � � �i � �m� �

� �A �� �� �
� ��

 (6.10) 

It is straightforward to see that the kernel for the Cauchy integral on the left-hand side 
is analytic outside the unit circle A = �. In view of (3.152) of Chapter 3, we obtain 

 0
0

1
2 �

  d�f
( ) = 
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A� �

�
 (6.11) 

Recalling (3.159) in Chapter 3, we have 
2

02
1 2 30 2

1 1( ) ( )( 2 3 )
2 21� �

f d�+ m d��� + � + � + +...  = � � � � ��i � � �i � �m�
� �

� ��
 (6.12) 

The kernel inside the Cauchy integral on the left-hand side is analytic inside the unit 
circle A = �. Therefore, we have 

 
2

0
00 2

1( ) ( ) ( )
2 1�

f d� + m��  = � ��
�i � � m�

�1��
� �

 (6.13) 

Now, we consider an elliptical hole subject to far field tension q with an inclination � 
measured from the x1-axis, as shown in Fig. 6.2. Consequently, we have T1 = T2 = X = 
Y = 0 and �1 = q and �2 = 0. Hence, similar to the discussion in Section 3.3, we obtain 
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Figure 6.2 An elliptical hole subject to far field tension inclined at � from x1 
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From the definition of f0 given in (3.148), we get 
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Substitution of (6.15) into (6.11) yields 
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Similarly, substitution of (6.15) into (6.13) yields 
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 (6.17) 

Back-substitution of (6.16) and (6.17) into (3.139) and (3.140) of Chapter 3, 
respectively; we find 

 21( ) [ (2 ) ]
4

i�qR�  = + m �e�
� �  (6.18) 

and 
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Note that AA = (2, thus we get 

 2
1( ) ( )  R mF A
A

1 � �  (6.20) 
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Differentiating (6.18) and (6.19) with respect to A gives 
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and 
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Substituting (6.20) and (6.23) into (3.122) of Chapter 3, we finally have 
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Substituting (6.21) and (6.24) into (3.123) of Chapter 3, we get 
22 22 2 2 2 2 2
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  (6.26) 
Differentiating (6.25) with respect to the argument yields 
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Substituting (6.25)�(6.27) into (3.128) and (3.129) of Chapter 3, we get 
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  (6.29) 
The expression for �((, �

, and �(
 can be obtained explicitly from (6.28) and (6.29); 
however, these expressions are very lengthy. Of particular interest is the tangential 
stress on the hole’s boundary; for this case, we set �(( and �(
 = 0 on A = �. Thus, 
we have the following form of stress concentration: 
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The largest compression and tension occur either at 
 = 0, � or at 
 = ±�/2, as 
summarised in Table 6.2. 

6.3 STRESS CONCENTRATION AT A TENSILE CRACK 

The result given in the last section can easily be specialized to the crack problem. 
Consider the limit that b & 0, we have m = 1 and R = a/2. That is, the mapping 
function becomes 

 1( ) ( )
2
az F A A

A
� � �  (6.31) 

Muskhelishvili’s analytic functions become, in view of (6.18) and (6.19), 

 21( ) [ (2 1) ]
8

iqa e �� A A
A

� � �  (6.32) 
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2
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1 ( 2)( ) [ ]
4 1

i i
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�

 (6.33) 

For the inclined tension shown in Fig. 6.3, both tensile and shear modes of 
deformations exist (as will be discussed in the later section these are normally 
referred as mode I and II cracks in fracture mechanics). To focus on the stress field 
near the crack tip, these modes will be considered separately here. 
 For the opening mode of deformation at the crack tip under tensile far field 
stress, we set � = �/2 into (6.32) and (6.33); thus, they become 

 1( ) [ 3 ]
8

qa� A A
A

� �  (6.34) 

 
Table 6.2 Stress concentration around the elliptical hole 

     

 ±�/2 0, � 
� = 0 q(1 + 2b/a) �q 
� = �/2 �q q(1 + 2a/b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3 A 2-D crack subject to far field tension q inclined at � from horizontal 
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 (6.35) 

Since we are interested in the stress field in the physical plane, it is advantageous 
to rewrite (6.31) as 

 
2

2 1z z
a a

A � � �  (6.36) 

The negative sign in front of the square root is chosen to reflect the fact that z & � 
is being mapped to A & 0. By noting that 

 
2

2 2 (1 )
2

az a A
A
�

� �  (6.37) 

it is straightforward to show, in view of (3.120) and (3.121) of Chapter 3, that 

 2 2
1( ) ( ) (2 )

4
qz z a z� � A� � � �  (6.38) 
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1 2 2
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2
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With these expressions, (3.34) and (3.35) of Chapter 3 can be used to evaluate the 
stress field as 

 11 22 1 2 2
4Re[ ( )] 2Re( ) 1zz q

z a
� � �

2 3
1� � � �4 5

4 5�6 7
 (6.40) 
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 (6.41) 

We can now examine the stress field near the crack tip. As shown in Fig. 6.4, first 
we introduce a polar coordinate (r,
) at the crack tip B such that 
 2cos sin , siniz a re a r ir x r
 
 
 
� � � � � �  (6.42) 
Substitution of (6.42) into (6.40) and (6.41) with the approximation that r/a « 1, 
we obtain the following dominant terms near the crack tip: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4 The polar coordinates at a crack subject to far field tension 
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 1/2
11 22

2( ) cos (1)
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� �� � �  (6.43) 
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Rearranging (6.43) and (6.44), we finally have the crack-tip field 

 11 1/2
3cos (1 sin sin )

2 2 2(2 )
IK
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 22 1/2
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 12 1/2
3sin cos cos

2 2 2(2 )
IK

r

 
 
�

�
�  (6.47) 

where KI is the so-called stress intensity factor at the crack tip. For the crack 
geometry and loading given in Fig. 6.4, we have 
 1/2( )IK q a��  (6.48) 
More generally, KI depends on the crack geometry and loading type for different 
crack problems. Although the 
-variation for � given in (6.45)�(6.47) is derived 
for the particular problem shown in Fig. 6.4, it is important to note that they are the 
universal forms of crack-tip field and apply to all cracks regardless of the crack 
geometry and loading (as long as the crack tip is in opening mode of deformation). 
To honor the original contribution by Griffith (1920) on fracture mechanics, the 
problem given in Fig. 6.4 is usually referred as the Griffith crack problem. 
 The stress field predicted by (6.45)�(6.47) are singular at the crack tip (i.e., 
becoming unbounded at r & 0). Physically, all materials will either yield or be 
damaged at the crack tip; therefore, an inelastic zone around the crack tip is 
expected. Normally, we assume that a small-scale yielding zone exists, that is, r 
remains small outside the inelastic zone such that the dominant terms remain those 
predicted by (6.45)�(6.47). 
 Substituting (6.38) and (6.39) into (3.36) of Chapter 3, and dropping the rigid 
body motion but retaining the most dominant terms, we have 

 1/2
1 22 ( ) ( ) [cos ( cos ) sin ( cos )]

2 2 2
aru iu q i
 
$ / 
 / 
� � � � �  (6.49) 

Noting the definition given in (6.48) for KI, we finally get 

 1/2 2
1 ( ) cos [ 1 2sin ]

2 2 2 2
IK ru 
 
/
$ �
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 1/2 2
2 ( ) sin [ 1 2cos ]

2 2 2 2
IK ru 
 
/
$ �

� � �  (6.51) 

In terms of polar coordinates, (3.52) of Chapter 3 can be applied to show that 

 1/2 3( ) [(2 1)cos cos ]
4 2 2 2

I
r

K ru 
 
/
$ �

� � �  (6.52) 

 1/2 3( ) [(2 1)sin sin ]
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IK ru
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Similar to (6.45)�(6.47), the displacement field near the crack tips are also 
universal. 

6.4 STRESS FIELD NEAR A SHEAR CRACK 

We now consider a 2-D crack subject to a far field shear stress q, as shown in Fig. 
6.5. For this shear crack, we can superimpose a far field tension q at � = �/4 and a 
far field compression �q at � = ��/4. The following Muskhelishvili’s analytic 
functions were obtained: 
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In terms of z, these analytic functions become 

 2 2
1( ) ( ) ( )

4
iqz z z a� � A� � � �  (6.56) 
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Substituting (6.56) and (6.57) into (3.34) and (3.35) of Chapter 3, we get 

 11 22 1 2 2
4Re[ ( )] 2 Re( )izz q
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Figure 6.5 A 2-D crack subject to far field shear q 
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Again, we consider the crack-tip field using z = a + rei
 as r & 0 and r/a « 1. 
Retaining only the dominant terms in (6.58) and (6.59), we find 
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Consequently, the stress field near the crack tip is 
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 12 1/2
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2 2 2(2 )
IIK
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�
�
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where the shear (or mode II) stress intensity factor is 
 1/2( )IIK q a��  (6.65) 
Substituting (6.56) and (6.57) into (3.36) of Chapter 3, and retaining the most 
dominant terms, we have 

 1/2
1 22 ( ) ( ) [sin (2 cos ) cos (2 cos ))

2 2 2
aru iu q i
 
$ / 
 / 
� � � � � � �  (6.66) 

Noting the definition (6.65) for KII , we get 
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2 2 2 2
IIK ru 
 
/
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In terms of polar coordinates, (3.52) of Chapter 3 can be applied to show that 

 1/2 3( ) [(2 1)sin 3sin ]
4 2 2 2

II
r

K ru 
 
/
$ �

� � � �  (6.69) 

 1/2 3( ) [(2 1)cos 3cos ]
4 2 2 2

IIK ru


 
/

$ �
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In most fracture mechanics problems, the main issue is to find the appropriate form 
of the stress intensity factor for different cracks under different loading types. 
 In the next section, we will consider the stress field around crack tips by 
using the eigenfunction expansions on Airy stress function proposed by Williams 
(1957). 
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6.5 THE GENERAL STRESS AND DISPLACEMENT FIELD FOR 
TENSILE CRACKS 

Before we consider the general stress field at crack tips, we first classify here three 
modes of crack deformations, namely: mode I (tensile mode), mode II (sliding or 
shear mode), and mode III (tearing mode) cracks. Figure 6.6 illustrates the types of 
loading and the corresponding deformation of each mode. 
 We now reconsider the crack-tip field following an approach similar to those 
adopted by Williams (1957) and subsequently modified by Hellan (1984). First, 
we recall here the Airy stress function introduced in Section 2.17. In particular, the 
stress components in polar coordinates can be expressed in terms of a 2-D function 
�: 
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which satisfies the following biharmonic equation: 
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 (6.72) 

Recalling the Almansi theorem given in (4.342) of Chapter 4, the general solution 
of the biharmonic equation can be expressed in terms of two harmonic functions f 
and g as 
 2 ( , ) ( , )r f r g r� 
 
� �  (6.73) 
That is, both f and g satisfy the Laplace equation: 
 2 20, 0f g� � � �  (6.74) 
It is known from the Cauchy�Riemann relation that harmonic function can form 
both real and imaginary parts of an analytic function (e.g., Spiegel). Note that if 
 Re( ) Im( )f z or f z� �� �  (6.75) 
where Re(...) and Im(...) stand for the real and imaginary parts of (…), 
respectively, and z = x1 + ix2, then f is harmonic (since z� is analytic). In polar 
form, z� becomes 
 ( )i iz re r e� 
 � � �
� �  (6.76) 
 
 
 
 

 
 

 
 

 
Figure 6.6 Three modes of crack deformation 
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This suggests that a possible solution form is in terms of series: 
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We now apply this series solution to our crack problems. First, we consider the 
mode I crack deformation shown in Fig. 6.7. For such an opening mode, it is 
obvious that the solution for �

 must be symmetric about the x1-axis, i.e., �

(
) = 
�

(�
); consequently, the terms involving sin
 must vanish in the solution. 
Therefore, for mode I crack we set  
 0C D� �� �  (6.79) 
Substitution of (6.77) and (6.78) into (6.73) and (6.71) yields the following 
expressions for � and the stresses 
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Applying the following boundary conditions on the crack face (
 = �) 
 ( , ) 0, ( , ) 0rr r

 
� 
 � � 
 �� � � � , (6.84) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.7 The symmetry stress field in mode I crack 
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we obtain two equations for A� and B� 
 ( ) cos 0A B� � ��� �  (6.85) 
 [ ( 2) ]sin 0A B� �� � ��� � �  (6.86) 
There are two sets of solutions for (6.85) and (6.86): the first set is   
 sin 0 and A B� ��� � � �  (6.87) 
and the second one is 

 cos 0
2

and B A� �
���

�
� � �

�
 (6.88) 

The solutions for � satisfying (6.87) are 
 0, 1, 2,� � ; ; J  (6.89) 
and the solutions for � satisfying (6.88) are 

 1 3 5, , ,
2 2 2

� � ; ; ; J  (6.90) 

Since we are interested in the most dominant stress field in the vicinity of the crack 
tip, only the negative of � needed to be considered (note that the stresses are 
proportional to r�). There are, however, infinite possibilities of negative powers in 
(6.89) and (6.90); thus, we further impose the boundedness of the strain energy in 
any finite volume surrounding the crack tip. In particular, we require 

 2 2
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R R
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 � � 
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where R is an arbitrary finite distance measured from the crack tip. For linear 
elastic solids, the strain energy function �  is the sum of products of an elastic 
compliance multiplied by the stress squared; therefore �  is proportional to r2�. 
Thus, the boundedness condition (6.91) becomes 

 2 1

0

R
r dr�� = ��  (6.92) 

Therefore, we must have 2�+1 > �1 or 
 1� > �  (6.93) 
From (6.90), the only singular term with � > �1 is � = �1/2. Therefore, we have 
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In addition, it is customary to write 

 1/2 1/2(2 )
IKA

�� �  (6.95) 

where KI is the mode I stress intensity factor. Substitution of this singular term into 
(6.81)�(6.83), we obtain 
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Note that only the singular terms are retained in (6.96)�(6.98), and all other terms 
that vanish at the crack tip are not displayed. 
 To transform these expressions to Cartesian coordinates, we recall (3.37) of 
Chapter 3: 
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Summing (6.96) and (6.98) gives: 

 11 22 1/2 2cos
2(2 )

I
rr

K
r




� � � �
�

� � � �  (6.100) 

Now substitution of (6.96) to (6.98) into (6.99) gives 
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Solving (6.100) and (6.101) gives 

 11 1/2
3cos (1 sin sin )

2 2 2(2 )
IK

r

 
 
�

�
� �  (6.103) 

 22 1/2
3cos (1 sin sin )

2 2 2(2 )
IK

r

 
 
�

�
� �  (6.104) 

It is important to note that (6.102)�(6.104) are exactly the same as (6.45)�(6.47) 
for the Griffith crack. But in this section we do not make any assumption regarding 
the loading and the crack geometry of the mode I crack. Therefore, 
(6.102)�(6.104) give the universal spatial dependence at the crack tip for mode I 
cracks. 
 To examine the crack-tip deformation field, we first recall the two-
dimensional Hooke’s law given in (2.112) of Chapter 2. 
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Substituting (6.96)�(6.98) into (6.105) and (6.106) and integrating the resulting 
expressions, we obtain 

 1/2 3( ) [(2 1)cos cos ]
4 2 2 2

I
r

K ru 
 
/
$ �

� � �  (6.107) 

 1/2 3( ) [(2 1)sin sin ]
4 2 2 2

IK ru


 
/

$ �
� � � �  (6.108) 



 Fracture Mechanics   211 

 

As expected, they are consistent with (6.52) and (6.53) for the near field 
displacement for the Griffith crack. Thus, (6.107) and (6.108) also provide the 
universal spatial dependency of the crack-tip displacement field. 
 The stress singularity around a crack-tip can also be examined using complex 
variable technique (e.g., Wang and Chau, 1998, 2001; Chau and Wang, 1998a,b). 

6.6 THE GENERAL STRESS AND DISPLACEMENT FIELD FOR MODE 
II CRACKS 

For mode II cracks, the shear stress �r
 is symmetric about the x1-axis but �

 
becomes antisymmetric about the crackling. We therefore retain only the sine 
terms in (6.77) and (6.78). Consequently, we have 
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With these stresses, the boundary condition (6.84) yields 
 ( )sin 0C D� � ��� �  (6.113) 
 [ ( 2) ]cos 0C D� �� � ��� � �  (6.114) 
Following the same argument used in the previous section, we have 
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The corresponding stress field near the crack tip can be shown to be 
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Substituting these stresses into (6.99) we obtain 
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where KII is the mode II stress intensity factor. Again (6.119)�(6.121) are the same 
as (6.62) and (6.64) of the Griffith crack. Thus, (6.119)�(6.121) are the universal 
spatial dependency of stresses of mode II crack. Similar to the mode I case, all 
loading and crack geometry enters the problem only through the calculation of KII.  
 For the deformation field, substitution of (6.116) and (6.118) into (6.105) 
and (6.106) yields the following expressions for ur and u
 : 

 1/2 3( ) [(2 1)sin 3sin ]
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II
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 1/2 3( ) [(2 1)cos 3cos ]
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$ �
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As expected, these displacements are the same as those given in (6.69) and (6.70). 
Therefore, they are the universal spatial dependency for the crack-tip displacement 
field. 

6.7 THE GENERAL STRESS AND DISPLACEMENT FIELD FOR MODE 
III CRACKS 

For tearing modes, we have in polar coordinates ur = u
 = 0. The only nonzero 
displacement component is uz, and the only nonzero stresses are �rz and�
z which 
can be expressed in terms of uz as 

 ,z z
rz z

u u
r r


$� $ �



� �
� �

� �
 (6.124) 

The only equilibrium equation needed to be satisfied is (compare (1.74) of Chapter 
1) 
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Substituting (6.124) into (6.125), we obtain 
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 (6.126) 

which is the Laplacian equation in the polar plane [compare (1.72) of Chapter 1]. 
This special form of elasticity is normally referred to as the anti-plane problem, 
which was coined by L.N.G. Filon (Milne-Thomson, 1962). This feature of anti-
plane problems renders a different but simpler method of analysis. The stress field 
for mode III crack problems is demonstrated in Fig. 6.8. The displacement 
boundary conditions along the crack line are 
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( , 0) 0, 0z

z
u ru r 
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Figure 6.8 The stress field in mode III crack 
  
Since we are interested in the asymptotic solution near r = 0, we look for the 
following general solution for uz: 
 ( )zu r f� 
�  (6.128) 
Substitution of (6.128) into (6.126) yields the following governing equation for f: 
 2( ) ( ) 0f f
 � 
11 � �  (6.129) 
Therefore, the general solution for uz is 
 [ sin cos ]zu r A B� �
 �
� �  (6.130) 
where A and B are real constants to be determined from boundary conditions. 
Substitution of (6.130) into the boundary condition (6.127) gives 
 0, cos 0B ��� �  (6.131) 
Therefore, the possible values for � are 

 1 3 5, , ,
2 2 2

� � ; ; ; J  (6.132) 

Since the shear stresses are proportional to r��1 all � < 1 will give stress singularity 
at the crack tip. Again, the boundedness of the strain energy for a finite body 
around the crack tip must be imposed to render a unique solution. In particular, we 
require 

 2 2
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R R
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� � = �� � � ��  (6.133) 

where R is an arbitrary finite distance measured from the crack tip. Therefore, 
since �  is proportional to r 2��2, we have 

 2 1

0

R
r dr�� = ��  (6.134) 

This implies that 2� � 1 > �1 or simply 
 0� >  (6.135) 
Therefore, the only � gives both finite strain energy and stress singularity at the 
crack tip is � = 1/2. Before we evaluate the stresses and displacement, it is 
customary to redefine 

 1/22( )IIIKA
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Consequently, the displacement and stress fields become 
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To express the stress field in Cartesian coordinates, we note that e3 = ez and 
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Therefore, we find 
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Physically, mode III cracking resembles the strike-slip faulting in the earth 
whereas mode II cracking is analogous to thrust faulting (e.g., Scholz, 1990). 
 To find the stress intensity factor for modes I, II, and III, one can first consult 
stress intensity factor handbooks (e.g., Tada et al., 1973; Sih, 1973; Rooke and 
Cartwright, 1976; Murakami et al., 1987). Before we discuss other methods in 
estimating the stress intensity factors, we will present the energy release rate. 

6.8 ENERGY RELEASE RATE AT CRACK TIPS 

When a crack propagates either in mode I, II, or III in a solid, the energy inside the 
body will be released. For example, consider the idealized shear experiment of 
displacement control shown in Fig. 6.9. The presentation here closely follows that 
of Rudnicki (1988). 
Let Q = �12A be the net force applied to the upper surface and q be the 
displacement of the upper surface. The work done due to an increment in the 
applied load is then Qdq (per unit thickness). If 8 is the strain energy, then for 
elastic materials (not necessarily linear) 
 d  Qdq8 �  (6.141) 
at fixed crack length l. We now define the crack-tip energy release rate as 

 ( )qG  
l
8�

� �
�

 (6.142) 

Some authors believed that the symbol G is used in honor of Griffith (Kannien and 
Popelar, 1985). But, incidentally, G is also the first letter of George, the first name 
of Irwin, who was the first one to use this symbol. A brief biography of G.R. Irwin 
is given at the end of this book. As shown in Fig. 6.9, the strain energy is the area 
under the Q�q curve, thus, G�l is the area between the curves of Q versus q at 
crack length of l to l + �l. Note that the energy release rate defined in (6.142) is 
for a fixed load point displacement. However, intuitively the energy release rate 
should also be independent of the loading type (i.e., either load or displacement 
control). 
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Figure 6.9 An idealized shear experiment and its load-displacement curve 

 
 In particular, to derive an expression for G for the case of the dead load case, 
as shown in Fig. 6.10, we consider the following total differential of the strain 
energy: 

 ( , ) ( ) ( )l qd q l    dq dl  Qdq Gdl
q l
8 88 � �

� � � �
� �

 (6.143) 

We now change the variable from q to Q using the Legendre transformation (see 
Appendix C): 
 [ ( , ) ] ( )d U  d q l Qq   d d Q q  q dQ Gdl8 8� � � � � � � �  (6.144) 
where U = U(Q,l) is the complementary strain energy and 8 � Qq is the total energy, 
which is the sum of the strain energy and the energy of the applied load. Therefore, for 
a fixed load (dQ = 0), we have the energy release rate defined as 

 [ ( )]QG = 	 Qq
l
�

� �
�

 (6.145) 

Similarly, the change in total energy �[8 � Qq] is the area between the curves for 
l and l + �l of a fixed Q, as shown in Fig. 6.10. 
 Within our definition of energy release rate, it can be shown that (6.142) and 
(6.145) are the same. In particular, the total energy released by the solid due to a 
crack increment of �l is 
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1( ) ( ) ( ) ... [( ) ]
2!q q  l l  G l O l
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 (6.146) 

Therefore, the energy release rate can be interpreted as the linear order term of the 
Taylor’s series expansion of �8. Similarly, �(8 � Qq) can be interpreted as the 
first-order term of the increment of the total energy. The difference between �8 
and �(8 � Qq) equals the shaded area in Fig. 6.11. However, each dimension of 
the shaded area is proportional to �l; consequently, the shaded area is of the order 
of (�l)2 and hence can be neglected. Thus, the energy release rate defined by 
(6.142) and (6.145) must be the same. 
 In general, it is customary to express G in terms of the stress intensity factor 
discussed in the earlier sections. In particular, consider a small advance of a shear 
crack from length l to l + �l, as shown in Fig. 6.12. The energy release by the 
shear crack growth can be computed alternatively as the work necessary to restore 
the state “after” propagation to the original state “before” the propagation. This is 
the negative of the potential energy change, that is 
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Figure 6.10 A idealized shear experiment subject to dead load 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.11 Difference between the changes in the strain energy and the total energy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.12 The crack geometry before and after crack propagation 
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For small �l, we can adopt the universal spatial dependence of both stress and 
displacement obtained earlier. More specifically, we set 
 = 0 and r = x1 into 
(6.64) and 
 = � and r = (�l � x1) into (6.67), we get 
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Substitution of (6.148) and (6.149) into (6.147) yields 
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The energy release rate is 
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This expression can easily be generalized to include mode II and mode III 
simultaneously. The final result for the energy release rate is 
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Alternatively, it is customary to write the energy release rate as 
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for plane strain and 

 2 2 21 1( )
2I II IIIG  K K KE $

� � �  (6.154) 

for plane stress. This result was first obtained by Irwin (1956). Therefore, a 
commonly used fracture criterion is 
 critG G�  (6.155) 
where Gcrit is commonly regarded as a material constant, and it reflects the resistance 
of a material to fracture growth. For pure mode cracks, this is equivalent to assuming 
the existence of a fracture toughness Kcrit, which indicates crack growth when 
 critK = K  (6.156) 
For mode I, Kcrit is normally referred as KIC or the mode I critical stress intensity factor. 
It is also known as mode I fracture toughness. In terms of Griffith’s (1920) original 
fracture criterion, the crack growth occurs when 
 2G  .�  (6.157) 
where . is the effective surface energy and all energy dissipations at the crack tip 
should be incorporated. It is the energy required to create the new surfaces of the 
crack. 
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6.9 FRACTURE TOUGHNESS FOR ROCKS 

For rock materials, two types of standard testing technique were proposed by the 
International Society for Rock Mechanics (ISRM, 1988): the Chevron bend test 
and short rod test. The details are referred to in ISRM (1988). Another fracture 
toughness test getting popularity is the semi-circular bend test which was proposed 
in 1984 (Kuruppu and Chong, 2012). Fracture toughness or the critical energy 
release rates for various rocks have been compiled by various authors (e.g., 
Rudnicki, 1980; Atkinson, 1984; Li, 1987; ISRM, 1988). 
 For the shear rupture zone or slip-weakening shear model, Li (1987) 
compiled the typical value for Gcrit. The main results are tabulated in Table 6.3. 

 
Table 6.3 Critical energy release rate Gcrit for slipping zones or shear cracks 

    
Rock types Gcrit (J/m2) 
Intact rocks 0.3~0.5�104 
Sawcut rocks 0.1~2.4 
Clay 50~270 
Natural rock joints 9~1000 
Natural crustal faults 106 ~108 

 
Table 6.4 Fracture toughness KIC for various rock types 

  
KIC (No. of samples) (MNm�1.5) Rock types 

ISRM (1988) Atkinson (1984) 
Andesite 1.26~1.68 (24)  
Basalt  2.5~2.58 
Dolerite 2.86~3.26 (12) 3.28 
Dunit  1.39~3.74 
Gabbro 2.22~3.23 (54) 0.84~2.88 
Granite 0.65~2.8 (249) 0.59~2.5 
Granodiorite 2.95~3.35 (6)  
Limestone 1.31~1.87 (28) 0.37~2.01 
Marble 1.26~2.62 (74) 0.64~1.39 
Micrite  1.01 
Norite 2.23~2.69 (17)  
Quartzite   2.1~2.65 
Sandstone 0.73~2.56 (56) 0.28~2.53 
Shale 0.25~1.02 (14) 0.61~1.37 
Siltstone   1.04~1.37 
Tholeiite  0.87 
Tuff 1.02~1.08 (64)  
 Lim et al. (1994) 
Coal 0.02~0.15 
Johnstone 0.07 
Schist 0.9 
Syenite 1.36~1.86 
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 The fracture toughness for various rocks was compiled by ISRM (1988), 
Atkinson (1984), and Lim et al. (1994); Table 6.4 presents only the ranges of KIC 
for different rock groups. For example, for the value of KIC for granite from a 
specific location refer to the original paper. In general, for most rocks the order of 
KIC is about 1 MPaHm; and for artificial rock, such as Johnstone, the KIC is of the 
order of 0.1 MPaHm. 
 For different minerals, Atkinson (1984) also compiled a table. The results are 
summarized briefly in Table 6.5. In general, the fracture toughness is smaller in 
minerals than in rocks, except for diamonds. 
 Whether Gcrit or KIC is given, we can transform one to the other according to 
(6.154). For example, if $ = 20 GPa and # = 0.2, KIC values of 1, 2.5 and 4 
MNm�3/2 yield Gcrit = 20, 125 and 320 Jm�2, respectively. 
 For modes II and III fracture toughness, the values for KIIC and KIIIC is not 
readily available for most rocks. Some data for KIIC are compiled by Lim et al. 
(1994). In general, as remarked by Li (1987), the order of this fracture toughness is 
again about 1 MNm�3/2. 
 

Table 6.5 Fracture toughness KIC for various minerals (after Atkinson, 1984) 
 

Minerals KIC (MNm�1.5) 
Calcite 0.16~0.2 
Diamond 3.4~3.9 
Feldspar 0.39~1.3 
Fluorite 0.3 
Galena 0.18 
Halite 0.18 
Muscovite 0.21 
Olivine 0.59~0.73 
Periclase 0.79 
Pyrite 0.96 
Quartz 0.28~2.4 
Spinel 1.27~1.9 

6.10 J-INTEGRAL AND THE ENERGY RELEASE RATE 

The energy release rate G discussed in Section 6.8 can be expressed in terms of a 
path-independent integral called the J-integral. The J-integral was derived 
independently by Rice (1968a) and Cherepanov (1969) for crack problems, 
although the same integral had been derived much earlier by Eshelby (1957) as a 
way of calculating forces on heterogeneities and dislocations. However, Rice’s 
approach is surely the most popular one, thus his work has also received most of 
the credit. Except for the classic paper by Griffith (1920), Rice’s paper is probably 
the most cited paper in the fracture mechanics literature. The derivation of the J-
integral is indeed a giant step and milestone in the development of fracture 
mechanics because it opens up a whole new field of elastic-plastic fracture 
mechanics. The most attractive feature of the J-integral is the path-independency 
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and the energy release rate interpretation of it. Both of these will be discussed later 
in the section in terms of nonlinear elastic fracture mechanics. 
 We will discuss here a slightly modified version of the J-integral that 
incorporates the effect of body forces. In particular, the total potential energy of a 
linear elastic body containing a crack, as shown in Fig. 6.13, is 
 ( ) i i i iA A

a   WdA T u ds f u dA
E

^ � � �� � �  (6.158) 

where W is the strain energy density, ui is the displacement field, E is the contour of 
the body, A is the area of the two-dimensional body, Ti is the traction field applied on 
the boundary of the body, and fi is the body force component. The strain energy 
density can be defined as 
 0( ) pq

pq ij ijW   d�� � �� �  (6.159) 

Conversely, the stress can be expressed as 
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We now consider the change of the potential energy with respect to an increment 
of the crack length as 

 ( ) i i
i iA � A

d a d W d du u =  dA   ds f   dATd a d a da da
^

� �� � �  (6.161) 

In obtaining (6.161), we have assumed that both the body force and surface 
traction remain constant when the crack propagation takes place. We now 
introduce a moving coordinate, which is located at the crack tip, such that 
 1 21 2= x a ,    = xX X�  (6.162) 
Thus, it is straightforward to see that 
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since �X1/�a = �1 and � /�X1 = � /�x1. Substitution of (6.163) into (6.161) yields 
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 (6.164) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.13 A cracked nonlinear elastic solid with contour � 
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Therefore, the following area integral becomes 
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The last of (6.166) is due to the substitution of the equilibrium equation. We further 
apply the Gauss theorem (or divergence theorem) given in Section 1.6.1 to the first 
term of the last of (6.166), and the result is 
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Finally, substitution of (6.167) into (6.164) yields 
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The first integral on the right-hand side can obviously be expressed in terms of the 
contour integral. The J-integral is defined as 
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By noting that n1ds = dx2, the J-integral can alternatively be written as 

 1
1
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� � uf u T  (6.170) 

When fi = 0, the original J-integral obtained by Rice (1968a) is recovered as a special 
case. 
 To examine the path-independency of the J-integral, we consider the J-
integral around a contour Et, which equals E1+E2+E+E3, as shown in Fig. 6.14: 
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Note that we have n1 = 0 and Ti = 0 on both the sub-contours E2 and E3. Therefore, 
(6.171) can be simplified to 
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Applying the divergence or Gauss theorem back to (6.172), we get 
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 (6.173) 

Therefore, finally we get 
 1J  = J�  (6.174) 
Thus, if both contours E and E1 are taken as counter-clockwise, we must have J1 = J. 
Therefore, the J-integral must be path-independent. 
 The relation between the J-integral and the energy release rate G can be 
considered by taking the limit of the contour approaching the crack tip, as shown 
in Fig. 6.15. For mathematical simplicity, we will consider the case of mode III 
crack. In particular, we can apply the results in (6.137) and (6.138) here, that is, 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.14 The path �t = �1+�2+�+�3 for the J-integral 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.15 The J-integral around the crack-tip field 
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Noting that 
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(6.176) reduces to 
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Substitution of (6.175) and (6.178) into (6.169), noting that ds = rd
 and dx2 = rcos
 
d
, yields 
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More generally, if all three modes of crack displacement are taken into account, we 
have 

 2 2 21 1( )
8 2I II IIIJ    GK K K
/

$ $
�

� � � �  (6.180) 

That is, the J-integral is physically the energy release rate at the crack tip, at least 
for nonlinear elastic solids. For elastic-plastic solids, although the J-integral does 
not correspond exactly to G, it provides a useful way to estimate the crack-tip field 
because of its path-independent property. 
 Although we only demonstrate the validity of (6.180) using mode III crack, 
the reader can follow the procedure given here for both mode I and II crack-tip 
fields. 

6.11 WESTERGAARD STRESS FUNCTION AND SUPERPOSITION 

The modes I and II stress intensity factors for some two-dimensional crack 
problems can be found analytically in terms of a stress function called the 
Westergaard stress function (Westergaard, 1939). The Westergaard stress function 
is actually a special form of Muskhelishvili’s analytic functions, and this function 
has been found very useful in calculating the stress intensity factors for symmetric 
and antisymmetric crack problems subject to near field loadings. 
 In particular, for mode I cracks there is a symmetric property that �12 = 0 on 
x2 = 0. By virtue of this fact we can set the following special form of 
Muskhelishvili’s analytic functions: 
 ( ) ( ) ( )z z z z? � �1� � �  (6.181) 
We first rewrite (3.34) and (3.35) of Chapter 3 as 
 1 1

22 2 2
2Re[ ]� z �� �1 11 1� � �  (6.182) 
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 12 Im z� � ?2 311 1� �6 7  (6.184) 

Substitution of (6.181) into (6.182)�(6.184) yields 
 T S T S11 22 Re ( ) 2 Im ( )z x z� � �1 11� �  (6.185) 

 T S T S22 22Re ( ) 2 Im ( )z x z� � �1 11� �  (6.186) 

 T S12 22 Re ( )x z� �11� �  (6.187) 
In obtaining these expressions, we have used the following identities 
 W X T S W X T SRe ( ) Im ( ) , Im ( ) Re ( )if z f z if z f z� � �  (6.188) 
for any analytic function f(z). Similarly, substitution of (6.181) into (3.36) of 
Chapter 3 gives 
 � � T S � �1 22 1 Re ( ) 2 Imu z x z$ / � �12 3� � � 6 7  (6.189) 

 � � � � � �2 22 1 Im 2 Reu z x z$ / � �12 3 2 3� � �6 7 6 7  (6.190) 
It is customary to use the following notation for the Westergaard stress function Z: 

 � � � �2 , dZZ z z Z
dz

�1� �  (6.191) 

Consequently, the stresses and displacements become 
 11 2Re ImZ x Z� 1� �  (6.192) 
 22 2Re ImZ x Z� 1� �  (6.193) 
 12 2 Rex Z� 1� �  (6.194) 

 1 2
12 Re Im

2
u Z x Z/$ �� �� ��  

! "
 (6.195) 

 2 2
12 Im Re

2
u Z x Z/$ �� �� ��  

! "
 (6.196) 

We can solve Griffith crack problem by using superposition. In particular, the 
original problem can be considered the sum of the uniform stress solution in an 
infinite domain without crack subject to far field tension � and the solution for an 
isolated crack subject to internal pressure � (see Fig. 6.16). The solution for the 
first auxiliary problem is trivial and the solution for the second auxiliary problem 
can be solved using the following Westergaard stress function (Westergaard, 
1939): 

 � �
21 ( / )

Z z
a z

�
�

�
 (6.197) 

In terms of the polar coordinates given in Fig. 6.16, we have 
 1 2

1 2, ,i iiz re z a r e z a r e
 

� � � � �  (6.198) 
where all 
, 
1, and 
2, are between � and ��. Substitution of (6.198) into (6.197) 
gives 
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Figure 6.16 Method of superposition for crack 
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The derivative of (6.197) is 

 
� �

1 2
32 2 ( )
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3/2 3/22 2 1 2( )

ia aZ e
r rz a


 
� � � �
1 � � � �

�
 (6.200) 

On the other hand, integration of (6.197) gives 

 1 2( )/22 2
1 2

iZ z a r r e 
 
� � �� � �  (6.201) 
Along the crack surfaces (i.e., x2 = 0 and x1 < a), it is not difficult to show that ReZ 
= x2ReZ1 = x2ImZ1 = 0. We now consider the stress field near the crack tip; that is, 
we set 

 1
2 20, , 2 , 0, 0

r r a r a
a


 
& & & & &  (6.202) 

into (6.199). The resulting stress function is approximately 

 1 /2

12
iaZ e

r

� ��  (6.203) 

In terms of polar coordinates with the origin at the right crack tip, i.e., 
 1

1
ir e z a
A � � �  (6.204) 

(6.203) becomes 

 ( )
2 2

IKaZ �A
A �A

� �  (6.205) 

where KI = �(�a)1/2 is the mode I stress intensity factor defined in (6.48) of Section 
6.3.  
 For mode II cracks, it is not difficult to show that the following form of the 
Westergaard stress function applies: 
 11 2 22 2 12 22 Im Re , Re , Re ImZ x Z x Z Z x Z� � �1 1 1� � � � � �  (6.206) 
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For mode II cracks shown in Fig. 6.5, we can show, by using the same procedure 
for mode I, that the following stress function 
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( )
1 ( / )

Z z
a z

,
�

�
 (6.208) 

will give the stress intensity factor as 
 IIK a, ��  (6.209) 
 For mode III cracks, the Westergaard stress function becomes 
 3 23 13Im , Re , Imu Z Z Z$ � �� � �  (6.210) 
For mode III crack subject to far field uniform shear, a stress function same as 
those given in (6.208) can be used; the KIII is found equal to ,(�a)1/2. The detailed 
steps will, however, be omitted here. Therefore, the stress intensity factor can be 
defined as 
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 (6.211) 

Since superposition applies to the linear-elastic stress field, it is evident from 
(6.211) that the K values are additive. For example, the Westergaard stress 
function for a 2-D cracks of length 2a subject to a pair point forces P applied on 
x1= b (as shown in Fig. 6.17) is (Tada et al., 1973, p. 5.9): 

 
2 2

2 2
( )

( )
P a bZ z

z b z a�
�

�
� �

 (6.212) 

Again, in terms of the polar coordinates, 
 1 2

1 2,i iz a r e z a r e
 
A� � � � �  (6.213) 
we have 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.17 Cracks subject to pair point forces P and general internal pressure 
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Consider the crack tip by letting r1/a & 0, 
 & 0, r2 & 2a and z& a, we find 
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P a bZ z
a b a� A
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 (6.215) 

Recalling the second of (6.205), we have 
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 (6.216) 

This result can readily be used to find the Westergaard stress function and stress 
intensity factor for a crack subject to a varying internal pressure g(<), shown also 
in Fig. 6.17. In particular, we put the following identifications 
 , ( )b P g d< < <D D  (6.217) 
into (6.212) and carry out the integration from �a to a. This gives 
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If we consider the crack-tip field and multiply the stress function by (2�A)1/2, we 
get 

 
2 2( )1 a

I
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g a
K d

aa
< <
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<� �

�
�

��  (6.219) 

Note that a similar superposition procedure applies equally to mode II and III 
cases. 
 Chau et al. (2000, 2002) and Chau and Shao (2006) applied such a 
superposition technique to derive 2-D and 3-D crack models subject to loading of 
a center of dilatation.   

6.12 GROWTH OF SLIP SURFACE IN SLOPES  

In this section, we will present an application of fracture mechanics to the 
progressive failure of slopes. The presentation follows closely those of Palmer and 
Rice (1973). In particular, referring to Fig. 6.18, we consider a long flat slope of 
inclination angle � into which a step of height h has been cut. Thus, a man-made 
surface is formed as the toe of the natural slope. A slip surface or shear band of 
length l emanates from the base of the cut in a direction paralleling the slope 
surface. Based upon the J-integral, we will derive the driving force on the band 
and the propagation criteria for the slip surface. To make the problem 
mathematically tractable, we assume that the length of the slip surface l from the 
toe is large compared to the layer thickness h and to the size of the end region F, 
which is defined in Fig. 6.19. The end region is defined as the region near the tip 
of the shear band where the shear strength is larger than the residual shear 
strength, as shown in Fig. 6.19. Under this assumption, the energy transfer during 
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the shear band extension will be due to the gravitational work on the down slope 
movements of the layer and to deformations of the layer from changes in the 
normal stress acting parallel to the slope surface. 
 The stress state �0

ij existing before the cut is made is supposed to depend 
only on the depth from the slope surface; thus the initial stresses are 
 0 0 0

22 2 21 2 11 2cos , sin , ( )x x f x� . � � . � �� � � �  (6.220) 
where . is the average unit weight over the depth h of the layer. Note that 0

11� is 
undetermined by equilibrium consideration alone. Since h is small, we will 
consider only the average value of �11 over the depth as 

 11 11 2
0

1 h
dx

h
� �� �  (6.221) 

The average lateral earth pressure existing before the introduction of the cut is 
denoted by p0, i.e., 
 0

0 11p �� �  (6.222) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.18 Propagation of a slip from the step of a slope (after Palmer and Rice (1973) with 
permission from the Royal Society) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.19 The shear strength along the slip surface (after Palmer and Rice (1973) with 
permission from the Royal Society) 
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The gravitationally induced shear stress on the prospective failure plane is 
 0

21 2( ) sing x h h, � . ��� �  (6.223) 
All displacements and strains will be measured from zero in the prestressed state. 
 We now apply the J-integral around the tip of the shear band along a contour 
E shown in Fig. 6.18. The point P is chosen as the starting and ending points of the 
contour E. All the displacements and straining in the base material below the slip 
surface (i.e., x2 > h) can be neglected since the dominant deformation is mainly due 
to the sliding layer (i.e., 0 < x2 < h). Thus, the J-integral vanishes for the portion of 
E which is below the slip surface (along PA is zero). The displacements and 
straining far up the slope can also be neglected since it is simply the prestressed 
state. Therefore, the J-integral for path AB also vanishes. Since on the slope 
surface along the path BC, we have dx2 = 0 and traction is also zero; and along the 
cut surface we also have the traction being zero. Consequently, we are left with the 
following integral along the path CP: 

 
12 1 2 0 2

0
( ) ( sin cos )

CP

h
p i i xJ W f u dx W u u dx. � . � �) � � � � �� �E

 (6.224) 

since f1 = �. sin� and f2 = . cos�. When the layer is long compared to the depth h, 
we must have one-dimensional displacement (i.e., u2 = 0 on x1 = 0). The 
displacement along the negative x1-direction must also equal the relative sliding 
�(x1) along the slip plane. That is, 
 1 1 1( ) ( )u x x�� �  (6.225) 
Therefore, (6.224) reduces to 
 ( sin )p P g PJ Wh h Wh. � � , �� � � � � �  (6.226) 
where W  is the thickness average of the energy density at the end of the slope. 
The last part of (6.226) is obtained in view of (6.223). Interpreted by the stress-
strain curve relating the average stress 11�  and the average strain �  in the layer, 
W  is 

 
011
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p

W d
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�
� � �

�

��
� �  (6.227) 

or is the negative of the hatched area in Fig. 6.20 below 11� = 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.20 The stress-strain curve for interpreting the driving force (after Palmer and Rice 
(1973) with permission from The Royal Society) 
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 Before we continue to determine the driving force, we first want to establish 
the following path-independent quantity: 
 ( ) ( )P r P r P rJ d, � , , � , , �� � � � ��  (6.228) 

where the second term is clearly the hatched area shown in Fig. 6.21, and it is the 
path-independent quantity of P as long as P is outside the end region near the tip 
of the shear band. 
 To show (6.228), we consider a special path P�TP+ around the tip of the 
shear band, as shown in Fig. 6.22. We now consider the J-integral along P�TP+ 
which follows the lower surface of the slip band from P� to the tip T of the band, 
and returns to P+ along the upper surface. Since dx2 = 0 along the whole E, the 
first term of the J-integral disappears. Along the band, we have u2 to be continuous 
across the band and therefore �u2/�x1 is also continuous, but T2 on the upper 
surface is equal and opposite to the T2 on the lower surface, and thus T2�u2/�x1 will 
make no contribution to the J-integral. Therefore, we have 

1
21 1 21 1 1 1 1

01 1 1
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� � �� � � �  (6.229) 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.21 The relation between the shear stress , and relative displacement � 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6.22 Integration path for the J-integral (after Palmer and Rice (1973) with permission 
from the Royal Society) 
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where , is the shear stress along the band, and u1
+ and u1

� are the displacements 
along the upper and lower slip surfaces (their difference equals � the relative 
sliding along the band). Then, JP becomes the area under the curve in Fig. 6.21. 
However, at the same time it is obvious from Fig. 6.21 that JP is not a path-
independent quantity and it increases with �P. But if we can subtract the 
contribution from the residual part of strength from JP we have 
 ( ) ( )P r P r P rJ d, � , , � , , �� � � � ��  (6.230) 

Therefore, (6.228) is established. As discussed by Palmer and Rice (1973), Jp � 
,r�p can be interpreted as the energy surplus made available per unit advance of the 
band. Therefore, (6.228) implies that for propagation to occur this net energy 
surplus must just balance the additional dissipation in the end region against shear 
strengths in excess of the residual one. 
 We now return to (6.226) and subtract from it by ,r�p; therefore, we have 
 ( )P r P g r pJ Wh, � , , �� � � � �  (6.231) 
We want to show further that the second term on the right of (6.231) can be 
interpreted as the hatched area above 11� = 0 in Fig. 6.20. To do so, we consider 
the force equilibrium along the x1-direction for the free body of the upper layer, 
shown in Fig. 6.23. In particular, we find 
 11 1 1( ) ( )g rx h x� , ,� �  (6.232) 
Thus 
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which corresponds to the hatched area above 11� = 0 in Fig. 6.20, as we expect. 
The last of (6.233) is the result of using the change of variable given in (6.232) 
which is from force equilibrium. Substitution of (6.233) and (6.227) into (6.231) 
yields 
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Figure 6.23 The force equilibrium along x1 for a free body of the upper layer 
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From the energetic point of view, the lower hatched area is the energy recovered 
due to unit advance of the shear band resulting from the relief of the lateral 
pressure p0, whereas the upper hatched area is the excess of work done input by 
the gravity pull over the dissipation against the residual shear strength. 
 To simplify the problem further, a linear stress-strain relation is assumed: 
 11 0 11p E� �1� � �  (6.235) 
where E' is the overall elastic modulus for the layer under the assumed plane strain 
condition [or E' = E/(1�#2) as given in (1.2-33) of Kannien and Popelar, 1985], 
then the integral in (6.234) becomes 
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Finally, (6.234) becomes 
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 (6.237) 

where G is the energy release at the tip of the shear band for unit advance of the 
slip surface. The last of (6.237) is a consequence of (6.153). We have assumed that 
the end region (F in Fig. 6.19) is small such that the stress singularity predicted by 
the linear elastic theory applies equally here. This is equivalent to the small-scale 
yielding concept discussed earlier. The crack-tip field will, however, become 
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where ,r is the residual stress strength of the band, �n is the normal stress 
transmitted across the band, and �t is the transverse or lateral stress acting along 
the line directly ahead of the band. Further discussion can be referred to Palmer 
and Rice (1973). 
 Thus, (6.237) can be rearranged as: 

 0[( ) ]
2II g r

l hK p
h

, ,� � �  (6.239) 

However, (6.228) and (6.237) will yield 

 1/2
2[ ( ) ]

1IIC g r
EK , , �
#

� �
�

 (6.240) 

Therefore, the slip surface will start to propagate as long as (6.239) equals (6.240). 
However, much remains to be done to verify the applicability of this approach to 
real problems. In addition, the effect of pore water pressure should also be 
examined (see Rice, 1973). Nevertheless, this problem does illustrate the prospect 
of using fracture mechanics in geotechnical problems. 
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6.13 ENERGY RELEASE RATE FOR EARTHQUAKES 

This section illustrates how to use fracture mechanics in estimating the amount 
energy being released during earthquakes. The discussion follows those employed 
by Palmer and Rice (1973) and Rudnicki (1980). We idealize the 1857 California 
earthquake at Cholame as a long strike-fault being loaded by displacement not too 
far from the strike line, as shown in Fig. 6.24. In particular, the fault is assumed to 
be locked at point T but is undergoing steady relative displacement to the left of T. 
At point P, the relative displacement is �p. The fault is loaded by displacements ub 
at a distance h/2 from the fault. These displacements can be viewed as those 
displacements being imposed by large-scale tectonic plate movement. 
 To calculate the energy release rate, we again use the J-integral. To the right 
far ahead of T, the Earth’s crust is in a state of homogeneous shear strain and 
stress: 

 12 0 12 02 ,b
P

u
h

� . � , ,� � � =  (6.241) 

Again, as defined in the last section ,p is the peak shear strength of the fault zone. 
Likewise, far to the left of the tip T, there is also a homogeneous state in the 
Earth’s crust on both sides of the fault zone: 
 12 122 ,r r� . � ,� �  (6.242) 
At point P shown in Fig. 6.24, the relative displacement is 

 0 0
1 1 ( )
2 2P r r rh h h h� . . . . .� � � � �  (6.243) 

where the first term is the imposed boundary displacement and the two subtracted 
terms 1/2.rh represent that portion of the imposed boundary displacement taken up 
by crustal rock deformation in the regions above and below the fault shown in Fig. 
6.24. Along the rigid boundaries AB and DC all dx2 = 0 and �ui/�x1 = 0, thus both 
will not contribute to the J-integral. Likewise, �ui/�x1 vanishes in the 
homogeneously strained regions far to the right and left of the tip T, so that for 
path E 
 2 0( ) ( )P rJ Wdx hW hW

E
. .� � ��  (6.244) 

 

 
 
 
 
 
 
 
 

 
Figure 6.24 Idealization of a long strike-slip fault loaded by displacement 
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where W(.) is the energy density in a region under homogeneous shear strain .. As 
discussed in the previous section the driving force term is 
 0 0[ ( ) ( ) ( )]P r P r r rJ h W W, � . . , . .� � � � �  (6.245) 
To interpret the driving force in terms of the shear stress-strain curve , = ,(.), we 
note from Fig. 6.25 that 
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Substitution of (6.246) into (6.245) yields 
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To simplify the problem, a linear stress-strain curve is assumed: 
 ( ) ( )r r, . , $ . .� � �  (6.248) 
Substitution of (6.248) into (6.247) and integration give 
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From (6.249), the corresponding stress intensity factor is obtained as (Palmer and 
Rice, 1973) 
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 (6.250) 

Earthquake occurs when the fault starts to propagate; and, as usual, the criterion 
for propagation can be related to the critical energy release rate: 

 2

2P r P crit PJ G
h
$, � �� � �  (6.251) 

Along the creeping portion of the San Andreas fault the observed displacement is 
about 3 cm/year. For return period of 160 years and for a Ms = 8.25 earthquake, �P 
~ 160 (year) � 3(cm/year) = 480 cm. Taking $ = 20 GPa and h = 60 km, we have 
Gcrit = 3.84� l06 Jm�2 from (6.251). It should be emphasized that this value is 
comparable to the estimation by other researchers using different methods. Field 
data show that rupture length along the fault zone during the earthquake is about 
275 km and taking the depth to 10 km, we find that the total energy released 
during the 1857 California earthquake was about 1016 J. Using the empirical 
Gutenberg �Richter relationship (Rudnicki, 1980) 
 log 11.8 1.5 SE M� �  (6.252) 
 
 
 
 
 
 
 
 
 
 

Figure 6.25 The interpretation of the driving force term in the propagation criterion 
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where Ms is the surface wave magnitude (Scholz, 1990; Aki and Richards, 1980), 
alternatively we find the seismic energy E is about 1024 J. However, we do not 
expect the Gutenberg-Richter relationship formula to be very accurate, especially 
given the fact that none of the local crystal rock parameters is incorporated into the 
relation. Nevertheless, the fracture mechanics model considered here does provide 
a simple means of calculating the seismic energy being released. We, of course, do 
not expect our calculation to be very accurate either, but at least our approach 
gives more insight into the qualitative effect of each parameter compared to the 
black-box formula (6.252). 

6.14 WING CRACK MODEL UNDER COMPRESSIONS 

One of the distinct features of brittle solids, including rocks, ceramics, and 
concrete, under uniaxial compression is that crack growth is normally observed in 
a direction parallel to the compression field. According to classical elastic fracture 
mechanics, a vertical pre-existing crack will not be activated under uniaxial 
compression; thus, conventional fracture mechanics is unable to explain this 
observation. The extent of crack growth is also a function of confining stress. In 
order to activate cracking, it is observed experimentally that vertical stress has to 
be larger than compressive confining stress. In view of this observation, it has 
been proposed that vertical cracking is controlled by the deviatoric stress 
component normal to the crack front (Costin, 1983, 1985). See Section 6.18 for 
further application of Costin’s (1985) model. One of the most popular models to 
explain vertical cracking of brittle solids under compression is the wing crack 
model. As shown in Fig. 6.26, it is assumed that vertical cracking (dotted lines in 
the figure) is induced by frictional sliding on pre-existing inclined cracks. In 
particular, the wing cracks are wedged open by frictional sliding at both the upper 
and lower tips. The existence of wing cracks in PMMA is well documented by 
Horii and Nemat-Nasser (1985). In terms of experimental observations in real 
rocks, the existence of sliding wing cracks is inconclusive (e.g., Brace, 1960; 
Tapponnier and Brace, 1976; Kranz, 1979). Nevertheless, the wing crack model is 
among the most successful models for cracking in rocks (Brace, 1960; Hoek and 
Bieniawski, 1965; Nemat-Nasser and Obata, 1988; Jeyakumaran and Rudnicki 
1995; Wong et al. 1996; Wong and Chau, 1998). It has also been used in modeling 
hysteresis of dilatancy (Scholz and Kranz, 1974).  
 In this section, we will not go into the details of various wing crack models, 
such as Nemat-Nasser and Obata (1988) and Ashby and Hallam (1986). Instead, 
we will simply illustrate the idea of wing crack by considering a simple model by 
Muhlhaus et al. (1996). This approach was later extended by Chau and Wang 
(2001) to consider bifurcation in the growth of arrays of en echelon cracks. In 
particular, Muhlhaus et al. (1996) estimated the pop-up force F for an equivalent 
vertical crack by projecting the resolved shear and normal stresses on the crack 
face, as shown in Fig. 6.27. The local resolved stresses on the crack face are: 
 s, � � ��n s ,    n� � � ��n n  (6.253) 
In component forms, we have 
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where ��/2 < 
 < �/2. The shear stress driving the sliding crack is 
 s n, , $�� ;   (6.255) 
where $ is the frictional coefficient. The plus or minus sign must be chosen such 
that the frictional stress is always against sliding. The equivalent point force (per 
unit length) is 
  0 0 1 11 2 222 cos ( )F c c, 
 ? � ? �� �� � �   (6.256) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.26 Crack growth under compression in brittle rocks 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 

Figure 6.27 Wing crack model in estimating the pop-up force F 
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for ��/2 < 
 < �/2. The angle 
 should be chosen as 
max which can be evaluated 
as: 

  1 2
max 0 11 22( ) ( ) 0

d ddF c
d d d

? ?

 � �


 
 

� �� � �  (6.258) 

The prediction of this 
max has been compared to the modified Griffith crack model 
(e.g., McClintock and Walsh, 1962; Jaeger and Cook, 1979):  

 1
max

1 1tan ( )
2 2
�


$
�� �  (6.259) 

This comparison is also reported in Fig. 6.28. The prediction of 
max is a function 
of stress ratio whereas the prediction by the modified Griffith crack model is 
independent of the stress ratio. Therefore, we expect the prediction by (6.258) to 
be more reliable than (6.259). 

6. 15 BAŽANT’S SIZE EFFECT LAW VIA J-INTEGRAL  

According to Bažant and Rajapakse (1991), scaling and size effect in fracture 
strength date back to the time of Leonardo da Vinci. The qualitative foundation of 
statistical size effect of strength was laid down by Marriotte in the 17th century. 
Bažant and Planas (1998) showed that the strength dependence from plastic 
yielding and from linear elastic fracture mechanics behavior can be linked together 
by a simple “one over square root law” of size effect. For large-size quasi-brittle 
solids, the strength approaches the plastic yielding, whereas for small-size solids, 
the strength is controlled by linear elastic fracture mechanics.  

 
 

 
 
 

 
 
 
 
 
 
 
 

 
 

 
 

Figure 6.28 Prediction of most optimal angle for activating sliding cracks (after Muhlhaus et al. 
(1996) with permission from Springer)  
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 In this section, we adopt a particular cohesive crack model proposed by 
Bažant et al. (1999) for a finite solid under compression. For more comprehensive 
discussion of cohesive zone models, we refer to Sun and Yin (2012). As shown in 
Fig. 6.29, the J-integral can be employed to find such size or scale effect. In 
particular, a finite specimen of width D contains an edge crack of length a and a 
fracture process zone (FPZ) c is subject to compression �N. Two triangular energy 
release zones OFGO and OCBO are assumed behind the crack front as shown. The 
stress level in these zones is assumed to drop to a residual level �r. The fracture 
process zone (FPZ) in front of the crack tip is modeled by a cohesive crack model.  
 In particular, for the case of zero body force we would evaluate the energy 
release rate for the contour ABCDEFGH as (see (6.170)) 

 1 2
1 1

[ ] [ ]� �J = Wn   ds = Wdx   ds
x x
� �

� �� �
� �

� �u uT T  (6.260) 

The length of FC is 
 02 ( )FC = k a c�  (6.261) 
The first part of the J-integral on the right side of (6.260) can be evaluated by 
following the closed contour ABCDEFGH. On the horizontal contours EF and 
CD, the contribution to the first term are zeros as dx2 = 0. The contour integrals of 
AB and GH balance with each other. The contour integral on DE can be assumed 
subject to uniform stress �N without disturbance from the crack, whereas contours 
BC and FG are both subject to uniform residual stress �r. These contributions can 
be summed as: 

 
2 2

2 02 ( )[ ]
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N rWdx k a c
E E

� �
� � ��

E

 (6.262) 

The contribution to the second term on the right side of (6.258) can be broken 
down as the sum of contours AB, BC, CD, DE, EF, FG, and GH. The integrals for 
EF, FG, and BC are zeros as dx = 0 on them. The displacement field on both EF 
and CD can be assumed to be uniform (i.e., undisturbed by the crack and FPZ), 
leading to zero contributions. Finally, the contour integrals on AB and GH are   
 

 
 

 
 
 
 
 
 
 
 

 
 

 
 
Figure 6.29 Bažant et al. (1999) cohesive crack model for size effect (after Bažant et al. (1999) with 

permission from Springer) 
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where �BG is the relative displacement between points B and G. This displacement 
can be estimated from the difference between the lengths of ED and FC as 

 0 0 02 ( ) 2 ( ) 2 ( )N N rr
BG = k a c k a c k a c

E E E
� � ��

�
�

� � � � �  (6.264) 

Finally, combining (6.262)�(6.264) gives 
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On the other hand, the critical value of the J-integral at the crack tip can be 
evaluated by the contour around the tip shown in Fig. 6.29 together with the 
cohesive model shown in Fig. 6.30.  
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The last term is obvious from the hatched areas in Fig. 6.30. Equating (6.265) to 
(6.266), we have 
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 (6.267) 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.30 shear resistance versus slipping displacement in cohesive model (after Bažant et al. 

(1999) with permission from Springer) 
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The size of the FPZ is characterized by the value of D0 whereas the size of the 
specimen is characterized by D. The size effect law is given in (6.267) and Bažant 
and Planas (1998) found that this scale or size effect law is universal and results 
from many crack problems. Equation (6.267) is illustrated in Fig. 6.31. The 
asymptote for small D is controlled by plastic yielding and the asymptote for large 
D is controlled by linear elastic fracture mechanics. Therefore, this size effect links 
the plasticity for small specimens to linear elastic fracture mechanics for large 
specimens. 
 
 
 
 
 
 
  
 
 
 
 
 
 

Figure 6.31 Bažant size effect law (after Bažant et al. (1999) with permission from Springer) 

6. 16 CONTINUUM DAMAGE MECHANICS  

In this section, we will extend the analysis given in Section 5.16 for internal 
variables to model continuum damage mechanics. In this approach, the fracture 
process of individual microcracks will not be considered explicitly, but instead the 
growth of microcracks will be considered damages, and mathematically they were 
modeled by the evolution of internal variables. Similar to Section 5.16, we start 
with the following free energy potential, which is assumed to be a function of a 
strain measure E (a second-order tensor), and a set of internal variables or as a 
damage vector < (a first-order tensor or vector): 
 ( , )G G� E <  (6.269) 
Then, the stress S conjugate to the strain measure (i.e., the double dot product 
between dE and S equals the external work), and the thermodynamic force Z 
associated with the internal variable < are 

 , �G G� �
� � �

� �
S

E <
 (6.270) 

Then, we introduce an initial damage surface f(Z, <) such that f < 0 implies a 
reversible process (i.e., no damage), f = 0 implies initiation of damage, and f > 0 
implies irreversible process of damages. The evolution of the internal variable can 
be determined from another potential F(Z, <) as 
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We have continuous damage if � > 0 and � can be determined from the 
consistency condition (similar to the plasticity formulation discussed in Chapter 5) 
as 

 0f fdf d d� �
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� �
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 (6.272) 

The change of the thermodynamic force given in (6.272) can be determined from 
the second part of (6.270) as: 
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Substitution of (6.273) into (6.272) leads to 
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In view of (6.271), (6.274) becomes 
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Solving for � from the scalar equation (6.275) gives 
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In view of the first part of (6.270), the change of stress tensor dE can now be 
written as: 
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Substitution of (6.271) and (6.276) into (6.277) gives 
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Alternatively, (6.278) can be written in rate form as: 
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where 
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Note that +< , +<< , +<E , and L are vector, second-order tensor, third-order tensor, 
and fourth-order tensors, respectively. Comparison of (6.280) with (5.21) of 
Chapter 5 shows that the framework for plasticity differs fundamentally from the 
continuum damage mechanics formulation. For more comprehensive coverage on 
continuum damage mechanics, we refer to Krajcinovic (1986). 

6. 17 SOLIDS CONTAINING MICROCRACKS  

In this section, we will summarize the essence of the effective mechanical 
properties of solids containing microcracks. There are a few books on damage 
mechanics (e.g., Kachanov, 1986; Lemaître, 1996; Krajcinovic, 1996; Nemat-
Nasser and Hori, 1993), but the following presentation follows from Chau (1991) 
and Chau and Wong (1997).   

6.17.1 Compliance Change due to a Single Crack 

We consider an isotropic, homogeneous, elastic solid containing a penny-shaped 
microcrack of radius a and with unit normal n. The resolved normal and shear 
stresses on the surface of the penny-shaped crack are denoted by � and ,, 
respectively. According to Budiansky and O’Connell (1976), the energy change 
due to the introduction of the crack is 
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where the superscripts + and � indicate the shear displacement u1 and normal 
displacement u2 on the top and bottom of the crack face, respectively. These 
displacements are given by Rice (1968b) as 
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where $ and # are the shear modulus and Poisson’s ratio, and r is the distance 
measured from the center of the crack. Substitution of (6.282) and (6.283) into 
(6.281) and integration over the crack face give 

 2 2 34(1 ) 2
3 (2 )

U a#% , �
$ #

2 3�
� � �4 5�6 7

  (6.284) 

The resolved shear and normal stresses can be expressed in terms of the far-field 
Cauchy stress tensor as 
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The change of compliance due to the introduction of the penny-shaped crack is 
given by Rice (1975): 
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where V is the volume of the solid.  Substitution of (6.285), (6.286), and (6.284) 
into (6.287) gives 
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Differentiating (6.288) with respect to �ij and �ji and taking the average of their 
results, we have 
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where 
 2ijkl i k lj j k li i l kj j l ki i j k ln n n n n n n n n n n n8 � � � � #� � � � �   (6.290) 
This fourth-order tensor was first derived by Salganik (1973).  

6.17.2 Effective Compliance for Cracked Bodies 

Consider now a solid containing N penny-shaped cracks of varying size and 
varying orientation n. However, spatial variations of these cracks are assumed 
random. Then, (6.289) and (6.290) can be used to estimate the change of 
compliance as 
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where unit normal n = (sin�cos
, sin�sin
, cos�) and $ and # are the uncracked 
moduli. The overall or effective compliance of any cracked body can then be 
evaluated as 
 0

ijkl ijklijklC C C%� �   (6.292) 

where the superscript 0 denotes the compliance tensor of the uncracked body. 

6.17.3 Noninteracting result for Planar Transverse Isotropy  

For the planar transverse isotropy (PTI) case, all cracks have a normal 
perpendicular to the x1-x2 plane or all normals are parallel to the x3-axis 
(Lekhnitskii, 1963). The spatial distribution is again random. In this case, no 
integration is needed, and we have 

 4(1 )
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$ #
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  (6.293) 
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By setting n1 = n2 = 0 and n3 = 1 and recognizing the following formulas for the 
effective moduli  
 3333 1 /C E� � ,  2323 13134 4 1/C C $� � �  (6.294) 
and  
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2ijkl ik jl jk il ij klC
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we find that  
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We can also consider a hydrostatic compression (�11 = �22 = �33 = �p) and define 
the effective bulk modulus as  
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where �ij is the strain tensor. We obtain  
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Substitution of (6.296) into (6.299) leads to  
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In these formulas, we have adopted the definition of crack density as defined by 
Budiansky and O’Connell (1976) 

 3N a
V

� �   (6.301) 

where the bracket indicates average. These results can be found in Nemat-Nasser 
and Hori (1993). Since interactions between cracks have been ignored, as 
discussed by Willis (1980) these results correspond to the upper 
Hashin�Shtrikman bounds. Taya (1981) obtained these results by Mori-Tanaka’s 
method.   

6.17.4 Planar Transverse Isotropy by Self-Consistent Method 

The self-consistent method is a simple way to estimate the crack interaction by 
assuming the moduli used in (6.291) and (6.293) as the final unknown moduli of 
the crack body. In particular, we have 
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  (6.302) 
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Putting (6.294), (6.295), and (6.293) into (6.292), we obtain  
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These self-consistent results clearly overestimate the crack interaction because 
both moduli become zero for finite values of crack density. Therefore, the self-
consistent method has been criticized by many researchers (e.g., Henyey and 
Pomphery, 1982; Chatterjee et al., 1978; Hudson, 1980; Horii and Sahasakmontri, 
1989). 

6.17.5 Planar Transverse Isotropy by Differential Scheme 

Another method of estimating crack interactions is called the differential scheme 
(Salganik, 1973). In this method, a system of differential equations for the moduli 
is obtained by successively introducing crack groups with increasing sizes into a 
material with the effective moduli at the current cracked stage. Therefore, we 
expect that this approach gives a more accurate result than that obtained by the 
self-consistent method.  
 For the case of planar transverse isotropy, we can make the following 
substitution in (6.303) and (6.304): 
 E E dED �� , d$ $ $D ��    and d� �D  (6.305) 
The resulting differential equations are 
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In this approach, we end up integrating two differential equations. This approach 
has been used by Henyey and Pomphery (1982), Salganik (1973), and Hashin 
(1988). Approximate solutions for (6.306) and (6.307) are given as Problem 6.12. 

6.17.6 Noninteracting Result for Cylindrical Transverse Isotropy 

Another commonly encountered isotropy is called cylindrical transverse isotropy 
(Lekhnitskii, 1963). In this case, normals of all cracks will lie randomly on planes 
parallel to the x1-x2 plane and thus � = �/2. The unit normals become n = (cos
, 
sin
, 0) and (6.291) becomes 
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It is straightforward to show that only the following three moduli are affected by 
the cracks: 
 1111 1/C E� � , 2323 13134 4 1/C C $� � � , *

12124 1/C $�  (6.309) 
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After integration, we find that  
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In addition, if we define 
 1122 2211 /C C E#� � � �  (6.313) 
we have 
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Using the same definition defined in (6.298) we have 

 1 1 ([1 2 2( 2 )]E
EK E

# #� � � ��� �    (6.315) 

Substituting (6.314) and (6.310) into (6.315), we again obtain (6.300). Thus, 
unlike the Young’s and shear moduli the effective bulk modulus is independent of 
the crack distribution. Both self-consistent results and differential scheme results 
can be obtained similar to the case of PTI considered in Sections 6.17.4 and 6.17.5 
(see Problems 6.13 and 6.14).  

6.17.7 Noninteracting Result for Isotropically Cracked Solids 

For the case of isotropy, no simplification can be made to (6.291). After 
integration, we can obtain 
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For isotropically cracked solids, we have  
 3 (1 2 )K E#� �� ��    (6.319) 
Substitution of (6.316)�(6.318) into (6.319) gives again (6.300).   
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 Therefore, the change of bulk moduli is independent of the nature of crack 
distribution, but only a function of the number of cracks. However, this result is 
restricted to noninteracting cases. The corresponding results for self-consistent 
results and differential scheme results can be obtained similarly and the results will 
not be given here (see Problems 6.15 and 6.16).  

6.18 RUDNICKI�CHAU (1996) MULTIAXIAL MICROCRACK MODEL 

The local resolved normal stress � given in (6.285) however does not predict the 
normally observed phenomenon that horizontal tensile stress is developed on a 
vertical crack under uniaxial compression. This local tensile stress can be viewed 
as a consequence of microscale inhomogeneities (Rudnicki and Chau, 1996). In 
view of this, Costin (1985) proposed the following form of local tensile stress: 
 ( )t p q pq p pq qn n f g a n S n� � 1� �    (6.320) 
 
where S is the deviatoric stress tensor defined as: 

 1 ( )
3

tr� �S I� �    (6.321) 

and 
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Figure 6.32 The initial damage surface in deviatoric space 
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where a is the current crack length, a0 is the initial crack length, d1 is a measure of 
the distance between cracks, d is a measure of the size of local tensile zone, and f 
is a controlling parameter on the magnitude of tensile stress. Then, the stress 
intensity factor at the penny-shaped crack is 

 2
tK a� �

�
�    (6.324) 

where �t is given in (6.320). Crack growth initiation will start when K is equal to 
KIC and a = a0, and we have  
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ICK
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�
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� �

1 1� �
� �n S n �   (6.325) 

As shown in Fig. 6.32, the initial damage surface is a cone with a base of an 
equilateral triangle. At the apex, we have 

 1/2
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ICK
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��   (6.326) 

At zero hydrostatic stress, the intercept on Fig. 6.33 is  

 1/2
0

1
2 1( )

ICK
fa

�
�

�
1�

� �n S n   (6.327) 

For the growth of micrcocrack from a0 to a, we can rewrite (6.284) as  

 2 2 24(1 ) 2
(2 )

dU a da# , �
$ #

2 3�
� � �4 5�6 7

  (6.328) 
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� � � �
n

n n   (6.329) 

where 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.33 The initial damage surface in the deviatoric stress-hydrostatic stress space 
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  (6.330) 
When we consider f’ = 0, we recover the classical result without local tensile stress 
induced by compressive stress (see (6.289) and (6.290)).  
 For the case of axisymmetric compression, Rudnicki and Chau (1996) found 
that the change of compliance is caused by vertical cracks (with horizontal unit 
normal of � = 90@) and cracks close to vertical with � = �min which is given by 

 min
( 1)

cos
3 (1 )

a
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f
f

�
�

�
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  (6.331) 

where 
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  (6.332) 

This is the stress at current stress level comparing to the stress at microcrack 
initiation. For numerical results, we refer to Rudnicki and Chau (1996). 

6. 19 SUMMARY AND FURTHER READING  

In this chapter, we start with the stress concentration at an elliptic hole and take the 
minor axis to major axis ratio approaching zero to consider the crack limit. The 
stress singularity at the crack tip is examined. More generally, the universal stress 
singularities at the crack tip under all mode I, mode II, and mode III are considered 
by using William’s (1957) eigenfunction expansion. Energy release and the J-
integral concept are then introduced. Superposition using the Westergaard stress 
function is discussed. The application of the J-integral to the slope problem and 
earthquake mechanics are summarized, following by discussions on the wing crack 
model and size effect. Continuum damage mechanics and compliance of 
microcracked solids are reviewed, including the noninteracting method, the self-
consistent method, and the differential scheme. Finally, we also introduce the 
concept of local tensile stress under deviatoic compression proposed by Costin 
(1983, 1985). 
 There are many good textbooks and reference books on fracture mechanics 
(e.g., Hellan, 1984). Kannien and Popelar (1985), Broberg (1999), and Slepyan 
(2002) compiled many advanced topics and problems in a single volume. The 
book by Shah (1995) is devoted exclusively to fracture mechanics applied to 
concrete and rocks. Atkinson (1987) is an edited book on various topics in rock 
fracture mechanics. Li (1987), Rice (1980), Dmowska and Rice (1986), and 
Rudnicki (1980) applied fracture mechanics to earthquakes and faulting in the 
Earth’s crust, and they are excellent review articles on earthquake mechanics. To 
solve practical fracture mechanics problems, the readers are recommended to first 
look up the problems in a number of stress intensity factor handbooks, including 
Sih (1973), Tada et al. (1973), Murakami (1987), and Rooke and Cartwright 
(1976). Only when such solutions are not available, should one continue to solve 
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the problem analytically or numerically. The numerical simulations of failure 
process of actual solids have been done assuming the Weibull distribution of 
material property variations and the elastic-damage finite element model, and the 
simulations compare favorably with experiments (Tang et al., 2001; Wong et al., 
2001, 2002). Wong et al. (2006) theoretically established the Weibull parameters 
in terms of the microstructures of rocks. 
 Fracture mechanics has also been applied to crack problems in poroelastic 
solids. More notable references include Rudnicki (1987, 1991, 1996), Rudnicki et 
al. (1993), Simons (1977), and Rice and Cleary (1976). The effect of friction has 
been incorporated into crack analysis by Qian and Sun (1998), Sun and Qian 
(1998), Chau and Wang (1998b), Chau and Wong (2009), and Chau et al. (2000, 
2002).  

6. 20 PROBLEMS 

Problem  6.1 Starting from (6.34) and (6.35), show the validity of (6.38) and 
(6.39). 
 
Problem 6.2 Starting from (6.38) and (6.39), show the validity of (6.40) and 
(6.41). 
 
Problem 6.3 Use the Westergaard stress function given in (6.212) for a crack 
of length 2a subject to a pair of point forces P shown in Fig. 6.17 to show that the 
stress intensity factor of a crack problem with two pairs of point forces P applied 
at x1 = b and �b, as shown in Fig. 6.34 below, is 

 
2 2

2
I

P aK
a a b�

�
�

 (6.333) 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.34 A central of length 2a subject to two pairs of point forces at x1 = b and �b 

 
Problem 6.4 Referring to Fig. 6.35, this problem is similar to the analysis in 
Section 6.13, except that the fault is now driven by mode III motion. The upper 
and lower faces are bonded to two rigid bodies and are displaced by w0 along the 
positive x3-direction on the upper surface and by w0 along the negative x3-direction 
on the lower surface. Find the mode III stress intensity factor. 
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Figure 6.35 An elastic slab of thickness 2h and infinite dimensions in the x1- and x3-directions and 

containing a semi-infinite crack 
Answer:  

 0
2

IIIK w
h

$�  (6.334) 

 
Problem 6.5 Referring to Fig. 6.36, this problem is similar to the analysis in 
Section 6.13, except that the fault is now driven by mode I motion. The elastic 
layer is under plane strain condition. The upper and lower faces are bonded to two 
rigid bodies and are displaced by u2 along the positive x2-direction on the upper 
surface and by u2 along the negative x2-direction on the lower surface. Find the 
mode I stress intensity factor. 
 
Answer:  

 2

(1 ) (1 2 )I
Eu hK

h # #
�

� �
 (6.335) 

 
 
 
 
 
 
 
 
 

 
Figure 6.36 An elastic slab of thickness 2h and containing a semi-infinite crack; uniform 

displacement is applied on the upper and lower faces 
 
Problem 6.6  This is a modification to Problem 6.5. Instead of being driven by a 
uniform displacement over the top and bottom surfaces, a uniform pressure � is 
applied on the face of the semi-infinite crack, as shown in Fig. 6.37. The elastic 
layer is under plane strain condition. Find the mode I stress intensity factor. 
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Figure 6.37 An elastic slab of thickness 2h containing a semi-infinite crack subject to pressure 

 
Problem 6.7  Now consider that an elastic layer of thickness h contains two semi-
infinite cracks and both of them are subject to internal pressure � (see Fig. 6.38).  
The elastic layer is under plane strain condition. Find the mode I stress intensity 
factor at the crack tip for both the upper and lower cracks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.38 An elastic slab of thickness h containing two semi-infinite cracks; uniform tension � is 

applied on both of the crack faces 
 

Answer:  1 2
2(1 )IK h# �

#
�

�
�

 (6.337) 

 
Problem 6.8  As shown in Fig. 6.39, an elastic layer of thickness h contains two 
semi-infinite cracks.  The elastic layer is under plane strain condition.  The upper 
and lower faces are bonded to two rigid bodies and are displaced by w0 along the 
positive x3-direction on the upper surface and by w0 along the negative x3-direction 
on the lower surface. Find the mode III stress intensity factor. 

Answer: 0
2

IIIK w
h

$�  (6.338) 
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Figure 6.39 An elastic slab of thickness h containing two semi-infinite cracks   

 
Problem 6.9  Consider an elastic layer of thickness 2h containing a semi-infinite 
crack, as shown in Fig. 6.40. The elastic layer is under plane strain condition.  The 
upper and lower faces are bonded to two rigid bodies and are displaced by u0 along 
the positive x1-axis on the top and along the negative x1-axis at the bottom as 
shown in Fig. 6.40. Find the mode II intensity factor KII. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.40 An elastic slab of thickness h and infinite dimensions in the x1- and x2-directions and 

containing two semi-infinite cracks 
 

Answer: 0

2 (1 ) (1 )II
Eu hK

h # #
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 (6.339) 

 
 
Problem 6.10  Consider an elastic layer of thickness 2h containing a semi-infinite 
crack, as shown in Fig. 6.41. The elastic layer is under plane strain condition. The 
upper and lower faces are bonded to two rigid bodies and are displaced by u0 at 
60@ with the x1-axis as shown. Find a relation between KI and KII. 
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Figure 6.41 The displacement u0 applied at 60@ with the x1-axis 

 

Answer: 2 2 20(5 7 ) [ ]
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 (6.340) 

 
Problem 6.11 Show that the solutions for the differential scheme given in (6.306) 
and (6.307) can be approximated by 
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Problem 6.12 Derive the self-consistent results for the effective moduli of 
isotropically cracked solids discussed in Section 6.17.7. 

Answer:  
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Problem 6.13 Derive the differential scheme results for the effective moduli of 
isotropically cracked solids discussed in Section 6.17.7. 
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Problem 6.14 Derive the self-consistent results for the effective moduli of solids 
with cylindrical transverse isotropy (CTI) discussed in Section 6.17.6. 
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Problem 6.15 Derive the differential scheme results for the effective moduli of 
solids with cylindrical transverse isotropy (CTI) discussed in Section 6.17.6. 
 

Answer: 
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Problem 6.16 Show the validity of the following equation for isotropically 
cracked solids discussed in Section 6.17.7. 
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  CHAPTER SEVEN 
 

Viscoelasticity and Its Applications 

7.1 INTRODUCTION 

Deformation and stress in certain materials are known to vary with time even 
though the external excitations, regardless of displacement or loads, are constant 
with time. In terms of dynamic problems, vibrations in solids are known to damp 
with time. In a sense, there appears a viscous effect in the solid. A solid can exhibit 
such a time effect but remains elastic. In reality, there may be some permanent 
deformation remains in the body, depending on the magnitude of the excitations. 
The theory of viscoplasticity was introduced in Section 5.17. However, if such 
permanent deformation is relatively small, we can model it as viscoelastic. That is, 
when the excitation is removed, the body returns to its original shape and size. 
Theoretical formulation that deals with such a viscoelastic body is called 
viscoelasticity. There are two extremes of viscoelasticity: if viscous response is 
negligible, the solid is purely elastic; if the elastic response is negligible, the 
material is a viscous fluid.  
 Time-dependent creeping has been reported in both rock and soil slopes, and 
deformation in excavated tunnels is often found to increase with time. There have 
been many examples of delayed geomechanical failure after loadings have been 
applied. Therefore, viscoelasticity finds its application in many applications in 
geotechnical problems.  
 A special feature of viscoelastic solids is that their present state of 
deformation cannot be determined if their entire loading history is not known. In 
other words, a viscoelastic body appears to have memory of its entire past. 
Because of this the deformation of viscoelastic solid at time t must be summed 
from its total loading history. In the case of stress relaxation (i.e., imposing strain 
as a controlling parameter), the current stress is a function of the current strain as 
well as its entire strain history. In the case of creeping (i.e., imposing stress as a 
controlling parameter), the current deformation is a function of the current stress as 
well as its entire stress history. If the loading is applied at a different rate, clearly 
because of this memory effect, the response of a viscoelastic solid will also 
change. Therefore, viscoelastic solids should also be considered rate sensitive. The 
actual micromechanism for such a time-dependent effect is still a mystery in most 
materials. If a solid is purely elastic, its response should not depend on how its 
current state is attained through its loading history. In a sense, there must be some 
irreversible processes involved in the deformation process. Energy must have been 
dissipated because as viscous effect is involved. Therefore, viscoelasticity has 
been linked to entropy evolution through irreversible thermodynamics (Fung, 
1965). These irreversible processes have been modeled by using hidden state 
variables and their associated generalized forces. However, such models will not 
be considered here. 
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7.2 BOLTZMANN’S INTEGRAL FORM OF STRESS AND STRAIN  

As mentioned above, the present state of deformation of a viscoelectic solid cannot 
be determined if its entire loading history is not known. Because of this the 
deformation of a body at time t must be summed from the total loading history. In 
particular, stress at time t can be evaluated as: 

 ( , ) ( , )
t kl

ij ijklx t G x t d
�

� , ,
,��

�
� �

��  (7.1) 

where Gijkl is the relaxation tensor. Since stress is a function of time, (7.1) can be 
considered as a relaxation type of stress-strain law. Alternatively, the inverse of 
(7.1) can expressed as 

 ( , ) ( , )
t kl

ij ijklx t J x t d
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� , ,
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�
� �
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where Jijkl is the creeping tensor. Now the strain is a function of time, and (7.2) can 
be considered as a creeping type of stress-strain law. Clearly, Gijkl and Jijkl are not 
independent. Gurtin and Sternberg (1962) showed that if Gijkl is twice 
differentiable and the initial value of it is not zero, the inverse of (7.1) given in 
(7.2) exists and is unique. 
 Solids satisfying the constitutive law in the integral form of (7.1) and (7.2) 
are referred to as Boltzmann solids or, following Volterra’s terminology, the 
viscoelastic solid is the linear heredity solid (Fung, 1965). The integrals in (7.1) 
and (7.2) can also be interpreted as Duhamel integrals. Boltzmann was the founder 
of statistical mechanics in physics. However, he committed suicide because his 
theory on atom structure was opposed by others. This theory became widely 
accepted after his tragic death (see biography section). 
 Because of the symmetric properties of stress and strain, we must have 
 ijkl jikl ijlkJ J J� �  (7.3) 

 ijkl jikl ijlkG G G� �  (7.4) 
In addition, if the deformation starts at t = 0, we also have 
 0ijklG � ,  0ijklJ �  (7.5) 
for �� < t < 0. For isothermal viscoelasticity, a counterpart to Drucker’s postulate 
for plasticity has been proposed by Gurtin and Herrera (1965): 

  
0
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t ij
ij d
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,
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��  (7.6) 

This is called the non-negative work requirement. Gurtin and Herrera (1965) 
deduced from this requirement that 
 (0) 0ijkl ij klG . . � ,   (0) (0)ijkl klijG G�  (7.7) 
and  
 ( ) 0ijkl ij klG . .� � ,   ( ) ( )ijkl klijG G� � �  (7.8) 
for any symmetric tensor .ij. As shown by Christensen (1971), if the Helmholtz 
free energy per unit mass is non-negative, we can have a more restrictive 
requirement: 
 ( ) 0ijklG t �  (7.9) 
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The requirements given by (7.7) have been found consistent with experiments.  
 Regarding the memory effect, we expect that the effect of recent history is 
more profound than more distant history. This common sense is called fading 
memory hypothesis (Christensen, 1971). Mathematically, we can write 
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Similarly, we also have 
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Mathematically, we can also write (7.10) and (7.11) as 
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In fact, all experimentally established Gijkl and Jijkl agree with this fading memory 
hypothesis, as summarized by Christensen (1971). 
 As illustrated in Fig. 7.1, when there is a jump in the strain at t = 0, and with 
all zero strain and stress for t < 0, (7.1) can be written as 
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This integral can be written into another form. By considering a change of variable 
s = t � ,, we have (Fung, 1965) 
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We now apply integration by parts to the last integral in (7.14) as 
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Figure 7.1. Illustration of strain history with jump at initial time 
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Note that we have reversed the limits of integration of the last integral and 
changed back the dummy variable from s to ,. Substitution of (7.15) into (7.14) 
gives 
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Note that (7.16) is equivalent to (7.13). This is the so-called commutative property 
of Stieltjes convolution (see below).  
 For isotropic solids, it can be shown that the following tensor forms apply 
(Lubliner, 1990): 
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Substituting (7.17) into (7.13), we have the following explicit forms: 
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where the deviatoric stress and strain are defined as 
 (1 / 3)ij ij ij kks � � �� � , (1 / 3)ij ij ij kke � � �� �  (7.21) 
Therefore, physically G1 is the relaxation function under shear while G2 is the 
relaxation function under dilatation or contraction. Similarly, the strain integral can 
also be expressed as 
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Therefore, physically J1 is the creep function under shear while J2 is the creep 
function under dilatation or contraction.  

7.3 STIELTJES CONVOLUTION NOTATION 

In the treatment of viscoelasticity, it is convenient to write these integrals in 
Stieltjes convolution notation, which is defined as (Gurtin and Sternberg, 1962) 
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( )( ) ( ) ( ) (0)
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�
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The integral is called the convolution of � and ? and is denoted by a composition 
product form. 
 We first note the following properties of convolution: 
 d d� ? ? �` � `    (cummutativity) (7.25) 
 ( ) ( )d d d d d d� ? 
 � ? 
 � ? 
` ` � ` ` � ` `   (associativity)  (7.26) 
 ( )d d d� ? 
 � ? � 
` � � ` � `   (distributivity)  (7.27) 
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 0d� ?` �   implies   0� 9  or 0? 9   (7.28) 
Note that the scalar functions � and ? can be extended to tensors. Clearly, the 
commutative property given in (7.25) was proved in the last section by the change 
of variable and integration by parts (compare (7.13) and (7.16)). With the Stieltjes 
convolution notation, the stress and strain integrals now become  
 ij ijkl kl kl ijklG d dG� � �� ` � `    (7.29) 
 ij ijkl kl kl ijklJ d dJ� � �� ` � `    (7.30) 
For isotropic solids,  
 1 1ij ij ijs G de e dG� ` � `    (7.31) 
 2 2kk kk kkG d dG� � �� ` � `    (7.32) 
 1 1ij ij ije J ds s dJ� ` � `   (7.33) 
 2 2kk kk kkJ d dJ� � �� ` � `   (7.34) 
If Gijkl, Jijkl, G1 and G2 are step functions, these convolution integrals can be 
reduced to the elastic Hooke’s law. 
 In the next section, we present constitutive models for viscoelastic solids in 
terms of the differential equation form. 

7.4 STRESS-STRAIN RELATION IN DIFFERENTIAL EQUATION FORM  

 For the convenience of comparison with viscoelastic material, the 
constitutive relations of isotropic linear elastic materials are first given in terms of 
deviatoric and hydrostatic stresses as 
 2ij ijs e$� ,  3kk kkK� ��  (7.35) 
Note that for fluids under small pressure and undergoing small deformation 
gradient, we have approximately 

 2 * ij
ij

e
s

t
$

�
�

�
,  3 * kk

kk t
�

� /
�

�
�

 (7.36) 

where $* and /* are the coefficients of viscosity of the fluid. Comparison of 
(7.35) and (7.36) shows that the constitutive laws for solids and fluids differ only 
by the rates of deviatoric strain. 
 For linear isotropic viscoelastic materials, the time-dependent constitutive 
relation can, in general, be expressed in a differential form as (Flugge, 1967) 
 1 1( ) ( ) ( ) ( )ij ijP t s t Q t e t� ,   (7.37) 

 2 2( ) ( ) ( ) ( )kk kkP t t Q t t� ��  (7.38) 
where P1 , P2, Q1, and Q2 are polynomials of the time differential operator �/�t. In 
explicit form, (7.37) can be expressed as 

2 2

0 1 2 0 1 22 2

( ) ( ) ( ) ( )
( ) ... ( ) ...ij ij ij ij

ij ij
s t s t e t e t

p s t p p q e t q q
t tt t

� � � �
� � � � � � �

� �� �
  (7.39) 

Similarly, (7.38) can also be expanded in differential form like (7.39). Note also 
that we have dropped the explicit spatial dependence of stress and strain, but they 
are implicitly understood as functions of position x.  



262   Analytic Methods in Geomechanics  

�

1. 2.
2.1.

�

�

(a) (b) (c) 

B

$
$ B 1$

2B

2$

 We can see that (7.37) and (7.38) are natural generalizations of (7.35) and 
(7.36) to include both elastic and viscous behavior. In the process, we have also 
included higher derivatives as well as adding differential operators on the 
deviatoric stress. Therefore, both elastic deformation and viscous flow can be 
obtained as special cases of viscoelastic models. Another motivation for having the 
differential form given in (7.37) and (7.38) probably originated from equivalent 
mechanical models for viscoelastic solids proposed by Maxwell, Voigt, and 
Kelvin. Figure 7.2 shows some of the commonly adopted models in viscoelasticity. 
The applied stress � is shear stress and the deformation is engineering shear strain 
.. They were made by various combinations of elastic spring and viscous dashpot. 
Clearly, the instantaneous elastic deformation is modeled by the spring whereas 
the time-dependent viscous flow is modeled by the dashpot. For example, the 
Maxwell model put a spring and a dashpot in series, whereas the Voigt or Kelvin 
model put a spring and a dashpot in parallel, as shown in Fig. 7.2.    

7.4.1 Maxwell Model 

Referring to the Maxwell model shown in Fig. 7.2(a), the shear stresses for both 
dashpot and spring are the same and equal: 

 2
1 t

.
� $. B

�
� �

�
  (7.40) 

The total shear strain is the sum of the strain from dashpot and spring and leads to 

 1 2 (1 ) (1 )
t t t t t

. .. BB B B � , �
$

� �� � �
� � � � � �

� � � � �
  (7.41) 

where , = B/$ is the relaxation time. The third part of (7.41) is a consequence of 
applying (7.40). Therefore, for Maxwell solids the polynomial differential 
operators are, by comparing (7.41) and (7.39),  

 1( ) 1P t
t

, �
� �

�
,    1( ) 2Q t

t
B �

�
�

 (7.42) 

 
 

 
 

 
Figure 7.2. Mechanical models: (a) Maxwell, (b) Voigt�Kelvin, (c) standard linear solid 
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Note that the Maxwell solid will sustain a permanent deformation even if an 
applied load is removed permanently. This is because the dashpot is in series with 
the spring. Because of this, the Maxwell solid is sometimes referred to as the 
Maxwell fluid. 

7.4.2 Kelvin�Voigt Model 

Similarly, by considering the force equilibrium and strain compatibility the 
corresponding differential form of the Voigt or Kelvin model shown in Fig. 7.2(b) 
is: 

 ( )
t

� $ B .�
� �

�
  (7.43) 

Thus, we have the differential operator for the Voigt or Kelvin model as: 

 1( ) 1P t � ,    1( ) 2( )Q t
t

$ B �
� �

�
 (7.44) 

Note that Kelvin�Voigt model does not allow instantaneous deformation because 
the dashpot is in parallel with the spring. 

7.4.3 Three-Parameter Model 

In the standard linear model, the viscoelastic behavior of materials can be 
represented by an elastic spring (with shear stiffness of $1) connected in series 
with a Kelvin or Voigt solid (an elastic spring of shear stiffness $2 in parallel with 
a dashpot of viscoelastic constant B2). The standard linear solid was also called the 
“three-parameter body” (Flugge, 1967) or “generalized Kelvin body” (Lama and 
Vutukuri, 1978; Goodman, 1989). For the standard linear solid or three-paramater 
model A shown in Fig. 7.2(c), the differential form is 

 2 1
2 2

1 2 1 2
(1 ) ( )

t t
B $

� $ B .
$ $ $ $

� �
� � �

� � � �
  (7.45) 
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( ) ( )Q t

t
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$ B
$ $

�
� �

� �
 (7.46) 

For the three-parameter models, we have four possible combinations. The one 
shown in Fig. 7.2(c) is called the standard linear solid, and the three other 
combinations are shown in Fig. 7.3(b�d). Here we called them three-parameter 
model A, model B, model C and model D. Note that Fung (1965) called the model 
B shown in Figure 7.3(b) standard linear solid instead of model A. However, 
model A is more often called the standard linear solid (Haddad, 1995).   
 The corresponding constitutive law for the three-parameter model B is: 

 2 2 1 1(1 ) [( 1) ]
t t

, � , $ $ .� �
� � � �

� �
  (7.47) 
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Figure 7.3. Three-parameter models: (a) standard linear solid A (b) model B, (c) model C, 

 (d) model D 

 1 2( ) (1 )P t
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 (7.48) 

where ,2 = B2/$2 is the relaxation time. The differential form of the three-parameter 
model C is 
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  (7.49) 
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The differential form of the three-parameter model D is 

 
2

2 2 1 2 1 2(1 ) [( ) ]
t t t

, � B B , B .� � �
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� � �
  (7.51) 

 1 2( ) (1 )P t
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, �
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 (7.52) 

The proof of these equations is considered in Problem 7.12. 
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7.4.4 Generalized Maxwell and Kelvin Models 

The more general models are given in Fig. 7.4 as the generalized Maxwell model 
and generalized Kelvin model. By noting that the strain is the same for each of the 
Maxwell elements shown in Fig. 7.4(a), we find the following differential form of 
the stress-strain law for the generalized Maxwell model: 

 1 1
0 1

1 1

( / )( / )
... ( / )

( / ) ( / )
n n

n
n n

tt t
t t

$ B$ B
$ B . �

$ B $ B �
� �� �� �

� � � � � � ��  
� � � � � �! "

  (7.53) 

By noting that the stress through each Kelvin�Voigt element shown in Fig. 7.4(b) 
is the same, the differential form of the stress-strain law for the generalized Kelvin 
model becomes  

  
0 1 1 1

1 1 1 1...
( / ) ( / ) ( / )n n nt t t

� .
$ $ B $ B B �

� �
� � � � ��  

� � � � � � � �! "
  (7.54) 

 Although there are some concerns about the mechanical base models 
presented in this section (e.g., Christensen, 1971), Section 13.8 of Fung (1965) 
illustrated that the irreversible thermodynamics-based constitutive model between 
generalized force and generalized displacement has the same mathematical form as 
the generalized Maxwell model. Thus, spring-dashpot type models did provide a 
simple way to interpret viscoelastic solids.  

7.5 STRESS-STRAIN RELATION IN LAPLACE TRANSFORM SPACE  

Viscoelastic problems modeled by constitutive law (7.37) and (7.38) can be solved 
by using integral transforms. As mentioned by Christensen (1971), either the 
Laplace transform or the Fourier transform can be applied to consider the time 
dependence of the viscoelastic problems. We only consider the Laplace transform 
in this section.  

 
Figure 7.4. Generalized Maxwell (a) and Kelvin (b) models 
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 Taking the Laplace transform of (7.37) and (7.38) and assuming a zero stress 
and strain state prior to time t = 0, we have 
 1 1

ˆˆ ˆ ˆ( ) ( ) ( ) ( )ij ijP s s s Q s e s�  (7.55) 

 2 2
ˆˆ ˆˆ( ) ( ) ( ) ( )kk kkP s s Q s s� ��  (7.56) 

where ˆ ( )ijs s  represents the Laplace transform of ( )ijs t  as 

 
0

ˆ ( ) ( ) ( ) st
ij ij ijs s s t s t e dt

� �2 3� �6 7 �L  (7.57) 
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i st
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� ��

� �
� � �L  (7.58) 

More details on the Laplace transform can be found in Appendix B. We can also 
apply the Laplace transform to (7.31)�(7.34), and obtain the following constitutive 
law in terms of creep function and relaxation function: 
 1

ˆˆ ˆ( ) ( ) ( )ij ijs s sG s e s�  (7.59) 

 2
ˆ ˆˆ ( ) ( ) ( )kk kks sG s s� ��  (7.60) 

 1̂ˆ ˆ( ) ( ) ( )ij ije s sJ s s s�  (7.61) 

 2
ˆˆ ˆ( ) ( ) ( )kk kks sJ s s� ��  (7.62) 

To obtain the above results, we apply the following Faltung or convolution 
theorem of the Laplace transform (Sneddon, 1951): 

 
0

ˆˆ( ) ( ) ( ) ( )
t
g f t d g s f s, , ,2 3� �4 56 7�L  (7.63) 

The proof of this is given in Appendix B. We can also rewrite this constitutive law 
in the Laplace transform space by defining equivalent shear modulus, bulk 
modulus, Poisson’s ratio, and Lamé’s constants as 
 ˆ ˆ( ) 2 ( ) ( )ij ijs s s e s$� � ,  ˆˆ ( ) 3 ( ) ( )kk kks K s s� �� �  (7.64) 
where the new moduli of the viscoelastic material in Laplace transform space can 
be expressed as 
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7.5.1 Viscoelastic Solids with Elastic Bulk Modulus 

For engineering applications, it is normally assumed that there is no viscoelastic 
effect under isotropic compression and the viscous effect only appears under shear 
stress as is assumed in the spring-dashpot�based models shown in the previous 
section. More specifically, we can set 
 2 2

ˆ ˆ( ) / ( ) 3Q s P s K�   (7.70) 
where K is not a function of s. For such a case, equations (7.65)�(7.69) can be 
simplified to 
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Note of course that G2 and J2 do not exist for this case as the solid does not exhibit 
viscoelastic responses. 

7.5.2 Maxwell Solids 

For Maxwell solids, the Laplace transform of (7.42) gives 
 1( ) 1P s s,� �  (7.75) 
 1( ) 2Q s sB�  (7.76) 
Substitution of (7.75) and (7.76) into (7.71)�(7.74) gives the following equivalent 
moduli of the Maxwell solids in the transformed space: 
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As remarked earlier, Maxwell solids are also referred to as Maxwell fluids since 
there are continuous creeping displacements. 
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7.5.3 Kelvin-Voigt Solids 

For Kelvin�Voigt solids, the Laplace transform of (7.44) gives 
- 1( ) 1P s �  (7.82) 
 1( ) 2( )Q s s$ B� �  (7.83) 
The equivalent moduli of the Kelvin�Voigt solids in the transformed space 
become 
 2 ( ) 2( )s s$ $ B� ��  (7.84) 
 3 3K K��  (7.85) 
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7.5.4 Standard Linear Solid and Three-Parameter Models 

For a standard linear solid or the three-parameter model A, the Laplace transform 
of (7.46) gives (Bland, 1960) 
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These results are obvious in view of (B.11) of Appendix B.3. For the three-
parameter model A, the equivalent moduli in the transformed space can be 
obtained by substituting (7.89) and (7.90) into (7.71)�(7.74): 
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For the three-parameter model B, the Laplace transform of (7.48) gives 
 1 2( ) 1P s s,� �  (7.96) 
 1 1 2 1( ) 2[( 1) ]Q s s$ , $� � �  (7.97) 
Similarly, it is straightforward to show that the equivalent moduli for the three-
parameter model B in the transformed space become 
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For the three-parameter model C, by virtue of (B.11) and (B.12) of Appendix B.3 
the Laplace transform of (7.50) gives 
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In view of (7.103) and (7.104), the equivalent moduli for the three-parameter 
model C in the transformed space become 
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Following the procedure used for model C above, the Laplace transform of (7.52) 
for the three-parameter model D gives 
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Subsequently, the following equivalent moduli for the three-parameter model D in 
the transformed space are obtained: 
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7.6 CORRESPONDENCE PRINCIPLE  

When inertia effects are not negligible in solving elasticity problems, dynamic 
terms need to be included. The Laplace transform is a useful mathematical tool to 
solve dynamic problems involving time derivatives. The transformation translates 
the time derivative to an algebraic problem with respect to parameter s. After the 
algebraic equation in s is solved, the solution is translated back to the time domain. 
But, of course, the inverse transform may not be easily obtained analytically and a 
numerical or approximate method may be needed. In a sense, viscoelastic 
problems are somehow similar. 
 The corresponding principle was first deduced by Lee (1955) for viscoelastic 
solids subject to proportional loadings, and Lee was awarded the Timoshenko 
medal in 1976 (see biography section). For proportional loadings, he observed that 
spatial dependence of a transformed viscoelastic solution is the same as that of a 
geometrically similar elastic solid if the spatial dependence of the prescribed 
boundary is the same for both problems. Laplace transform can be applied to 
viscoelastic problems and the transformed problem involving parameter s can 
normally be put into the same mathematical form as linear elasticity problems.  
Note from the last section that constitutive law in viscoelasticity in the Laplace 
transform space is also a function s. The Laplace parameter s can simply be 
considered a constant in solving the associated elastic problems. Therefore, if the 
associated elastic problems can be solved, the viscoelasticity solution can be 
obtained by taking the inverse transform back to the time domain.  This 
identification of a problem in linear elasticity with one in viscoelasticity in the 
transform space s is called correspondence principle.   
 Note that this method applies as long as the space and time dependence of 
the prescribed loading and displacements appear as separate factors with a 
common time factor (i.e., separation of variables). In principle, the Fourier 
transform can also be used to solve viscoelastic problems. It is particularly useful 
in tackling problems with loading applied in a harmonic manner (e.g., see Section 
9.9 of Chapter 9). However, for suddenly applied load (or load applied as a unit-
step function) the Fourier transform is not applicable, and instead the Laplace 
transform should be used.  
 In the following discussion, we will restrict ourselves to quasi-static 
viscoelastic problems (i.e., problems in which the inertia effect can be neglected).  
Table 7.1 summarized the similarity and correspondence between the static elastic 
problem and the quasi-static viscoelastic problems. In Table 7.1, S� and Su are the 
traction and displacement boundaries of the solid, respectively. The last row 
indicates that the elastic solution can be used to obtain the viscoelastic solution in 
the transform space by replacing the elastic moduli by the equivalent moduli in 
terms of s and the loading by transformed loading.  
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Table 7.1 Correspondence of elastic and viscoelastic problems 

 
Parameter Elastic  Viscoelastic in Laplace Space 
Displacement ( )u x   ˆ( , )su x   
Stress ( )x�   ˆ ( , )sx�  
Equilibrium ( ) 0� �� x F��   ˆ ( , ) ( ) 0s s� �� x F��  
Strain ( )x�   ˆ( , )s� x  
Constitutive 
Law 

( ) 2 ( )$�s x e x  
( ) 3 ( )kk kkK� ��x x

 

 ˆ ˆˆ( , ) 2 ( ) ( , )s s s$�s x e x  
ˆ ˆˆ ( , ) 3 ( ) ( , )kk kks K s s� ��x x  

Boundary 
Condition 

�n = f�  on S� 

u = g       on Su 
 ( ) ( )s s�n = f�  on S� 

( ) ( )s su = g       on Su 
 

Solution Available elastic 
solution: 

( , )$ #u = u x g, f, ,
 

substitutions
ˆ( )s# #&
ˆ ( )s$ $&
ˆ ( )s &f f
ˆ( )s &g g  

Solution in transform space: 
ˆ ˆ ˆˆ[ , ( ) ( ) ( ), ( )]s s s s$ #u = u x g , f , 

Solution in time domain: 
1 ˆ{ ( , )}s�Lu = u x  

 
 Regarding the boundary conditions, if a suddenly applied load is imposed on 
the traction boundary, we have  

 0 0
1[ ( )] [ ( )]t H t
s

� �L Lf f f  (7.117) 

 0 0[ ( )] [ ( )]t t�� �L Lf f f  (7.118) 
The proof of the last equation in (7.117) and (7.118) on the Laplace transform of 
Heaviside step function and the Dirac delta function is given in Appendix B.4.  
 Finally, the viscoelastic solution in transform space can be converted back to 
time domain by applying the inverse Laplace transform. Some useful formulas for 
the inverse Laplace transform are given in Table B.1 in Appendix B.5. 

7.6.1 Boussinesq Problem for Maxwell Half-Space  

Consider the problem of a concentrated point force applied on the surface of a 
half-space or the so-called Boussinesq problem considered in Chapter 4. The 
elastic solution is given in (4.152) and (4.153) of Chapter 4. Applying the 
correspondence principle, the solutions in transform space become 

2

ˆ ˆ( ) [1 2 ( )]ˆ ( ) { }
ˆ4 ( )r

P s rz s ru s
s R R zR

#
�$

�
� �

�
,  

2

2

ˆ ( ) ˆˆ ( ) {2[1 ( )] }
ˆ4 ( )z

P s zu s s
s R R

#
�$

� � �   

       (7.119) 
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�
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�

,    2

ˆˆ[1 2 ( )] ( )ˆ ( ) ( )
2

s P s z Rs
R R zR



#�
�

�
� �

�
  

3

5

ˆ3 ( )ˆ ( )
2zz
P s zs

R
�

�
� � ,  

2

5

ˆ3 ( )ˆ ( )
2rz
P s z rs

R
�

�
� �  (7.120) 

The inversion of the Laplace transform for stresses only involves: 
1 ˆ[ ( )] ( )P s P t� �L ,  1

1
ˆ ˆ{ ( )[1 2 ( )]} ( )P s s t#� � �L Z ,  1

2
ˆ ˆ{ ( )[1 ( )]} ( )P s s t#� � �L Z  

 (7.121) 
for the case that the point load is applied suddenly as P0H(t), such that 

0 0
1ˆ( ) [ ( )]P s P H t P
s

� �L  (7.122) 

where H(t) is a Heaviside step function. By further assuming that the viscoelastic 
half-space is a Maxwell solid, we have 
 3 (3 2 )1 2 ( ) 1 2[ ]

6 (6 2 )
K K ss
K K s

, B#
, B

� �
� � �

� �
�  (7.123) 

Combining (7.122) and (7.123), and simplifying the result by partial fraction 
yields 

 0 0
1

1ˆ( )[1 2 ( )] [ ]P s s P
s

# �
�

� �
�

�  (7.124) 

where  

 0
6

6 2K
B�

, B
�

�
,  1

6
6 2

K
K

�
, B

�
�

 (7.125) 

By referring to Appendix B, (7.124) can be inverted to give 
 11

0 0
ˆ{ ( )[1 2 ( )]} ( )tP s s P e H t�# � �� � ��L  (7.126) 

Similarly, the inversion for uz involves the following inversion: 

 11 0
0

ˆ{ ( )[1 ( )]} {1 } ( )
2

tP
P s s e H t�# � �� � � ��L  (7.127) 

The inversion is now complete and the final results are 
2

0 1
02 3

3( ) { } ( )
2

t
rr

P R r zt e H t
R zR R

�� �
�

�� �
�

,  0 1
2( ) ( ) ( )

2
tP z Rt e H t
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3
( ) ( )
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t H t
R

�
�

� � ,  
2

0
5

3
( ) ( )

2rz
P z r

t H t
R

�
�

� �  (7.128) 

Note that the elastic solution cannot be recovered as a special case either for t & � 
or t & 0 because the dashpot movement is not restricted by the spring. Similarly, 
the displacement can also be obtained as  

0
1 22( ) { ( ) ( )} ( )

4r
P rz ru t f t f t H t

R R zR�$
� �

�
, 

2
0

3 12( ) {2 ( ) ( )} ( )
4z

P zu t f t f t H t
R R�$

� �  

  (7.129) 
where time functions f1, f2, and f3 are given in Problem 7.13. The details of the 
analysis are left as a problem for the reader. 
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Figure 7.5. Boussinesq problem on viscoelastic half-space 

7.6.2 Boussinesq Problem for Kelvin�Voigt Half-Space  

For the case that the point load is applied suddenly as P0H(t) on the surface of a 
Kelvin-Voigt half-space, we have 

 3 2 21 2 ( ) 1 2[ ]
6 2 2

K ss
K s

$ B#
$ B

� �
� � �

� �
�  (7.130) 

Combining (7.122) and (7.130), and simplifying it by partial fraction yields 

 0 1
2

1 2 1ˆ( )[1 2 ( )] ( )P s s P
s s
0# 0

0
K L�

� � �N O
�P Q

�  (7.131) 

where  

 3 2
6 2

K
K

$0
$

�
�

�
,  1

9
3

K
K

0
$

�
�

,   2
6 2

2
K $0

B
�

�  (7.132) 

By referring to Appendix B, (7.131) can be inverted to give 
 21

0 1
ˆ{ ( )[1 2 ( )]} {(1 2 ) } ( )tP s s P e H t0# 0 0 �� � � � ��L  (7.133) 

Similarly, the inversion for uz involves the following inversion: 

 21
0 1

1ˆ{ ( )[1 ( )]} {(1 ) } ( )
2

tP s s P e H t0# 0 0 �� � � � ��L  (7.134) 

The inversion gives the displacements and stresses as 
0

1 22( ) { ( ) ( )} ( )
4r

P rz ru t g t g t H t
R R zR�$

� �
�

 (7.135) 

2
0

3 12( ) {2 ( ) ( )} ( )
4z

P zu t g t g t H t
R R�$

� �  (7.136) 

2
0 2

12 3
3( ) { [(1 2 ) ] } ( )
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rr
P R r zt e H t
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 (7.137) 
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 (7.138) 
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where the time functions g1, g2, and g3 are given in Problem 7.14 and left as an 
exercise for the reader. For t & �, we can see that the elastic stresses are 
recovered. However, this is not true for Maxwell half-spaces.  

7.6.3 Boussinesq Problem for Three-Parameter Model A  

For the case that the point load is applied suddenly as P0H(t) on the surface of a 
three-parameter model A or standard linear solid half-space, we have 
 1 2 1 2 2 1

1 2 1 2 2 1

3 ( ) 2 (3 2 )
1 2 ( ) 1 2[ ]

6 ( ) 2 (6 2 )
K K ss
K K s

$ $ $ $ B $
#

$ $ $ $ B $
� � � �

� � �
� � � �

�  (7.140) 

 0 1
2

1 2 1ˆ( )[1 2 ( )] ( )P s s P
s s
0# 0

0
K L�

� � �N O
�P Q

�  (7.141) 

where  

 1 2 1 2

1 2 1 2

3 ( ) 2
6 ( ) 2

K
K

$ $ $ $
0

$ $ $ $
� �

�
� �

,  
2
1

1
1 1 2 1 2

9
(3 )[3 ( ) ]

K
K K

$
0

$ $ $ $ $
�

� � �
,    

 1 2 1 2
2

2 1

3 ( )
(3 )

K
K

$ $ $ $
0

B $
� �

�
�

 (7.142) 

Note that mathematical forms for the Laplace inverses for stresses are exactly the 
same as those for the Kelvin�Voigt half-space. Therefore, the final solutions will 
not be repeated here. For t & �, similar to the Kelvin�Voigt model, the elastic 
solution is recovered as a special case, provided that the following identification is 
made: 
 1 2

1 2( )
$ $

$
$ $� �

�
 (7.143) 

where $� is naturally called the long-term shear modulus. From Fig. 7.2(c), we can 
see that initial shear deformation is only proportional to $1 since the spring within 
the Kelvin�Voigt unit cannot respond instantaneously because of the viscous 
dashpot. Therefore, naturally we have 
 10$ $�  (7.144) 
where $0 is naturally called the initial shear modulus. Another parameter 
commonly used is the relaxation time, defined as: 
 2

1 2
G

B
,

$ $
�

�
 (7.145) 

Since their physically meanings are well defined, it is sometimes more convenient 
to write the parameters of the standard linear solid in terms of these newly defined 
parameters as 

 1 0$ $� ,   0
2

0

$ $
$

$ $
�

�
�

�
,   

2
0

2
0

( ) G
$

B ,
$ $�

�
�

 (7.146) 
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The displacements are given in Problem 7.15 and left as an exercise for the reader. 

7.7 CREEPING AND RELAXATION TESTS  

To calibrate the material constants in the viscoelastic models, either a creeping test 
or a relaxation test has to be conducted. Creeping compliance and the relaxation 
modulus for various models are considered in this section. 

7.7.1 Maxwell Material  

7.7.1.1 Creeping Test  

In creeping tests, a constant stress is suddenly applied at t = 0:  
 

0 ( )H t� ��     (7.147) 
Then the evolution of the strain is measured as a function of time. This measured 
function can then be used to calibrate the material constants for any viscoelastic 
models. For the case of the Maxwell model, we have (see (7.41)) 

 d d
dt dt
� .� , B� �  (7.148) 

where , = B/$ is the relaxation time. Because of the jump at t = 0, there is a 
singularity of the time derivative of stress at t = 0. Integration of (7.148) around 
the vicinity of t = 0 gives 

 [ ( ) ( )] [ ( ) ( )]dt
,

,
� , � , � , B . , . ,

�

�
� � � � � ��  (7.149) 

Considering the limit that , & 0, and noting that the first integral shrinks to zero, 
we have 
 (0 ) (0 ),� B.� �� ,  or 0 0,� B.�  (7.150) 
This equation gives an initial condition for the stress and strain. We now return to 
the creeping test situation by setting � = �0 and d�/(dt) = 0 in (7.148) and integrate 
the resulting equation once with respect to time to obtain 
 0t CB. �� �  (7.151) 
Setting t = 0 in (7.151) and using the initial condition (7.150), the integration 
constant can be determined, and the final representation for the strain under 
creeping test is 

 0( ) ( )t t
�

. ,
B

� �  (7.152) 

The creeping compliance can be obtained as 

 1
0

( ) 1( ) ( )
2 2

tJ t t. ,
� B

� � �  (7.153) 

This creeping prediction is shown in Fig. 7.6(a). This result shows that there is an 
instantaneous strain response at t = 0, followed by a linear increasing strain. The 
material is more like fluid than solid. This appears not to be agreeable with 
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creeping experiments on most geomaterials, unless under high temperature and 
pressure.  

7.7.1.2 Relaxation Test  

For the stress relaxation test, we impose  
  

0 ( )H t. .�      at 0t �     (7.154) 

By substituting (1.754) into (7.148), we get  

 0d
dt
�� ,� �  (7.155) 

Integrating (7.155) once and setting � = �0 at t = 0 results in  
 /

0( ) tt e ,� � ��  (7.156) 
Substitution of the initial condition (7.150) into (7.156) gives the relaxation 
modulus: 

  /
1

0

( )( )
2

ttG t e ,� $
.

�� �  (7.157) 

This relaxation behavior is illustrated in Fig. 7.7(a).  
 
 

Figure 7.6. Creep function of (a) Maxwell, (b) Kelvin�Voigt, (c) standard linear solid (after Fung, 
1965) 

 

 
Figure 7.7. Relaxation function of (a) Maxwell, (b) Kelvin�Voigt, (c) standard linear solid (after 

Fung, 1965) 
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7.7.2 Kelvin-Voigt Material  

7.7.2.1 Creeping Test  
From (7.43), the stress-strain law for the Kelvin�Voigt model is 

 ( )d
dt
.� $. B� �  (7.158) 

Using the creeping test condition in (7.158), we have 

 0 d
dt

� .. ,
$

� �  (7.159) 

where , is again the relaxation time. It is straightforward to show, by back-
substitution, that . has the following solution form: 

 /0 tCe ,�
.

$
�� �  (7.160) 

Substitution of the initial condition .(0+) = 0 gives the final solution 

  /
1

0

( ) 1( ) (1 )
2 2

ttJ t e ,.
� $

�� � �  (7.161) 

This function is plotted in Fig. 7.6(b). According to the creeping test, a 
Kelvin�Voigt solid does not undergo an instantaneous strain response but instead 
strain grows exponentially with time.  

7.7.2.2 Relaxation Test  
Imagine that after we started the creeping test considered in the previous section, 
we suddenly stop the strain at t = t1 and keep it at a constant value for t > t1 : 
  

0. .�      for   1t t>     (7.162) 

By substituting (7.162) into (7.161) and (7.160), we get  
 /1

1 0( ) (1 )tt e ,� � �� �  (7.163) 
and from (7.161) with a corresponding strain of 

 /0 1
1( ) (1 )tt e ,�

.
$

�� �  (7.164) 

 We now define the Dirac delta function and observe its relation with the 
Heaviside step function before we proceed. As shown in Fig. 7.8, the derivative of 
the Heaviside step function is everywhere zero except at the origin where its 
differentiation becomes infinite. This is precisely the definition of the Dirac delta 
function. Mathematically, the Dirac delta function is defined as 
 ( ) 0t� �     for 0t �  (7.165) 
 ( )t� � ��   for 0t �  (7.166) 

 
0

0
( ) ( ) 1t dt t dt� �

���

���
� �� �    (7.167) 

 ( ) ( )dH t t
dt

��    (7.168) 
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Figure 7.8. Dirac delta function and Heaviside step function 
 
For any arbitrary continuous function f(t) at t = 0, we have  

 ( ) ( ) (0)f t t dt f
�

�
�

�

�
��   (7.169) 

where � > 0. The distribution sense of the Dirac delta function is defined in (7.167) 
while its relation with the Heaviside step function is given in (7.168).  
 
 We now return to (7.164) and consider the following limit as t1 & 0: 

  / 20 0 0 11 11
1 1

1( ) (1 ) [1 1 ( ) ...]
2

t tt t
t e ,� � �

. .
$ $ , , B

�� � � � � � � � )  (7.170) 

This gives 

 0 1
1

t�
.

B
�  (7.171) 

Therefore, when t1 & 0, we must have �0
 & �. However, right after t1 we have 

imposed a constant strain of .1. Subsequently, we can set the strain  
 1 1( ) ( ) ( )t t H t� B. � $.� �  (7.172) 
Finally, we have 

 1
1

( )( ) ( ) ( )
2

tG t t H t� B� $
.

� � �  (7.173) 

This relaxation function is plotted in Fig. 7.7(b). This again may not be realistic 
since the load cell used in the laboratory has finite capacity, and thus (7.172) 
cannot be verified easily by experiments.  

7.7.3 Three-Parameter Model A or Standard Linear Solid  

7.7.3.1 Creeping Test  
From (7.45), the stress-strain law for the three-parameter model A or standard 
linear solid is 
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 1 2
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1 2
(1 )G Gt t

$ $ ., � . $ ,
$ $

� �
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  (7.174) 

where ,G is defined in (7.145). Using (7.143)�(7.145), we first rewrite (7.174) in 
the following form: 

 0(1 )G Gt t
., � $ . $ ,�

� �
� � �

� �
  (7.175) 

Taking the Laplace transform of the boundary condition (7.147) for the creeping 
test, we have  

 0ˆ ( )s
s

�
� �      (7.176) 

Taking the Laplace transform of (7.175), we have 
  0 ˆˆ(1 ) ( )G Gs s, � $ $ , .�� � �   (7.177) 
Then, substitution of (7.176) into (7.177) leads to 

 0 0
1 ˆ( ) ( )G G s
s

, � $ $ , .�� � �   (7.178) 

Rearrangement of (7.178) results in 
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Now, we define another relaxation time as: 

 02
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G$ ,B
,

$ $�
� �   (7.180) 

With this second relaxation time, (7.179) becomes 
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Using the formulas given in Appendix B, we obtain the inversion of the Laplace 
transform of (7.181) as  
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Considering the limit case of t & 0 and t & �, we have 

 0

0
(0 )

�
.

$
� �   (7.183) 

 0( )
�

.
$�

� �   (7.184) 

These physical meanings of $0 and $� again agree with our observations from the 
result of the Boussinesq problem for viscoelastic half-space considered in Section 
7.6.3. The creeping compliance becomes 
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  (7.185) 

The first equation in (7.185) is similar to the form given by Fung (1965), whereas 
the last one in (7.185) was derived by Chau and Wong (2009) for the standard 
linear solid. All the equations given in (7.185) are equivalent, depending on what 
parameters we use to define the constitutive model. The evolution of (7.185) is 
plotted in Fig. 7.6(c). 
 
7.7.3.2 Relaxation Test  
Taking the Laplace transform of the boundary condition (7.154) for the relaxation 
test, we have  

 0ˆ( )s
s
.

. �      (7.186) 

Substitution of this condition in (7.177) gives the following differential equation: 
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0ˆ(1 ) ( )G Gs s

s
.

, � $ $ ,�� � �   (7.187) 

Rearrangement of (7.187) results in 
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  (7.188) 

Using the formulas given in Appendix A, we obtain the inversion of the Laplace 
transform of (7.188) as  
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Again, considering the limit case of t & 0 and t & �, we have 

 2
0 0 0(0 )

G

$ ,
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� �� �   (7.190) 

 0( )� $ .�� �   (7.191) 
The physical meanings of $0 and $� in (7.190) and (7.191) are obvious and are 
similar to those by (7.183) and (7.184). From (7.189), the relaxation modulus can 
be obtained as  
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The first equation in (7.192) is the same as that given by Fung (1965), whereas the 
last one in (7.192) is the same as that given by Flugge (1967). This function is 
plotted in Fig. 7.7(c). 
 
7.7.3.3 Relaxation Test in Compression  
Although most of the formulas available in textbooks are for shear relaxation or 
creeping test, in reality shear test is seldom conducted because of its complexity. 
More often, the uniaxial compression test is conducted, for creeping or for 
relaxation. Therefore, it is important to relate the uniaxial compression results with 
our shear model.  For the standard linear solid or generalized Kelvin solid, the 
uniaxial relaxation modulus is given as (Lama and Vutukuri, 1978) 
 T S0 0( ) ( ) 1 exp( / )EE t E E E t ,�� � � � �  (7.193) 
where  
 0 2( / )E E E, ,��  (7.194) 
Taking the Laplace transform of (7.193) yields 
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Using the standard relation between the relaxation modulus and creep compliance 
in the transform space (Flugge, 1967 or see (7.71)), 
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we can find that  
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Taking the inverse Laplace transform of (7.197), we obtain the following results: 

 T S2
0 0

1 1 1( ) 1 exp( / )C t t
E E E

,
�

� �
� � � � ��  

! "
 (7.198) 

where ,2 is defined in (7.180). This result agrees with that of Chau and Wong 
(2009). 

7.8. CALIBRATION OF THE VISCOELASTIC MODEL 

There is little published data on the creeping and relaxation tests on rocks. Renner 
et al. (2000) conducted creeping tests on the foliated shales from the Swiss Central 
Alps. These data were used to calibrate the standard linear viscoelastic solid by 
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Chau and Wong (2009). In this section, we basically follow the approach proposed 
by Chau and Wong (2009). The complete set of mechanical properties of the so-
called S samples drilled perpendicular to the foliation is obtained by uniaxial and 
triaxial compressions, and by creeping and relaxation tests. This data set includes 
Poisson’s ratio # = 0.18;0.07 (13); Young’s modulus E0 = 16;7 GPa (18); and 
uniaxial compressive strength �max = 73;33 MPa (18) (the value following the “;” 
is the standard deviation, and the number in the bracket is the number of samples 
tested by Renner et al., 2000). Therefore, it is evident that elastic properties in 
different layers of shale differ drastically. To calibrate the standard linear solid, 
Figure 9(b) of Renner et al. (2000) is used, which is reproduced in Fig. 7.9. 
 In particular, we first recall from (7.198) that the creep compliance for the 
standard linear solid under compression is 

 T S2
0 0

1 1 1( ) 1 exp( / )C t t
E E E

,
�

� �
� � � � ��  

! "
 (7.199) 

where  
 2 0( / ) G, $ $ ,��  (7.200) 
By virtue of (7.199), it is straightforward to show that the difference between any 
two creeping strain data ( 1�%  and 2�% ) recorded at two different times (t1 and t2) 
can be written as 

 T S2 1 1 2 2 2
0

1 1 exp( / ) exp( / )t t
E E

%� %� %� , ,
�

� �
� � � � � ��  

! "
 (7.201) 

where �%  is the stress increment applied in the creeping test. Therefore, if three 
creeping data are extracted from the curve of Fig. 7.9, we can establish the 
following equation for the unknown relaxation time ,2: 
 21 1 2 3 2 31 1 2 2 2[exp( / ) exp( / )] [exp( / ) exp( / )] 0t t t t. , , . , ,� � � � � � � �  (7.202) 
where  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.9. Creeping test results for foliated shales from Swiss Central Alps (after Renner et al. 
(2000) with permission from Springer) 
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 21 2 1( ) /. %� %� %�� � ,   31 3 1( ) /. %� %� %�� �  (7.203) 
The data for creeping tests with %� =113.4 MPa and 121.9 MPa have been 
extracted for data fitting, and these values are given in Table 7.2. The value of ,2 
can be solved from (7.202) using the standard numerical approach (Press et al., 
1992), and then E� can be found from (7.201). Subsequently,  
 0 03 / (9 )K E K E$� � �� � ,   2 0( / )G, , $ $��  (7.204) 
can be found. Since E0 has been obtained from the non-creeping test, all three 
parameters of the three-parameter model have been found. Table 7.3 summarizes 
the calibrated viscoelastic parameters for shales from the Swiss Central Alps for 
various initial material parameters (E0 and #0).   
 These combinations of mechanical parameters are motivated by the 
variations of the basic properties reported in Table 1 of Renner et al. (2000). As 
illustrated in Table 7.3 for the shales with horizontal foliations from the Swiss 
Central Alps, the instantaneous shear modulus may vary as much as 2.9 times, the 
ratio of instantaneous/long-term shear modulus 2.8 times, Poisson’s ratio 2.3 
times, and the shear relaxation time 2.3 times.  
  

Table 7.2.  The actual strain data extracted from Fig. 7.9 for calibration 

 
%� (MPa) �  Time (seconds)
113.4 0.0075 10,000 
 0.015 30,000 
 0.019 55,000 
121.9 0.012 10,000 
 0.0218 30,000 
 0.027 50,000 

 
 

Table 7.3 Viscoelastic parameters of the standard linear viscoelastic solid calibrated for shales of 
the Swiss Central Alps from Fig.9(b) of Renner et al. (2000) 

 
 
%� (MPa) 0E (GPa) 0#  0$  (GPa) G,  (s) 0/$ $�  
113.4 16 0.18 6.78 5552 0.21357 
 9 0.11 4.05 8119 0.3123 
 9 0.25 3.60 8797 0.3384 
 23 0.25 9.20 4335 0.1668 
 23 0.11 10.36 3923 0.1509 
121.9 16 0.18 6.78 5458 0.1729 
 9 0.11 4.05 8176 0.2591 
 9 0.25 3.60 8917 0.2825 
 23 0.25 9.20 4214 0.1335 
 23 0.11 10.36 3798 0.1204 
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 Chau and Wong (2009) adopted these viscoelastic data for their analysis of 
the time-dependent cracking in Colorado shales. They derived analytically the 
stress intensity factors (SIFs) of a frictional interfacial crack in a viscoelastic 
bimaterial subject to the action of a center of dilatation, which modeled the effect 
of cyclic steam injection during oil sand extraction. This problem will be 
summarized briefly in the next section. 

7.9 VISCOELASTIC CRACK MODELS FOR STEAM INJECTION  

Cyclic steam stimulation (CSS), which was invented by accident in Venezuela in 
1959, is one of the viable thermal recovery methods for extracting bitumen from 
the oil sand ores buried in deep overburden of up to 500 m. In Canada, this CSS 
technique had been widely adopted in Alberta in oil sand extraction. However, at 
Cold Lake oil sands area in eastern Alberta, cyclic steam injection is known to 
have caused over 250 well failures (Dusseault et al., 2001). Some of these failures 
occurred at the base of the Colorado shale, at where natural horizontal fissures or 
fractures are commonly found (Williams and Burk, 1970; Wong, 1998). These 
casing impairments have been largely found to be associated with horizontal shear 
along pre-existing planar features, such as interfaces between two materials of 
different stiffness, discontinuities, natural fissures, weakness planes, bedding or 
foliation planes which have previously slipped, the shale�sandstone interfaces, the 
thin bed of clay shale lying between stiffer beds, clayey zones, joints, or faults 
(Talebi et al., 1998; Dusseault et al., 2001). The thickness of these planar 
structures measure from a few millimeters to a few meters. 
 Field monitoring data show that there may have continuous and substantial 
creeping movements in the horizontal shale layers (Talebi et al., 1998). It was also 
reported that some of the failures in casing occurred 2 days after the end of the 
steaming operation; therefore, there is clearly a time delay process. The elastic 
theoretical crack model by Chau et al. (2000, 2002) would not model such a time- 
dependent effect. In view of this, Chau and Wong (2009) derived a simple 
analytical model to incorporate the effect of viscoelastic behavior of shales and the 
presence of a bimaterial crack, as shown in Fig. 7.10. This section will briefly 
summarize their work. 

7.9.1 Superposition of Auxiliary Problems I and II  

The associated elastic problem is solved by superimposing the solutions of two 
auxiliary problems as shown in Fig. 7.11: (I) a center of dilatation in a two-
dimensional bimaterial; and (II) a bimaterial crack subject to tractions on the crack 
face that cancel out the stresses induced on the position of the crack by Auxiliary 
Problem I.  

7.9.2 Center of Dilatation in Two-Dimensional Bimaterial 

The elastic solution of a center of dilatation in a bimaterial has been given by 
Carvalho and Curran (1992) in terms of the matrix-vector formulation proposed by 
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Vijayakumar and Cormack (1987). Chau and Wong (2009) had written their 
solutions in the Laplace transform by virtue of the correspondence principle of Lee 
discussed in Section 7.6. More specifically, if the center of dilatation is of the 
magnitude  
 0 0 ( )c H tA� , (7.205) 
where H(t) is the Heaviside step function, that is suddenly applied at ( 1 2,h h ) in 
medium 1, the nonzero stress and displacement fields can be given in the Laplace 
transform space: 
 
   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.10. Bimaterial crack subject to center of dilatation (after Chau and Wong (2009) with 
permission from Elsevier) 

 
 

 
Figure 7.11. Superposition of Auxiliary Problems I and II (after Chau and Wong (2009) with 

permission from Elsevier) 
 
Medium 1 
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where 
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Note that the unit of A0 is N/m, and $i and #i denote the shear modulus and Poisson 
ratio of the i-th medium, respectively. 
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It is straightforward to show that these solutions of both media 1 and 2 are 
continuous on the interface z = 0. The solutions for a center of dilatation in a half-
plane with a rigidly constrained boundary and with a free surface can be obtained 
by setting 0m �  and m & � , respectively. The solution of a center of dilatation 
in an infinite plane can be obtained by setting m=1. For example, the stresses 
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given in (6) and (7) of Chau et al. (2002) can be recovered as a special case by 
setting m & � .  

7.9.3 Stress Intensity Factor of Auxiliary Problem II  

The fundamental or point force solution on a finite crack of length 2a on the 
interface of a bimaterial (or so-called dissimilar media) was given by Rice and Sih 
(1965) and was also compiled in Section 8.3 of Murakami (1987). Applying this 
fundamental solution, we obtain the solution of Auxiliary Problem II as: 
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The normal and shear stresses are defined as  
 ˆ ˆ( ) ( ,0, )zz s d� < � < .� �  (7.219) 
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  (7.220) 
where . is the unit weight of medium 2, d is the depth of the bimaterial crack from 
the ground surface, and � is the friction angle on the crack (note that d is typically 
a few hundred meters, thus the free ground surface has been neglected in the 
formulation). 

 7.9.4 Inverse Laplace Transform  

To obtain the stress intensity factor as a function of time, we have to perform the 
inverse Laplace transform. Books that contain tables of inverse Laplace transform 
include McCollum and Brown (1965), Nixon (1965), Abramowitz and Stegun 
(1964), Erdelyi (1954), Spiegel (1965), and Gradshteyn and Ryzhik (1980); and 
the numerical inversion of the Laplace transform is discussed in length by Bellman 
et al. (1966). For the solution given in (7.217) in the Laplace transform space, 
Chau and Wong (2009) used Schapery’s (1961, 1967) approximate inverse method 
to estimate the stress intensity factor: 

 1
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where .E = exp(�C) ) 0.56158 (C is the Euler’s constant). The derivation of this 
formula is given in Appendix B.6. 
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7.9.5 Numerical Results  

Here we only report the effect of overburden, and for other numerical results we 
refer to Chau and Wong (2009). Figure 7.12 plots the normalized mode I and II 
stress intensity factors versus the angle 
 for various overburden pressure ratios 0. 
The dimensionless parameter 0 is a ratio of the overburden stress normalized with 
respect to the strength of the center of dilatation defined as: 

 
0 /

d
a

.0
A

�  (7.222) 

The material parameters used in the plot are summarized in Table 7.4 below. In 
addition, the friction angle is � = 15@ and r/a =1. 
 Figure 7.12 is for a stiff medium 1 (which contains the center of dilatation) 
and a soft medium 2. The dash lines are for instantaneous stress intensity factors 
whereas the solid lines are for the long-term stress intensity factors. If the medium 
with the center of dilatation is stiffer than the one without the center of dilatation, 
the long-term stress intensity factors are always larger than those of instantaneous 
ones. This conclusion is of profound importance because the long-term behavior of 
the solid will determine whether there is crack propagation (assuming the fracture 
toughness is independent of time). Therefore, this solution potentially can explain 
why there is a delay in the failure after the steam injection is stopped, as remarked 
earlier. 
 Inclinometer surveys indicate that the localized shear displacements on weak 
bedding planes are on the order of 10 cm and in some cases larger than 20cm 
(Dusseault et al., 2001). Such monitoring can also provide a check on the potential 
problem with future fracture propagation. By virtue of the present bimaterial crack 
model, the relative crack surface sliding displacement can be estimated as (e.g., 
Sun and Qian, 1998) 
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where � is roughly 1/2 (as we have neglected the frictional effect) and .0 is 
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where 00 is the Dundurs parameter defined as (Dundurs, 1969) 
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 3 4i i/ #� �  (7.226) 
 

Table 7.4 Material parameters for Fig. 7.12  
 

Material 0#  0$  (GPa) G,  (s) 0/$ $�  
Medium 1 0.11 10.36 3798 0.1204 
Medium 2 0.25 3.6 8925.3 0.3384 



 Viscoelasticity   289 

 

-1

-0.5

0

0.5

1

�/2 � 

 

Center of 
Dilatation 

 

0 = 0.0 
      0.4 

0 = 0 



r

a a 

r/a = 1 

0/IK a A

0/IIK a A t & �

0t &

0 = 0.0 
     0.4  

0/IK a A

 

Figure 7.12. The normalized mode I and II stress intensity factors vs. the angle 
 for various 
overburden pressure ratios 0 (after Chau and Wong (2009) with permission from Elsevier) 

 
The maximum sliding displacement that can be sustained in the bimaterial crack 
before crack propagation can be estimated by setting KII equal to KIIC (the mode II 
fracture toughness) and r equal to a in (7.223). This is of course an approximate 
solution, since, strictly speaking, (7.223) is valid only near the crack tip.  
Nevertheless, for the case of nearly incompressible soft rocks with $1 = $2 = 0.8 
GPa, a = 100 m, #1 = #2 = 0.49, shear fracture toughness being 1 MPaHm, %u is in 
the order of 10 mm, which may be small but should not be too difficult for a 
sensitive inclinometer to pick up. 

7.10 SUMMARY AND FURTHER READING 

In this chapter, we present a brief summary of the theory of viscoelasticity. The 
application of viscoelasticity to time-dependent cracking induced by steam 
stimulations is considered. In particular, we discuss viscoelastic formulation in 
terms of Boltzmann’s integral, differential form, and mechanical string-dashpot 
models. Spring-dashpot models include the Maxwell model, the Voigt�Kelvin 
model, and four three-parameter models. The use of Laplace transform and 
correspondence principle is discussed by considering the Boussinesq problem for 
various viscous elastic half-spaces. Experimental calibration is discussed in terms 
of creeping tests and relaxation tests. A real example of parameter calibration is 
given for shales of the Swiss Central Alps by using the data of Renner et al. 
(2000). 
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 We refer beginning readers to the introductory discussion on viscoelasticity 
by Mase (1964) and Mase and Mase (1999). More in-depth coverage can be found 
in Christensen (1971), Flugge (1967), and Gurtin and Sternberg (1962). 
Viscoelasticity can be linked to irreversible thermodynamics, and the details of this 
theory can be found in Fung (1965). Regarding the approximate technique of 
taking the inverse Laplace transform, we refer to Schapery (1961, 1967) and 
Schapery and Park (1999). Wave propagation in viscoelastic solids is discussed in 
full detail in Borcherdt (2009), and a brief discussion is given in Section 9.9 of 
Chapter 9.  
 More advanced topics on thermoviscoelasticity, nonlinear viscoelasticity, and 
other general theorems can be found in Christensen (1971) and Haddad (1995). 

7.11 PROBLEMS 

Problem 7.1 Derive the constitutive model in terms of stress � and strain . and 
find the following equivalent moduli of the Kelvin�Voigt and Maxwell models in 
series (shown in Fig. 7.13): 
 2$� ,   #� ,   E� ,  ��  (7.227) 
This model is also called Burgers viscoelastic material. 
 
 
 
 
 

Figure 7.13 Kelvin and Maxwell models in series (Burgers material) 
 

Problem 7.2 Find the creeping compliance J1(t) of the model shown in Fig. 7.13. 
 
 
 
 
 
 
 
 

Figure 7.14 Double Kelvin model 
 
Problem 7.3 Derive the constitutive model in terms of stress � and strain . and 
find the following equivalent moduli of the double Kelvin model shown in Fig. 
7.14: 
 2$� ,   #� ,   E� ,  ��  (7.228) 
 
Problem 7.4 Find the relaxation function G1(t) of the model shown in Fig. 7.14. 
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Problem 7.5 Use the correspondence principle to find the solutions of the 
decaying point force applied on the surface of the viscoelastic half-space shown in 
Fig. 7.15. The elastic solution is given in (4.152) and (4.153) of Chapter 4. 
Assume the viscoelastic solid is a Kelvin�Voigt solid. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.15 A viscoelastic half-space subject to time decaying force  

 
Problem 7.6 Solve the problem shown in Fig. 7.15 again for a three-parameter 
model A (or standard linear solid). 
 
Problem 7.7 Solve the problem shown in Fig. 7.15 again for a three-parameter 
model B. 
 
Problem 7.8 Solve the problem shown in Fig. 7.15 again for a three-parameter 
model C. 
 
Problem 7.9 Solve the problem shown in Fig. 7.15 again for a three-parameter 
model D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.16 A viscoelastic slab of thickness 2h and infinite dimensions in the x1- and x3-directions 

and containing a semi-infinite crack 
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Problem 7.10 This is an extension of Problem 6.4. The layer is now viscoelastic 
with a relaxation function of G1(t) under shear deformation. The upper and lower 
faces are bonded to two rigid bodies and are displaced by w0f(t) along the positive 
x3-direction on the upper surface and by w0f(t) along negative x3 direction on the 
lower surface. The time function starts at t = 0. What is the expression for the 
mode III stress intensity factor? 

Answer:  10
1

2 ˆˆ( ) [ ( ) ( )]
2III

w
K t sG s f s

h
�= L  (7.229) 

 
Problem 7.11 For Problem 7.10, the displacement is applied as a sudden applied 
function as w0H(t) (where H(t) is the Heaviside step function). The rock is 
modeled by the model A (or standard linear solid). Find the time-dependent stress 
intensity factor.  
 
Problem 7.12 Show the validity of (7.47), (7.49), and (7.51) for the three 
parameter models B, C, and D shown in Fig. 7.3(b�d). 
 
Problem 7.13 Derive the following functions involved in the displacements given 
in (7.129) for the Boussinesq problem of a Maxwell half-space: 
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Problem 7.14 Derive the following functions involved in the displacements given 
in (7.135) and (7.136) for the Boussinesq problem of a Kelvin�Voigt half-space. 
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Problem 7.15 Derive the following displacements for the Boussinesq problem of a 
standard linear solid (three-paramter model A) half-space: 
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CHAPTER EIGHT 

Linear Elastic Fluid-Infiltrated Solids and 
Poroelasticity

8.1 INTRODUCTION 

Stress-induced flow of interstitial fluid in porous solids and the subsequent solid 
deformations have been used to explain a variety of phenomena observed in 
geophysics and in engineering practice. The one-dimensional consolidation theory 
of Terzaghi has been used successfully for predicting subsidence in clay under 
surface loading (Terzaghi, 1943). However, when the surface loading is of finite 
size, the clay layer is not thin and not confined, or the clay is of nonuniform 
thickness, three-dimensional deformation becomes inevitable. In these situations, 
Terzaghi’s 1-D theory is inapplicable. Biot (1941) extended the formulation for 
poroelastic solids to three-dimensional and retained the coupling between solid 
deformation and pore-space pressure. The solutions of Biot theory have been 
studied by Derski (1964, 1965), McNamee and Gibson (1960a,b), and Schiffman 
and Fungaroli (1965). Although there have been formulations of mixture theory to 
model porous geomaterials and they were formulated following more rigorous 
procedure from thermodynamics (e.g., de Boer, 2000), in practice they do not offer 
any advantage over Biot’s theory (Detourney and Cheng, 1993).  
 Mathematically, Biot’s theory of poroelasticity is precisely analogous to 
linear coupled thermoelasticty (e.g., Carslaw and Jaeger, 1959), which is a very 
well-developed area with an abundance of available solutions in the literature. 
Unfortunately, in thermoelasticity the adiabatic (no heat loss in solids) and 
isothermal (no temperature change in solids) Poisson’s ratios of solids under 
thermal effects are typically indistinguishable, so that the coupling terms between 
deformation fields and heat conduction are commonly and justifiably dropped. 
Most of the available solutions are obtained for uncoupled thermelasticity; that is, 
heat diffusion first can be solved independent of the deformation field of the 
solids. However, in poroelasticity the undrained and drained Poisson’s ratios differ 
considerably. Unless the pore fluid is highly compressible, the diffusion process of 
fluid cannot be uncoupled from the deformation of geomaterials. Therefore, most 
of the solutions from thermoelasticity cannot be converted to poroelasticity. On the 
contrary, all solutions for poroelasticity can be employed to consider thermal effect 
in solids. To solve the coupled equations of Biot’s poroelasticity, displacement 
functions have been proposed by McNamee and Gibson (1960a,b) for 
axisymmetric problems, and by Schiffman and Fungaroli (1965) for anti-
symmetric problems. Such a displacement function approach will be discussed in 
this chapter, in conjunction with the Laplace�Hankel transform method given by 
Chau (1996) and others.  
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 In Biot’s original formulation, there are two moduli, one relating the fluid 
mass variation by pore-pressure change and the other relating the fluid mass 
variation with the mean stress of the solid phase. These parameters are not readily 
observed in standard experiments. Rice and Cleary (1976) reinterpreted these 
moduli in terms of the well-understood parameters of the undrained Poisson’s ratio 
and the Skempton pore pressure coefficient B. Rudnicki (1985, 1986) presented a 
similar constitutive form but in favor of the undrained Lamé’s constant and a pore 
water pressure coefficient. These various forms of Biot’s theory will be 
summarized. The fundamental point forces and fluid point source solution by 
Cleary (1977) will be summarized (with corrections by Rudnicki, 1981) and 
another more compact form derived by Rudnicki (1986) will also be discussed in 
detail. This solution forms a useful basis for generating the center of dilatation, the 
center of shear, concentrated couples, and double couples, with the latter related to 
slip on the fault plane in fluid-infiltrated porous rocks during earthquakes.
 Figure 8.1 illustrates schematically the pore distributions of a porous rock 
with specified volume V and S. The porous solid is assumed fully saturated. The 
total volume of the porous solid consists of volume of solid and volume of pore 
(usually referred to as volume of void in soil mechanics). The pore volume can 
further be decomposed into interstitial pores and isolated pores. The solid behavior 
should also include the effect of fully saturated isolated pores depicted as V I in 
Fig. 8.1. The other interstitial pore space V F is assumed completely connected so 
that fluid diffusion can occur. The porosity intersects the surface S at points shown 
as hatched lines in Fig. 8.1, the union of which is SF. Rice and Cleary (1976) also 
interpreted undrained deformation to mean the loading is applied over a time scale 
which is short enough not to allow loss of fluid due to diffusion in a global sense, 
but not too short to allow local pore pressure equilibrium within a typical “point 
element” within the continuum. In doing so, there is no need to consider another 
theory for the nonequilibrating situation of pore pressures within pore networks 
locally. 

Figure 8.1 Schematic diagram of porous rock of volume V and surface S. The porosity of 
interconnected pore space is VF and isolated pore-space is VI
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 Figure 8.2 illustrates schematically the pore distributions of a typical granular 
soil, composed of particles of various sizes. The pore is again fully interconnected 
and the solid is fully saturated. The formulation to be discussed applies equally to 
porous rocks shown in Fig. 8.1 and to saturated soils shown in Fig. 8.2. 
 The schematic diagram of a fully saturated clay is illustrated in Fig. 8.3, 
showing both dispersed and flocculated clay plate-like particles, and clay 
assemblages in bookhouse forms popping up the pore-spaces between plate-like 
particles and assemblages. This kind of soft clay is highly deformable and small 
strain linear poroelasticity may not be applicable, although Terzaghi’s classical 
formulation was actually motivated by such applications. 

Figure 8.2 Schematic diagram of porous soil of volume V with surface S and normal n; The 
porosity between contacting particles is interconnected

Figure 8.3 Schematic diagram of saturated clay of volume V with surface S



298 Analytic Methods in Geomechanics 

8.2 BIOT’S THEORY OF POROELASTICITY  

8.2.1 McNamee and Gibson’s Cylindrical Coordinates Form 

Biot’s (1941) three-dimensional consolidation theory has been written in various 
different forms by others, including McNamee and Gibson (1960a,b), Rice and 
Cleary (1976), Detournay and Cheng (1993), and Rudnicki (1985, 1986). In 
cylindrical coordinates, the following form is given by McNamee and Gibson 
(1960a,b).
 In particular, the equilibrium equations in terms of displacements (u) and 
excess pore water pressure (p) are 
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where e = �	u (the dilatation), B = (1�#)/(1�2#) (poroelastic stress coefficient), 
and c = (2GBk)/ .w (the coefficient of consolidation or diffusivity). The proof of 
(8.1)�(8.4) is obvious by referring to Problem 1.13 in Chapter 1. Poisson's ratio of 
the skeleton, shear modulus of the solid phase, the coefficient of permeability, and 
the unit weight of water are denoted by #, G, k, and .w, respectively. Since 
Poisson's ratio ranges from 0 to 1/2 for linear elastic solids, we have 1 � B < �.
Note that for axisymmetric deformation, we have u
 = 0, ur = ur(r,z), and uz = 
uz(r,z).
 Various forms of the extended Biot's theory, including the compressibilities 
of fluid and solid constituents, are presented by Rice and Cleary (1976), Rudnicki 
(1985, 1986), and Detournay and Cheng (1993). They will be introduced next.

8.2.2. Rice-Cleary (1976) Linearized Constitutive Relation 

Rice and Cleary (1976) regrouped Biot’s (1941) formulation such that effective 
stress (i.e., �kk + p�ij) is used instead of the total stress. They further proposed two 
new material parameters, instead of Biot’s original moduli. In particular, the strain 
tensor of Biot’s (1941) model for linear isotropic poroelastic solid under 
isothermal conditions can be expressed as (Rice and Cleary, 1976) 

2 1 12 ( ) ( 3 ) ( )
1 3ij ij ij kk ij ij

Gp p p
H K

#$� � � � � �
#
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 (8.5) 

where K is the bulk modulus. This tensor form of (8.5) is given by Rice and Cleary 
(1976), which is of course equivalent to the component form given in Eq. (2.4) of 
Biot (1941). In addition, Biot (1941) introduced another modulus, H1, relating 
water content change with mean stress and pore water pressure. In the terminology 
of Rice and Cleary (1976), the water content change can be expressed as 
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The first part of (8.6) is from Biot (1941) whereas the second part of (8.6) is the 
form proposed by Rice and Cleary (1976).  
 Actually, it can be shown that H in (8.5) is equal to H1 in (8.6). By following 
Biot’s (1941) argument of the existence of potential energy of the soil, Rice and 
Cleary (1976) assumed that the following are exact differentials: 

ij ij ij ijdW d pdv d vdp� � � �� � � �  (8.7) 
This equation implies the reversibility of the deformation process (recall that we 
are using poroelasticity instead of poroplasticity). Because they are exact 
differentials, (8.7) can be written as 
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Comparing the first part of (8.7) and the first part of (8.8), we have 
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 Taking the partial derivative of the first part of (8.9) with respect to v and the 
second part of (8.9) with respect to �ij we have the following equality: 
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Following the same procedure for the second equations of (8.8) and (8.9), 
alternatively we can have 
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For linear elastic solids, (8.10) and (8.11) are identical. For the case of isotropic 
compressions, we can take the trace of (8.5) and then apply either (8.10) or (8.11) 
to show that 

1H H�  (8.12) 
In view of the formulation in effective stress, Rice and Cleary (1976) introduced the 
following moduli instead of H and R given in (8.5) and (8.6): 
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For special circumstances stated by Rice and Cleary (1976) both Ks11 and Ks1 can 
be interpreted as bulk moduli of solid constituents.  
 In addition, Rice and Cleary (1976) regrouped (8.6) in a linearized fashion to 
give the fluid mass change per volume as 
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where the bulk modulus Kf is defined as 
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Using Skempton’s definition of pore pressure coefficient B (Skempton, 1954) 
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for the “undrained situation” (i.e., with no loss of fluid by diffusion but with local 
pressure equilibrium), we can set %m to zero in (8.14) to obtain 
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For the undrained Poisson’s ratio, we can substitute (8.17) back into (8.5) and 
observe the following definition of #u
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to obtain the final result as 
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It is obvious that 1/2 � #u � #. The upper limit corresponds to B = 1 and K/ Ks1 = 0, 
where the lower limit corresponds to highly compressible fluid with Kf << v0K or B
) 0. With these new terms of B and #u, it is more advantageous to rewrite the 
constitution law (8.5) and mass dependence on stress (8.14) as (Rice and Cleary, 
1976)
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This particular form can now be easily identified with thermoelasticity. The pore 
pressure corresponds to a multiple of temperature fluctuation and fluid mass with 
some multiple of specific entropy per volume. The analogue of undrained response 
is the adiabatic (or isentropic) deformation and drained response is the isothermal 
condition. The linear Fourier law of heat conduction corresponds to the following 
Darcy’s law: 
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Substituting (8.20) in the equilibrium equation without body force, we can obtain 
the compatibility condition: 
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Taking the trace of (8.23) provides a useful formula between isotropic 
compression and pore pressure: 
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The effect of pressure looks like body force term, but actually it couples with the 
stress of the solid through mass conservation as: 
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Substituting (8.21) and (8.22) into (8.25), we have 
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Finally, (8.26) can further be simplified in view of (8.24) to  
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This is the coefficient of diffusivity or the coefficient of consolidation. It is 
obvious from (8.21) that this mass conservation can equally be written as 
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It is clear that Rice and Cleary (1976) favored the stress formulation, instead of 
Biot’s (1941) displacement formulation. Since both B and #u can be found by 
conventional triaxial test results, Rice�Cleary (1976) formulation is more 
attractive than Biot’s original formulation.  

8.2.3. Rudnicki’s (1986) Constitutive Relation 

In his derivation of the fluid mass source and point force solutions for linear elastic 
diffusive solids, Rudnicki (1986) proposed a slightly different form of the 
Rice�Cleary formulation by favoring undrained Lamé’s constants and the pore 
pressure coefficient. In particular, long-term drained deformation is determined by 
the drained constitutive law as 
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where $ and � are the drained Lamé’s constants. For deformations at other times, 
we have 
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with Ks1 defined in the last section by Rice and Cleary (1976) and K being the 
drained bulk modulus. The second constitutive law in terms of mass fluid 
alternation becomes 
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This mathematical form looks more compact than that of Rice-Cleary (1976). It is 
straightforward to see that  � < �u < �. Applying the undrained condition (m = m0)
in (8.33) and using (8.31) to eliminate uk,k , we have
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The constitutive model is completed by Darcy’s law: 
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With (8.31), the equilibrium equation with body force becomes: 
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This can be rewritten in terms of fluid mass m by virtue of (8.33): 
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Taking the divergence of (8.38) gives 
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For the cases with nonzero fluid mass source, the equation of fluid mass 
conservation is 
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where Q(x,t) is the fluid mass source. The conservation equation (8.40) can be 
written as follows by combining it with Darcy’s law (8.36), (8.33), and (8.39): 
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where the coefficient of diffusivity is 
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For the case of no fluid source and negligible body force, (8.29) obtained by Rice 
and Cleary (1976) is recovered from (8.41). Instead of using B and #u , Rudnicki 
(1986) preferred A and �u. In addition, displacement formulation is used by 
Rudnicki (1986) instead of stress formulation. 

8.2.4. Rudnicki’s (1985) Anisotropic Diffusive Solids 

Rudnicki (1985) presented the following tensor form of Biot’s (1941) theory for 
general anisotropic diffusive solids: 

ij ijkl kl ijL M p� �� �  (8.43) 



Poroelasticity 303

0 ij ijm m R Qp�� � �  (8.44) 
where Q is a scalar. The usual symmetries for Lijkl, Mij, and Rij are observed in 
view of the symmetric properties of stress and strain. Actually, a somewhat similar 
form is also found in the Ph.D. thesis of Michael Cleary (1977), but we will stick 
to Rudnicki’s (1985) form here. Because the solid response is elastic, the work 
increment in the Helmholtz function has the following differential form at constant 
temperature: 

1
ij ij ij

ij
d d pdm d dm

m
� �� � � �

( �
� �

� � � �
� �

 (8.45) 

We can change the variable from m to p by using the following Legendre 
transformation: 
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Taking the differential of (8.46) gives 
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The last of (8.47) can be used to yield  
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Taking the derivative of the first with respect to p and the second with respect to �ij
we have the following constraint on the constitutive parameters: 
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Note that there is a typo in Eq. (15.4) of Rudnicki (1985) which omitted the minus 
sign as shown in (8.49). Mathematically, there are four different types of 
differential form for the work increment, depending what are the controlled 
variables. These choices and the corresponding Legendre transformation are given 
in Appendix C. 
 Substitution of (8.44) and (8.43) into (8.49) leads to 

ij ijR M(�   (8.50) 
For the drained condition, we can substitute p = 0 into (8.43) such that Lijkl can be 
identified as the elastic tensor for the drained response. For the drained condition, 
we can substitute m0 = m into (8.44) in conjunction with (8.50) to obtain 
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Q
( �� �   (8.51) 

The undrained response can then be rewritten as 
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In the absence of body force, Darcy’s law can be expressed as 
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This completes the general constitutive form for general anisotropic diffusive 
solids.
 For the case of the isotropic response, we have 
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where Ku is the undrained bulk modulus. 
 The constitutive model together with the field equations is summarized as: 
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Note however that there is a typo in the relation between B and A, given in (15.19) 
of Rudnicki (1985). The corrected one is: 
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Comparing to Rudnicki (1986), we find this constitutive form favoring Ku and A,
instead of B and #u used by Rice and Cleary (1976), A and �u used by Rudnicki 
(1986), or R and H used by Biot (1941). 

8.3 BIOT�VERRUIJT DISPLACEMENT FUNCTION

In 1956, Biot applied the Papkovitch�Neuber displacement functions in elasticity 
to solve problems in coupled thermoelasticity, and its completeness was 
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considered by Verruijt (1969). This method was later extended to include fluid 
compressibility by Verruijt (1971). This Biot’s (1956a) function would be 
extended to include solid constituent compressibility here. First, we recall from 
(4.53) of Chapter 4 that the Papkovitch�Neuber displacement function is first 
rewritten as (Verruijt, 1971) 

( ) 2� �� � ���u r ? ?  (8.65) 
where � is a constant to be determined. The Laplacian of displacement becomes 

2 2 2( ) 2� �� � � � � ���u r ? ?  (8.66) 
For Cartesian coordinates, we can show that 

2 2( ) 2 ( )� � � ��� � �r r? ? ?  (8.67) 
Following the same definition from the Papkovitch�Neuber displacement function, 
we first assume ? is a harmonic function or 

2 0� �?  (8.68) 
With the mathematical form of (8.65) and (8.68), the volumetric strain is 

2 2(1 )u � � ?� � � �� �� �  (8.69) 
The equilibrium given in (8.37) in terms of displacement can be rewritten as 

2( 2 )[ 2 ] 2 ( ) 0)p� $ � � � $ A� � � � � � �� �� �? ?  (8.70) 
Rearranging (8.70), the pore water pressure becomes 

21 {( 2 )[ 2 ] 2 ( ) }p � $ � � � $
A

� � � � � �� �� �? ?  (8.71) 

When A = 1 and p & �p we can recover (4) of Verruijt (1971) for the case of 
incompressible solid constituents. Substitution of (8.69) and (8.71) into (8.33) 
gives  

20 0
0

( 2 ) 2 ( )
( 2 )

( ) ( )
u u

u u
m m

A( � $ �A( � $
�

� � � �
� �

� � � � �
� �

� �� �? ?  (8.72) 

If we set 
2u

u

� $
�

� $
�

�
�

, (8.73) 

(8.72) is further simplified to 
20

0
( 2 )

( )
u

u
m m

A( � $
�

� �
�

� � �
�

 (8.74) 

Finally, substitution of (8.74) into (8.29) yields  
2 4( ) 0c

t
� ��

� � � �
�

 (8.75) 

Equivalently, by using (2.29) we can express (8.73) as  
2(1 )u� #� �  (8.76) 

This � is the same as Eq. (5.111) given by Detournay and Cheng (1993). When �
= 1, we have �u >> $ or the case of incompressible fluid.  
 In summary, we have 

2
( ) 2( )u

u

� $
�

� $
�

� � �
�

��u r ? ?  (8.77) 
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2 0� �? , 2 4( ) 0c
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 (8.78) 
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 (8.79) 

21 [( 2 ) 2 ( ) ]u

u
p

� �
� $ � $

A � $
�

� � � �
�

��?  (8.80) 

In this study, we called this particular form of displacement function the 
Biot�Verruijt displacement function. Actually, the form given here is more general 
than the form given by Verruijt (1971) to include solid constituent compressibility. 

8. 4 MCNAMEE�GIBSON�VERRUIJT DISPLACEMENT FUNCTION 

Verruijt (1971) identified that a generalized form of the displacement function of 
McNamee and Gibson (1960a) can be related to the Biot�Verruijt displacement 
function as 

( , , )E r z t� � � , ( , , )z S r z t? � , 0r 
? ?� �  (8.81) 
Here we called this McNamee�Gibson�Verruijt displacement as it has been 
generalized to include fluid compressibility (Verruijt, 1971). For axisymmetric 
cases, the following form was recorded by Detourney and Cheng (1993): 

r
E Su z
r r
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� �
 (8.82) 
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 (8.84) 

2 0S� �  (8.85) 
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 (8.86) 
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Sp E
z

� �� $ $
A � $ � $

2 3�� �
� � � �4 5� � �6 7

 (8.90) 

The formulation by McNamee and Gibson (1960a) is recovered if we set �u << $
and A = 1. Note that there is a typing error in the last term of the last equation in 
(18) of Verruijt (1971). Specifically, the �S/�z should be �S/�x in the last term in 
the x-z component of stress. The last term of (5.116g) of Detournay and Cheng 
(1993) should be �S/�z instead of �2S/�z2.
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8.5 SCHIFFMAN�FUNGAROLI�VERRUIJT DISPLACEMENT 
 FUNCTION 

For nonaxisymmetric deformations, Schiffman and Fungaroli (1965) proposed 
three displacement functions to uncouple the equations of equilibrium. Verruijt 
(1971) has shown that the displacement functions proposed by Schiffman and 
Fungaroli (1965) are ad hoc modifications of McNamee and Gibson (1960a) by 
adding to the displacement vector a part accounting for the rotations in the 
horizontal plane. Because of this, the Schiffman�Fungaroli (1965) displacement 
function cannot be recovered as a special case of the Papkovitch�Neuber
displacement function. In addition, Verruijt (1971) had modified the 
Schiffman�Fungaroli displacement function E (with one less derivative with 
respect to z and an extra minus sign for all other displacement functions) and had 
extended the analysis to include fluid compressibility. 
 The corresponding forms of Verruijt’s (1971) displacement functions for 
Rudnicki’s (1985) model given in Section 8.2.4 are reported here in Cartesian 
coordinates: 

2x
E S Qu z
x x y

� � �
� � � �

� � �
 (8.91) 
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The equilibrium equations for u lead to the following governing equations for E, S,
and Q:

4 2 2 2,      0,     0Ec E S Q
t

�
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 (8.95) 

where
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2 2 2yx z

� � �� � � �
�� �

 (8.96) 

The total stresses are given in terms of the displacement functions as 
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 (8.100) 
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2 2 2 2

2 22
xy E S Q Qz

x y x y yx

�
$

� � � �� � � � �
� � � � � �

 (8.101) 

2 2 2
 ( )

2
yz

u

E S S Qz
y z y z y x z

� $
$ � $

� � � �
� � � � �

� � � � � � � �
 (8.102) 

2 2 2
 ( )

2
xz

u

E S S Qz
x z x z x y z

� $
$ � $

� � � �
� � � � �

� � � � � � � �
 (8.103) 

Note that the last equation of (29) in Verruijt (1971) has been mistakenly written 
as the yz-component of stress instead of the xz-component. When �u >> $, the 
expressions for incompressible fluid are obtained.  

8.6. SCHIFFMAN�FUNGAROLI DISPLACEMENT FUNCTION 

In this section, the three displacement functions of Schiffman and Fungaroli 
(1965) are given in cylindrical coordinates as 

2 2
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 (8.104) 
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The corresponding governing equations for E, S, and Q are:
4 2 2 2  ,       0,      0Ec E S Q

t
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 (8.108) 

where
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Note that the problem is transformed to solving three uncoupled partial differential 
equations for displacement functions instead of four coupled partial differential 
equations for displacements and pore pressure. As a trade-off, the governing 
partial differential equations for E, S, and Q are of higher order. The total stress 
components and excess pore water pressure can then be written in terms of the 
displacement potentials. For axisymmetric deformation, the displacement 
functions, E* and S*, introduced by McNamee and Gibson (1960a) can be 
recovered by the following identifications: 

**  ,     0,     E Q S SEz
�

� � � � �
�

 (8.110) 

where E and S are not functions of 
. Furthermore, it is straightforward to show 
that the governing equations for E* and S* are same as those for E and S. The 
expressions for the stresses are (Schiffman and Fungaroli, 1965): 
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Note that the typo in (7d) of Schiffman and Fungaroli (1965) has been corrected as 
shown in (8.113). 

8.7. LAPLACE�HANKEL TRANSFORM TECHNIQUE 

For general loadings, we can expand the displacement functions in Fourier series 
as (e.g., Muki, 1960 or see Section 4.9) 
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Their government equations become 
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A standard solution technique for solving (8.119) is to apply the Hankel transform 
and the Laplace transform to r and t, respectively. This procedure has been applied 
successfully in several problems in fluid-saturated porous medium; for examples, 
see Apirathvorakij and Karasudhi (1980), Niumpradit and Karasudhi (1981), 
Kanok-Nukulchai and Chau (1990), Chau (1996), and Puswewala and Rajapakse 
(1988). More specifically, we assume that the variables r (radial coordinate) and t
(time) of any function �(r,z,t) can be transformed to < and s as (Chau, 1996) 
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0 0
( , , )   ( ) ( , , )st

nz s r r r z t drdte J� < < �
� �

�� � �  (8.122) 

where t > 0 and � is chosen such that all singularities of the integrand lie on the 
left of it but it is otherwise an arbitrary real constant (Carrier et al., 1966; Spiegel, 
1964). A brief introduction to the Laplace transform is given in Appendix B. By 
applying this double transform in time and radial coordinates, the (8.119) 
equations are reduced to the following ordinary differential equations: 
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d d s E

cdz dz
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Their general solutions are 
z z z z

m m mmnE e e C e eA B D< . < .� �� � � �  (8.126) 

n m m
z zS E Fe e< <�� �  (8.127) 

n m m
z zQ G He e< <�� �  (8.128) 

where . = (<2+s/c)1/2 and Am, Bm, ... Hm are unknown constants to be determined by 
the boundary conditions. The subscript m describes the domain number for the 
case of the layered solid. For axisymmetric problems, the transformed 
McNamee�Gibson (1960a) displacement functions (S* and E*) have exactly the 
same solution form as Sn and En in (8.127) and (8.126). The Green’s functions for 
poroelastic half-space are considered next, that is, a linear elastic fluid-infiltrated 
half-space subjected to interior vertical and horizontal point forces and fluid point 
source. This problem is the equivalent Mindlin’s problem in linear elastic fluid-
infiltrated half-space. All stresses and displacements can then be written in terms 
of these unknown constants.  
 These equations for stresses and displacements are given in Problems 8.16 
and 8.17 and left as problems for the readers to solve.  

8.8. POINT FORCES AND POINT FLUID SOURCE IN HALF-SPACE 

As an example of how to solve time-dependent of poroelastic problems, we will 
consider point forces shown in Fig. 8.4(a) and the point source shown in Fig. 
8.4(b) for linear elastic fluid-infiltrated halfspace using Biot’s theory and the 
McNamee�Gibson function or the Schiffman�Fungaroli displacement function. 
The following presentation follows from Chau (1996). The analysis can easily be 
extended to compressible fluid and solid phases. 

8.8.1. Vertical Point Force Solution

When a vertical point force of magnitude of Fz shown in Fig. 8.4 is suddenly 
applied (as a Heaviside step function) at a depth h from the free surface, we divide 
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the half-space, occupying z > 0, into two domains by a fictitious horizontal plane 
at depth h. The upper domain and lower domain are denoted as domains 1 and 2, 
respectively. The displacement and stress fields are axisymmetric in nature if we 
choose the z-axis passing through the applied vertical point force. Therefore, the 
McNamee�Gibson (1960a) displacement functions are sufficient for this case. 
There are 12 unknown constants for domains 1 and 2. However, the solutions for 
domain 2 should vanish as z & �, and thus only the exponential terms with 
negative power remain (i.e., C2 = D2 = F2 = 0). The remaining nine unknown 
constants have to be determined by nine conditions. In particular, the permeable 
and traction-free conditions on z = 0 are: 

(1) (1) (1)( ,0, ) 0,  ( ,0, ) 0,   ( ,0, ) 0zz zrr t r t p r t� �� � �  (8.129) 
where the superscript (1) denotes the components for domain 1. The continuities in 
displacements, shear stress, pore pressure, and fluid flow between domains 1 and 2 
require

(1) (2) (1) (2),   z z r ru u u u� �  (8.130) 
(1) (2)
zr zr� ��  (8.131) 
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on z = h and for all r and t. The only discontinuity between domains 1 and 2 
appears in �zz at z = h and r = 0; that is, 
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2

z
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� �  (8.133) 

where Fz is the magnitude of the vertical force, �(r) is the Dirac delta function with 
dimension as the inverse of length, and H(t) is the Heaviside step function. Note 
that the right-hand side of (8.133) can be rewritten in terms of the discontinuous 
integral as (Chan et al., 1974; Kanok-Nukulchai and Chau, 1990) 
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Figure 8.4 Point forces (a) and fluid point source (b) in poroelastic half-spaces 
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Thus, (8.129)�(8.132) and (8.134) provide a system of nine equations for nine 
unknown constants. The solutions for these constants require a straightforward, 
although tedious, algebraic manipulation to obtain. A symbolic manipulation 
program (such as Mathematica) can be used to assist the analysis. 
The solutions for these constants are 
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To get the numerical results, we have to take the inverse Laplace and Hankel 
transform. Closed form analytical solutions are in general not feasible. We refer to 
Chau (1996) on the issue of numerical Hankel-Laplace inversion. 

8.8.2 Horizontal Point Force Solution 

As for the case of vertical point force, the half-space is divided into two domains, 
one above the horizontal plane at depth h and the other below that plane. For this 
asymmetric case, the 16 unknown constants are reduced to 12 by the decaying 
condition at z & �. The boundary conditions on the surface of the half-space are 
same as those given in (8.129) plus 

(1) ( ,0, ) 0z r t
� �  (8.145) 
The continuity conditions for displacements, vertical normal stress, pore pressure, 
and fluid flow between domains 1 and 2 are, respectively, 
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on z = h and for all r and t. The applied horizontal point force can be modeled by 
the following discontinuities in shear stresses between domains 1 and 2 at z = h:
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where Fr is the magnitude of the horizontal point force, and �(r) and H(t) have the 
same definitions as those given in (8.133). Similar to the case of vertical point 
force, the Heaviside step function and the Dirac delta function can be represented 
by the following discontinuous integral: 
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Thus, we have 12 conditions for evaluating all the unknown constants, and the 
solutions are 
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1 11 ( ) hs s
G eF H c c

<B B.< < .<< �� � � �E � �  (8.159) 

2
2

2 1 ( ) hs s
eE E c c

<B B. .<<� �E � �  (8.160) 

2
2 2

2 1 2 ( )( ) hs s h s
eA A c c c

<B B < B. .<< <
<

� �E � � � �  (8.161) 
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2
2

2 ( )( ),h hs s
G e ec c

< <B B. .<<
<

�� �E � � �  (8.162) 

where
2

2 2 28 ( / )
rF c

s s c
E

�$<B . < <. B
�

� �
 (8.163) 

8.8.3 Fluid Point Source Solution 

Similar to the cases of point forces, the half-space is divided into two domains. 
Since the problem is axisymmetric in nature, we again have Q = 0. Similar to the 
case for vertical point force, only nine unknown constants remain. The boundary 
conditions at z = 0 are exactly same as those for vertical point force. The 
continuity conditions at z = h are same as those for vertical point force except that 
the normal stress along z-axis should be continuous (i.e., �zz

(1) = �zz
(2) at z = h) and 

�p/�z possesses a jump at z = h as 
(2) (1) ( ) ( )

2
wq rp p H t

z z k r
. �

�
� �

� �
� �

 (8.164) 

or equivalently in integral form as 
(2) (1)

0
0

1 ( ) ( )  
2 2

sti w
i

qp p er dsdJz z i k s

�

�

.
< < <

� �

� � �

� �

� �
� �

� � � �  (8.165) 

where q is the strength of the point source (volume per unit time), k is the 
coefficient of permeability of the porous solid (length per time), and .w is the unit 
weight of the fluid. For this case, the nine unknown constants are: 

2 2
1 [( ) 2( ) ]h hQ s s

e eA c c
< .B B.<< <

<
� �� � � � �  (8.166) 

2
1 [ 2 ( ) ]h hQ sB e e

c
< .B.< < <.

.
� �� � � � �  (8.167) 

2
1 ( ) hQ s

C ec
<B .<<

<
�� � �  (8.168) 

2
1 ( ) hQ s

eD c
.B .<<

.
�� � � �  (8.169) 

1 2
2 ( )h hsQ e eE E c

< .B � �� � �  (8.170) 

2
2 1 ( ) hQ s

eA A c
<B .<<

<
� � � �  (8.171) 

2
2 1 ( ) hQ s

eB B c
.B .<<

.
� � � �  (8.172) 

1 0F �  (8.173) 
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where
2

2 24 ( / )
wq c

Q
s k s c

.
�B < <. B

�
� �

 (8.174) 

If we reverse the sign of the point source solution, we obtain the so-called point 
sink source solution. Point sink solution has been found useful in modeling 
subsidence due to ground water withdrawal (e.g., Booker and Carter, 1986a,b; 
Kanok-Nukulchai and Chau, 1990). When permeability of the half-space is 
anisotropic, the point sink solution has been obtained by Booker and Carter 
(1987a,b). For anisotropic poroelastic half-spaces, the point sink solution was 
considered by Tarn and Lu (1991).  

8.9 CLEARY’S FUNDAMENTAL SOLUTION OF POINT FORCES IN 
FULL SPACE 

One of the disadvantages of using the McNamee�Gibson or Schiffman�Fungaroli
displacement functions in conjunction with the Hankel�Laplace transform is that 
no closed form solution is obtained. The final solutions are given in the transform 
space and transform inversion needs to be conducted numerically. In this section, 
we will present the elegant approach of Cleary (1977) for obtaining the 
fundamental solutions in fluid diffusive full-space. However, there is an algebraic 
error in Cleary’s (1977) fluid source solution as pointed out and corrected by 
Rudnicki (1981). Therefore, we will only present the three-dimensional point force 
solution by Cleary (1977) (with typos corrected), and the fluid sources solution 
would be deferred to the next section and follow Rudnicki’s (1986) approach.  
 The complete set of fundamental solutions provided in this and the next 
sections is very useful for generating other analytical solutions for poroelastic 
solids (e.g., Carvalho and Curran, 1998) as well as for boundary element 
formulation in solving practical problems numerically. In addition, the analytical 
methods used in obtaining these solutions merit detailed discussions. 

8.9.1 Canonical Representation of Point Force Solution 

The point force problem considered by Cleary (1976, 1977) is the equivalent 
Kelvin fundamental problem in elastic full space. The force term is 

1 2 3( ) ( ) ( ) ( )k kf P H t x x x� � ��  (8.175) 
Cleary (1976, 1977) started by adopting the so-called canonical representation 
theorem (Wineman and Pipkin, 1964) that the pore pressure is a scalar function 
and that it must be linearly proportional to the applied force Pk and with a 
dimension of stress. There is no characteristic length scale in the problem, so the 
only length scale is (ct)1/2. Therefore, there is only one possible canonical form for 
the pressure p:

13 ( )k kP x
p f

r
<� , r

ct
< 9  (8.176) 
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This kind of scaling idea was discussed in detail by Barenblatt (1996). Using a 
similar argument, Cleary (1976, 1977) postulated that the displacement must have 
the following form: 

2 33 ( ) ( )k k i
i i

P x P
u x f f

rr
$ < <� �  (8.177) 

Substituting (8.176) and (8.177) into the stress-strain relation given in (8.20) and 
in view of the following formulas, 

2
i

i

x
x r

<<�
�

�
, i

i

xr
x r
�

�
�

, 4
2 2 23

1[ ( )] 3d f f f
d

< < <
< <

1� � �  (8.178) 

2
3 3 3

1[ ( )]d f f f
d

< < <
< <

1� � �  (8.179) 

we have 

1 2 25 3 3

( ) 2
2 i j j ik k k k

ij i j ij
P x P xP x P x

x x F F f
r r r

$� �
�

� � �  (8.180) 

1 2 32 3 3 3

( )
[ ( )] ( ) ( )i j i j j ik k k k

ij ij
x x P x P xP x P x

F F F
r r r r

� < < � <
�

� � �  (8.181) 

where
4

1 23
1( ) 2 [ ( )]dF f

d
< < <

< <
� , 2

2 2 3
1( ) [ ( )]dF f f

d
< < <

< <
� �  (8.182) 

3 2 3 2 3 1
3( )2( ) [(1 ) ( ) ]

1 2 2 (1 )
u

u
F f f f f f

B
# #

< # # #<
# #

�1 1� � � � � �
� �

 (8.183) 

8.9.2 Determination of Evolution Functions 

Substitution of (8.181) into the equilibrium equation yields 
2

2 3 2 1 2 3 2 3[ ] [ 3( ) ( )] 0i k k iF F F r P F F F F F P x x< < <1 1 1 1� � � � � � � �  (8.184) 
Therefore, we must have independently 

2 3 2[ ] 0F F F< 1� � �  (8.185) 

1 2 3[ 4 ] 0d F F F
d

<
<

� � �  (8.186) 

Actually, the integration of the force on the sphere S( shown in Fig. 8.5 can be 
used to find the integration of (8.186). More specifically, we can integrate the 
following force equilibrium with body force 

, 0kl l kf� � �  (8.187) 
over the sphere of S( with body force given in (8.175): 

1 2 3

,

( ) ( ) ( ) ( )i i i
r r

ij j ij j
r r

f dV P H t x x x dV P

dV n dS

( (

( (

� � �

� �

� �

� �

� � � � �

� �

� �

� �
 (8.188) 
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Figure 8.5 Point force applied within diffusive full space 

The last equation is the result of applying the divergence theorem given in Section 
1.6.1. Now let us consider the case of vertical force P3 shown in Fig. 8.5 (i.e., P1 = 
P2 = 0) . In view of (8.181), (8.188) becomes 

2
3 3 3

3 1 2 3 24 20 0
( )

x P P
P F F F dS F dS

r r

( (
� � � � �� �  (8.189) 

Now we use spherical coordinates as 

3 cosx ( 
� , 2 sindS d d( 
 
 ��  (8.190) 
The integration can be carried out as 

2 22 23
3 1 2 340 0

2 23 2
20 0

2
1 2 3 3 3 2

0 0

1 2 3 3 3 2

cos
( ) sin

sin

2 ( ) cos sin 2 sin

4 ( ) 4
3

P
P F F F d d

P F
d d

F F F P d P F d

F F F P P F

� �

� �

� �

( 

( 
 
 �

(

( 
 
 �
(

� 
 
 
 � 
 


� �

� � � �

�

� � � �

� � � �

� �

� �

� �
 (8.191) 

Integration leads to 

1 2 3
34

4
F F F

�
� � � �  (8.192) 

Taking the trace of (8.181) gives 

1 2 3 3( 2 3 ) k k
kk

x P
F F F

r
� � � �  (8.193) 

Combining this equation with (8.176), we have 
1

1 2 3 3 3
3 ( 2 3 3 ) ( )k k k k

kk
x P x Pfp F F F F

B B r r
� <� � � � � �  (8.194) 

Substituting (8.194) into (8.21), we obtain
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0
0 3

3 ( )
( )

2 (1 )(1 )
u k k

u

x P
m m F

B r
( # #

<
$ # #

�
� �

� �
 (8.195) 

Taking the spatial differentiation of (8.195) twice gives 
2 20

5
3 ( ) 2( )

2 (1 )(1 )
u k k

u

x P
m F F

B r
( # #

<
$ # # <

� 11 1� � �
� �

 (8.196) 

The time derivative of (8.195) is 
0

3
3 ( )

( )( ) ( )
2 (1 )(1 ) 2

u k k

u

x Pm F
t B tr

( # # < <
$ # #

�� 1� �
� � �

 (8.197) 

Substituting (8.196) and (8.197) into (8.29) and noting the second part of (8.176) 
2

2
1 c
t r

<
�  (8.198) 

we arrive at an ordinary differential equation for F(<):
2''( ) ( ) '( ) 0

2
F F<< <

<
� � �  (8.199) 

By observation, we find that the solution is 
2 2( ) exp( / 4)

2
FF d

<
< B B B

�

�
�� ��  (8.200) 

where F� is the value of F(<) as & � and we have used the undrained condition 
that t & 0 implies %m = 0 or F = 0.
 To verify that (8.200) is a solution of (8.199) we can use Leibniz’s rule 
(Spiegel, 1963) to find the differentiation of the integral given in (8.200): 

( ) ( )

( ) ( )

( , )( , ) ( ) [ , ( )] ( ) [ , ( )]
g t g t

f t f t

h th t d g t h t g t f t h t f t d
t t

AA A A� �1 1� � �
� �� �  (8.201) 

Using (8.201), we find that 
2 2( ) [ exp( / 4)]

2
FF < < <
�
�1 � � �  (8.202) 

2
22( ) [ ]exp( / 4)

22
F

F
< << <

<�
�11 � � � �  (8.203) 

and it is obvious that (8.200) is indeed a solution of (8.199). 
 Finally, we rewrite (8.24) in terms of F(<) as 

1 2 3 13 3

1 3 3

6( ) 6( )
( 2 3 ) ( )

(1 )(1 ) (1 )(1 )
3(1 )(1 )

{ ( ) ( )} ( )
(1 )(1 )

u k k u k k
kk

u u

u k k k k

u

P x P x
p F F F f

B Br r
P x P x

F f G
B r r

# # # #
� <

# # # #
# #

< < <
# #

� �
� � � � �

� � � �

� �
� � �

� �

  (8.204) 
With this new definition for G(<), (8.24) gives the following ordinary differential 
equation:

   2( ) ( ) 0G G< <
<

11 1� �  (8.205) 

The solution of G(<) is
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3
1 2( )G k k< <� �  (8.206) 

For long term t & �, we have G = F� � 0 = F� or k2 = F�. When t & 0, for 
boundedness we must have k1 = 0. Therefore, we have 

( )G F< �9  (8.207) 
With this solution for G, f1 can be solved from the last part of (8.204) as 

1
(1 )(1 )

( ) [ ( ) ]
3(1 )(1 )

u

u

B
f F F

# #
< <

# #�
� �

� �
� �

 (8.208) 

Note that F(<) can be simplified as  
2 2

2 2 2 2

0 0

( ) exp( / 4)
2

exp( / 4) exp( / 4)
2

FF d

F d d

<

<

< B B B
�

B B B B B B
�

�
�

�
�

� �

2 3� � � �4 56 7

�

� �
 (8.209) 

The first integral can be evaluated by the following change of variables
2 xB � , 2 d dxB B �  (8.210) 

to give 
2 2 1/2

0 0

3/2

1exp( / 4) exp( / 4)
2
1 1 3 3( ) ( ) 4 ( )
2 2 2(1/ 4)

d x x dxB B B
� �

� � �

� �

� �
E E

 (8.211) 

The result of this definite integral can be found in standard handbook (e.g., 
Formula 3.381.4 of Gradshteyn and Ryzhik, 1980). From Formulas 6.1.12 and 
6.1.8 of Abramowitz and Stegun (1964), we have

3 1 1 1( ) (1 ) ( )
2 2 2 2 2

�
E � E � � E �  (8.212) 

We finally have  
2 2

2 2

0

( ) exp( / 4)
2

11 exp( / 4)
2

FF d

F d

<

<

< B B B
�

B B B
�

�
�

�

� �

2 3
� � �4 5

6 7

�

�
 (8.213) 

Substitution of (8.213) into (8.208) gives 
2 2

1
0

2 (1 )(1 )
( ) exp( / 4)

3( ) 2
u

u

B
f d

<# # F< B B B
# # �
� �
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� �  (8.214) 

where
( )

2(1 )(1 )
u

u

F # #
F

# #
� �

�
� �

 (8.215) 

Thus, the pore water pressure is obtained by substituting (8.214) into (8.176).
 Substitution of (8.207) and (8.214) into (8.204) gives 

22 /4
1 2 3

2( )
2 3 (1 )(1 )

(1 )(1 ) 2
u

u
u

FF F F e dB

<

# #
# # B B

# # �

� �� K L�
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� � P Q�  (8.216) 
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Equation (8.185) can be rearranged in the following form: 
2

2 3 2
1 ( )dF F F

d
<

< <
� �  (8.217) 

Therefore, (8.216), (8.217), and (8.192) provide three equations for three unknowns 
F1, F2, and F3.
 Subtraction of (8.216) from (8.192) gives 

22 /4
2 3

(1 )(1 )3 42 2
4 (1 )(1 ) 2

u

u
F F F e dB

<

# # F B B
� # # �

� �
�

� �
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� � �  (8.218) 

Combining (8.217) and (8.218) results in 
22 2 /4

2
(1 )(1 )2 3 4( )

4 (1 )(1 ) 2
u

u

d F F e d
d

B

<

# # F< B B
< < � # # �

� �
�

� �
� � � �

� � �  (8.219) 

Integrating (8.219) once, we obtain
2

22
2 2 /4

2
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su

FF s e d ds
< B# #<< F< B B
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� � � �  (8.220) 

The last integral can be integrated by part as 
2 2

2 2

2 2 2

2
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0

0 0

2 2 /4 4 /4
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0 0 0
2

2 2 2 /4
20

1 ( )
2

1 [ ]
2
1 [ ]
2
1 [ 2 ( 1) ]
2

s s
I s e d ds e d d s

e d e d
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� �
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 (8.221) 

In the above derivation, we have used the result of (8.211). Back-substitution of 
(8.221) into (8.220) gives 

22
2 /4

2 20

1 3( ) [ ] ( 1)
4 4 2

F F e d
< BF B< B B

� � <
�

�� � � � ��  (8.222) 

Note that this equation differs from Eq. (28) on p. 81 of Cleary (1976). There is a 
typo in his equation (i.e., a power of 2 is missing in < within the integral). 
Substitution of (8.222) into (8.218) results in the solution of F3:

22
2 /4

3 20

1 3( ) [ ] ( 1)
4 4 2

F F e d
< BF B< B B

� � <
�

�� � � ��  (8.223) 

With these results, (8.192) gives the solution for F1

22
2 /4

1 20

3 1( ) [ ] (3 5 )
4 4 2

F F e d
< BF B< B B

� � <
�

�� � � � ��  (8.224) 

Substituting (8.224) into the first part of (8.182) and integrating the resulting 
equation once gives 

23 2
2 /4

2 4 60 0

1 1 3( ) [ ] ( 5 )
8 4 4

s
f F e d ds

s s

< BF< B< B B
� �

�
�� � � �� �  (8.225) 
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By applying integration by part and by Leibniz’s rule of differentiation for the 
integral given in (8.225), we obtain

2 2 22 /4 2 /4 /4
11 4 30 0 0 0

3 1 1[ ]
s

I e d ds e d e d
s

< < <B B BB B B B B
B<

� � �� � � �� � � �  (8.226) 

2 2 24 /4 4 /4 /4
12 6 50 0 0 0

5 1 1[ ]
s

I e d ds e d e d
s

< < <B B BB B B B B
B<

� � �� � � �� � � �  (8.227) 

Substitution of (8.226) and (8.227) into (8.225) yields 
22

2 /4
2 20

1 1( ) [ ] (1 )
8 4 4

f F e d
< BF B< B B

� � <
�

�� � � ��  (8.228) 

Finally, the second of (8.182) can be used to evaluate f3:
22

2 /4
3 2 20 0

1 7 1( ) [ ] (1 )
8 4 4

f F e d d
< A BF< B< B B A

� � A A
�

�� � � �� �  (8.229) 

Similar to the above procedure, integration by parts and using Leibniz’s rule leads 
to:

2 2

2

2 2
2 /4 2 /4

2 2 20 0 0

/4
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1 1(1 ) (1 )
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e d d e d

e d
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B BB B A B B
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The last integral can be evaluated by integration by parts as 
2 2/4 /4

0

2 4
3 3

e d e
< B <B B� �� ��  (8.231) 

Finally, substitution of (8.230) and (8.231) into (8.229) yields
2 22

2 /4 /4
3 20

1 7 4( ) [ ] [ (1 ) ]
8 4 34 3

f F e d e
< B <F B << B B

� � <
� �

�� � � � ��  (8.232) 

Note that f3 given in Eq. (29) on p. 81 of Cleary (1976) is incorrect. The last term 
in (8.232) is missing from his equation. This typo has been corrected in Cleary 
(1977).
 By now all evolution functions are determined. There is only one unknown 
F� that remains to be determined.  

8.9.3 Determination of Unknown Constant F�

Finally, we have to evaluate the constant F�. To do so, we can substitute these 
evolution functions obtained in the last section into (8.183). In particular, the 
differentiations of f2 and f3 are

24 /4
2 3 0

2( )
4

f e d
< BF< B B

�<
�1 � � �  (8.233) 

2 24 /4 /4
3 3 0

2 4( ) [ ]
34 3

f e d e
< B <F< B B

� <
� �1 � ��  (8.234) 



322 Analytic Methods in Geomechanics 

2 2/4 4 /4
2 3 3 0

1
12 3

f f e e d
<< BF F B B

� � <
� �1 1� � � �  (8.235) 

Collection of the constant terms in (8.183) gives 
(1 )

4 (1 )
F #

� #�
�

� �
�

 (8.236) 

It is straightforward, although somewhat lengthy, to show that both the coefficients 
for the integral and exponential terms are identically zero. With this result, F can 
now be evaluated by substituting (8.236) into (8.215): 

( )
8 (1 )(1 )

u

u

# #
F

� # #
�

� �
� �

 (8.237) 

8.9.4 Final Solutions  

In summary, the pore water pressure, displacements, and stresses are 

13 ( )k kP x
p f

r
<� , r

ct
< 9  (8.238) 
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1 2 32 3 3 3

( )
[ ( )] ( ) ( )i j i j j ik k k k

ij ij
x x P x P xP x P x

F F F
r r r r

� < < � <
�

� � �  (8.240) 

where the time-dependent functions are summarized as: 
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  (8.241) 
Note that there is a typo in the last row in this vector in Cleary (1976), and the 
result is corrected here. The typo in Cleary (1976) is partially corrected in Cleary 
(1977) but the constant 2�1/2 is still missing in last row of the first vector on the 
right-hand side of (8.241).
 Although the derivation given in this section is lengthy, the approach is 
elegant and allows a closed-form analytical solution to be obtained. Since the fluid 
sources solution is incorrect as shown by Rudnicki (1981), we will consider the 
fluid source fundamental solution following Rudnicki’s (1986) approach in the 
next section. It will be demonstrated that the point force solution given in 
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(8.238)�(8.241) can be derived in a more elegant approach proposed by Rudnicki 
(1986).

8.10 RUDNICKI’S FUNDAMENTAL SOLUTIONS IN FULL SPACE 

8.10.1 Impulsive Fluid Source

The complete set of fundamental solution for diffusive half-spaces consists of the 
point force solution considered above and the fluid mass point source solution to 
be considered in this section. The constitutive formulation of Biot’s theory follows 
that given in Section 8.2.3 proposed by Rudnicki (1986). The fluid mass source is 
given by 

0( , ) ( ) ( )Q t Q t� ��x x  (8.242) 
where � is the Dirac delta function. The solution of (8.41) with the source given in 
(8.242) is well known (Carslaw and Jaeger, 1959):  

2
0

3/2( , ) exp( )
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Q rm t
ctct�

� �x  (8.243) 

It is straightforward to show that (8.243) satisfies (8.41) for the case of zero body 
force.

8.10.2 Canonical Form of Displacement Solution

By following the argument of Cleary (1976) for dimensional analysis, linearity, 
and spherical symmetry and isotropy, Rudnicki (1986) proposed the displacement 
solution as 

0
3

0
( , ) ( ) ( )i

i
Q x

u t U
r

<
(

�x  (8.244) 

Taking the spatial differentiation of (8.244) once and twice gives: 
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Equation (8.246) can be specialized to give 
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Differentiation of (8.243) results in 
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where < is defined (8.176). Substitution of (8.247) and (8.248) into (8.38) with Fj
= 0 gives 
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Multiplying (8.249) by xj, we obtain the following ordinary differential equation 
for U:
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 (8.250) 

Note that both r and t only enter this differential equation through <. Therefore, 
(8.250) is an ordinary differential equation in <. It is straightforward to show that 
the solution of U is:
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where
22 /4

0

1( )
2

g e d
< B< B B
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In the next, we will show that function g given in (8.252) can be expressed in 
terms of error function which is defined in Abramowitz and Stegun (1964). 

8.10.3 Error Function Representation  

The integral in (8.252) can be expressed in terms of the error function commonly 
encountered in thermoelasticty (see Carslaw and Jaeger, 1959). In particular, we 
apply the following change of variables: 

2 / 4x B� ,
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and the integral becomes 
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where .(x,y) is the incomplete gamma function (Abramowitz and Stegun, 1964). 
The last part of (8.254) is obtained by using Formula 3.381 of Gradshteyn and 
Ryzhik (1980). By applying Formula 8.356.1 of Gradshteyn and Ryzhik (1980) 

( 1, ) ( , ) xx x x e�. � �. � �� � �  (8.255) 
and the Formula 6.5.16 of Abramowitz and Stegun (1964) 
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to (8.254), we find the following relation
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where the error function erf is defined in the last part of (8.256) (Abramowitz and 
Stegun, 1964). Note that t & � gives < & 0 and with erf(0) = 0, we have g(0) = 0. 
When t & 0 gives < & � and with erf(�) = 1, we have by virtue of L’Hôpital’s 
rule for the indeterminate limit (e.g., Speigel, 1963): 
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2 2/4 /4

2lim lim 0
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L’Hôpital’s rule was published in the first-ever book on calculus written by 
L’Hôpital in 1696, according to Maor (1994) it was actually discovered by Johann 
Bernoulli (1667�1748). Thus, we have g(�) = 1. At initial time the displacement 
field given in (8.244) has the mathematical form of a center of dilatation (see 
Section 132 of Love, 1944). This observation agrees with our common sense that 
the fluid point force is indeed a kind of center dilatation. 
 Note that the differentiation of U gives 
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The last equation is resulted from applying Leibniz’s rule of differentiation given 
in (8.201) to the integral form of g given in (8.257).  Substitution of (8.243) and 
(8.244) into (8.33) with m0 = 0 gives
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Then, the stress tensor can be computed from (8.31) as 
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8.10.4 Suddenly Applied Fluid Mass Source

  We now proceed to integrate the solution for impulsive fluid mass obtained 
in the last section to get the solution for continuous injection of fluid mass. In 
particular, we replace Q0 by qd,, t by t � , and integrate , from 0 to t:

0
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where H(t) is the Heaviside step function. Likewise, (8.243) can be integrated to 
get
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We apply the following change of variable 
t s,� � , d ds,� �  (8.264) 

to get 
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Applying another round of change of variable 
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we obtain
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where erfc(x) = 1 � erf(x), which is the complementary error function 
(Abramowitz and Stegun, 1964). Comparison of (8.267) and (8.265) yields  
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Replacing Q0 by qd,, t by t � ,, and integrating , from 0 to t, we can also integrate 
(8.244) with (8.251) and (8.252) to give the displacement as 
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We apply the following change of variable 
t s,� � , d ds,� �  (8.270) 

to get 
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By applying integration by parts and Leibniz’s rule, the integral can be reduced to
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The last expression is the result of applying (8.257) and (8.268). With the result of 
(8.272) we have the displacement as 
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where
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The limiting value of u for t & 0 and < & �, we have u(�) = 0. For the long term 
(or t & � and < & 0), we have 
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That is, we have u(0) = 1. Finally, stress and pore pressure can be calculated from 
(8.31) and (8.33). In particular, by noting the following identities 
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we have 
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Substitution of (8.279) and (8.267) into (8.33) with m0 = 0 leads to 
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Substitution of (8.279)�(8.281) into (8.31) yields 
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which is the same as Eq. (26) of Rudnicki (1986).  

8.10.5 Equivalence of Fluid Mass Dipole and Body Force

It was recognized by Cleary (1977) that the body force term in (8.41) contributes 
to the solution with an equal effect of a fluid mass dipole. For example, we can 
consider a fluid source term of  

0( , ) ( , )Q t Q f t�x x  (8.283) 
The corresponding fluid mass dipole can be found by superimposing a source of 
strength Q0/� at x � �<< and a sink of strength �Q0/� at x and taking the limit of � &
0. The resulting dipole solution is (Rudnicki, 1986) 
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where
0k kh Q<�  (8.285) 

We can see from the second term of (8.41) that this term has the same 
mathematical contribution of a body force of  

( , ) ( , )j jF t P f t�x x  (8.286) 

provided that we set the dipole strength as 
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Therefore, the solution for a body force distribution of Pjf(x,t) is the same for a 
dipole source distribution of strength given by (8.287). The beauty of Rudnicki’s 
(1986) approach lies in this observation of equivalence between fluid mass dipole 
and body force. This solution will be employed in the next section to determine the 
point force solution. 
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8.10.6 Fluid Mass Dipoles  

Using the fluid source solution obtained in Section 8.10.4, if a particular field 
quantity is given by qF(x, t) for a source of strength q, the corresponding quantity 
for a dipole of strength q and direction �k is given by 

( , )( , )dipole k
k

F tF t q
x

� �
� �

�
xx  (8.288) 

Applying (8.288) to (8.267), we have 
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By noting that  
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we obtain 
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Similarly, we can apply the same procedure shown in (8.288) to water pressure 
given in (8.281) and the result is 
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Similarly, the displacement and stress for fluid dipole is 
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where
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These solutions will be employed in the next section to determine the point force 
solution.  

8.10.7 Point Force Solution by Rudnicki (1986)

Although point force solution in poroelastic solids was derived by Cleary (1976, 
1977), Rudnicki (1986) rederived this fundamental solution following a more 
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elegant way that the physical meaning of the solution can easily be recognized. 
More specifically, the solution can be obtained by superimposing the Kelvin 
solution using the undrained moduli onto the fluid dipole solution with appropriate 
strength (as given in the last section). 
 In particular, for a suddenly applied load with components Pj at the origin we 
have

= ( ) ( )j jF P H t� x  (8.297) 
The corresponding Kelvin solution for an undrained solid is (Eq. (12) on p.185 of 
Love, 1944) 
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where the undrained Lamé’s constant has been used. The corresponding stress 
components are 
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The point force solution is now obtained by adding (8.298) to (8.293) with (8.287) 
as
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  (8.300) 
Note that in deriving (8.300) we have used the following identity: 
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These alternative forms proposed by Rudnicki (1986) made the physical meaning 
of these time-dependent terms apparent. That is, the magnitudes of time-dependent 
terms of (8.300) are the differences between the drained and undrained responses. 
Substitution of (8.287) into (8.291) gives
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We can substitute (8.299) into (8.34) and adding the pressure from (8.292) after 
substituting (8.287) to get 
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Finally, substituting (8.287) into (8.294) and adding (8.299) we have 
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Note that there is a minor typo in Rudnicki (1986) in the last term of (8.304). In 
deriving (8.304) we have used (8.301) and the following identity: 
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Again the physical meaning of the time-dependent terms of (8.304) is clear 
because of the recognition of (8.301) and (8.305). This demonstrates that proper 
regrouping is of crucial importance in recognizing the physical meaning of the 
obtained solutions. By now, we have a complete set of fundamental solutions of 
point fluid source and point forces. 

8.11 THERMOELASTICITY VS. POROELASTICITY   

Mathematically, coupled thermoelasticity is equivalent to Biot’s theory of 
poroelasticity.  For example, coupled thermoelasticity can expressed as (Carslaw 
and Jaeger, 1959; Boley and Wiener, 1960) 
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where � is the coefficient of linear thermal expansion. Comparison of (8.306) with 
(8.31) or (8.58) gives the following identifications between thermoelasticity and 
poroelasticity:
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With these identifications, all solutions discussed here for poroelasticity apply 
equally to thermoelastic problems.  

8.12 SUMMARY AND FURTHER READING 

8.12.1 Summary 

In this chapter, we summarize various generalized forms of Biot’s theory given by 
McNamee and Gibson (1960a,b), Rice and Cleary (1976), Rudnicki (1986), and 
Rudnicki (1985). The use of displacement potentials are summarized, including the 
Biot�Verruijt potential, the McNamee�Gibson�Verruijt potential, and the 
Schiffman�Fungaroli�Verruijt potential. The Verruijt�Biot potential has been 
extended to include soil compressibility. The use of the Hankel�Laplace transform 
technique is discussed, and illustrated by applying it to the cases of point forces 
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and point source in poroelastic fluid diffusive half-spaces. The full-space 
fundamental solution by Cleary (1977) is rederived step by step, and some typos 
by Cleary (1976, 1977) are corrected. The same solution obtained by Rudnicki 
(1986) by following a different approach is also summarized. The equivalence of 
Rudnicki (1986) and Cleary (1977) is left as a problem at the end of this chapter. 
A minor misprint in the paper by Rudnicki (1986) is also corrected. These 
fundamental solutions proposed by Cleary and Rudnicki are obtained in an elegant 
way and in closed form. These fundamental solutions are useful in boundary 
element formulation.  

8.12.2 Further Reading 

In this chapter, we have not covered any wave propagation issues in poroelastic 
solids. For such consideration, the readers are referred to Biot (1956b). We also 
have restricted our discussion to Biot’s theory, and mixture theory for poroelastic 
solids is not covered. The readers can refer to de Boer (2000) for mixture theory 
for poroelastic solids. The fundamental solution by Cleary and Rudnicki discussed 
here is restricted to static situations. For the dynamic Green’s function for 
poroelastic half-spaces, we refer to Rajapakse and Senjuntichai (1993), and 
Senjuntichai (1994a,b). For layered half-spaces, Green’s function was considered 
by Pan (1999) and Vardoulakis and Harnpattanapanich (1986). The fundamental 
solution for transversely isotropic poroelastic solids was given by Taguchi and 
Kurashige (2002). Consolidation problems in inhomogeneous layers have been 
considered by Mahmoud and Deresiewicz (1980a,b).  
 Dislocation and crack problems in poroelastic solids have been considered by 
Rudnicki (1987, 1991, 1996), Rudnicki and Hsu (1988), Rudnicki et al. (1993), 
Simons (1977), and Rice and Cleary (1976). Many of these solutions were also 
compiled by Wang (2000). In addition, complex variable technique has been 
developed for 2-D poroelastic problems, and readers can refer to Rice and Cleary 
(1976). For the boundary element method for poroelastic solids, we refer to 
Detournay and Cheng (1993).  
 We have only dealt with saturated situations in this book, and for unsaturated 
soil mechanics we refer to Fredlund and Rahardjo (1993). Regarding fluid 
infiltrated solids, multi-phase coupling becomes an important topic in soil 
mechanics (Oka and Kimoto, 2012), but it is outside the scope of the present 
chapter.

8.13 PROBLEMS  

Problem 8.1 Express A and �u of the Rudnicki (1986) model in terms of B and #u
of Rice�Cleary (1976) model.  

Problem 8.2 Express Ku and A, of Rudnicki (1985) model in terms of B and #u of 
Rice�Cleary (1976) model.  

Problem 8.3 Show the validity of (8.180) and (8.181). 
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hDomain 1

Domain 2

Impervious

z

Problem 8.4 Prove the following identity between Rudnicki’s (1986) model and 
Rice-Cleary’s (1976) model: 

3( )
(1 2 )(1 )

u

uB
# #

A
# #

�
�

� �
 (8.308) 

Problem 8.5 Prove the validity of (8.184).  

Problem 8.6 Prove the validity of (8.186) from (8.184) and (8.185).  

Problem 8.7 As shown in Fig. 8.6, consider the problem of a suddenly applied 
point source at a depth h from the free surface z = 0 of a half-space with an 
impervious surface (i.e., �p/�z = 0). First, we divide the half-space occupying z > 0 
into two domains by a fictitious horizontal plane at the depth where the point 
source is applied. Solve this problem using the McNamee�Gibson displacement 
function given in Section 8.4.

Figure 8.6 Point source in poroelastic half-space with impervious surface  

Answer:
2 2 33 3
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3 2 2 3
2 1 ( ) hQ
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Problem 8.8 In Rudnicki’s (1986) appendix, all the evolution functions used in 
Cleary’s (1976) solutions were expressed in terms of Rudnicki’s (1986) solutions. 
They are 

1
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However, the equivalence of these expressions with those given by Cleary (1977) 
is not demonstrated explicitly in the paper of Rudnicki (1986). Show that these 
expressions are, indeed, equal to (8.241), in which Cleary’s (1976, 1977) typos has 
been corrected. 

Problem 8.9 Demonstrate that (8.251) and (8.252) are indeed the solution of 
(8.250).

Problem 8.10 For the case of compressible fluid and solid phase, consider the 
following cylindrical form of displacement potential given in (8.104) to (8.107).  
Prove the following identities: 

2 2 3 2
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Problem 8.11 By virtue of (8.327)�(8.330), show that (8.1) is identically satisfied 
if

2 0S� � , 2 0Q� �  (8.327) 

Problem 8.12 By virtue of (8.327), show that (8.4) is identically satisfied if 
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Problem 8.13 Prove the following identities: 
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Problem 8.14 By virtue of (8.333)�(8.335), show that (8.2) is identically satisfied 
if

2 0S� � , 2 0Q� �  (8.332) 

Problem 8.15 Prove the following identity: 
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Problem 8.16 By virtue of (8.337), show that (8.3) is identically satisfied if 
2 0S� �  (8.334) 

Problem 8.17 By using (8.104)�(8.107), (8.116)�(8.118), and (8.126)�(8.128),
show the validity of the following formulas for the m-th harmonics: 
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Problem 8.18 By using (8.111)�(8.115), (8.116)�(8.118), and (8.126)�(8.128),
show the validity of the following formulas for the m-th harmonics: 
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   CHAPTER NINE 
 

Waves Propagations and Dynamics 
Problems in Geomaterials 

9.1 INTRODUCTION 

The propagation of mechanical disturbances in solids is of profound importance in 
many disciplines including physical sciences and engineering. In these kinds of 
problems, the loading or disturbance is applied at such a “fast” rate that the effect 
of inertia cannot be ignored (as we have been doing in this book so far). These 
loadings are described as suddenly applied like a dropping mass sticking to the 
ground (modeled as Heaviside step function in time) or applied impulsively like in 
a dynamic impact (modeled by Dirac delta function in time). These loadings are 
referred to as dynamic loadings instead of quasi-static loadings. Energy of 
disturbance or waves may propagate in the solids at different wave speeds, 
depending on the nature of the disturbances and on whether they are dilatational or 
shear in nature. Both displacement and stress responses of the solids are functions 
of time (rather than in the sense of the viscoelastic type of creeping or relaxation 
discussed in Chapter 7). For isotropic solids of infinite extent, these waves are 
either dilatational or compressional waves (also called P-waves) or shear waves 
(also called S-waves). The phase velocities of the particle movements are parallel 
and perpendicular to the direction of wave propagation for dilatational and shear 
waves, respectively. Referring to a fixed coordinate system, we can further 
decompose shear waves as SH-waves or SV-waves, corresponding to the polarized 
components along the “horizontal” and “vertical” directions, respectively. For 
anisotropic solids, these waves would no longer be purely dilatational or purely 
transverse. The mathematical techniques used in solving dynamic problems are 
more tedious and lengthy; only some simple situations have been solved 
analytically.  
 In geomechanics applications, seismic wave propagation induced by 
earthquakes is of major concerns. Manmade structures are vulnerable to ground 
shakings. Both responses and failure mechanisms in soils or rocks can be highly 
sensitive to dynamic loadings.  
 Many important topics need to be included in a chapter on dynamics and 
wave propagations. In view of the size limitations of this book, only some selected 
topics in dynamics and wave propagations in geomaterials are included in this 
chapter. Although one-dimensional wave propagations and dynamic problems 
provide very useful insight into the problems of dynamics, in view of its limited 
usefulness in geomechanics we will start with 3-D formulations of wave equations 
in solids. Surface and interfacial waves, including Rayleigh waves, Love waves, 
and Stoneley waves, will be discussed because of their relevance to seismic wave 
propagations. The nature of elastic-plastic waves in geomaterials will be discussed. 
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Strain localization, a special case of acceleration waves in geomaterials, will be 
investigated. Dynamic problems in viscoelastic solids will be introduced, and 
essential results in dynamic fracture mechanics and soil dynamics will be 
summarized. 
 This chapter is intended to arouse the readers’ interest in dynamic problems 
in geomaterials, and hopefully provide the first stepping stone in exploring 
fascinating phenomena in dynamics and wave propagations. 
 

9.2 SEISMIC WAVES 

Inside the Earth’s surface, fault ruptures can release energy stored along a stick-
slip fault segment and set the ground shaking by radiating energy through waves. 
The focal mechanism of faulting can be normal faulting, reverse faulting, strike-
slip faulting, or a combination of these (oblique faulting). Data from far-field 
seismic stations can be used to identify the source mechanisms as well as the 
location and depth (i.e., hypocenter of the earthquake); but we should be careful 
that this focal mechanism is only the initial starting mechanism, which may change 
as a function of time as the rupture process continues along the fault plane. This is 
especially true for large earthquakes. 
 As we will see from the next few sections, P-waves travel with the greatest 
wave speed, following by S-waves, Love waves, and Rayleigh waves. Figure 9.1 
illustrates the relatively speeds and their associated particle motions of these 
waves. However, since P-waves and S-waves are body waves they spread three 
dimensionally, while surface waves (like Love and Rayleigh waves) are plane 
waves spread two dimensionally. Body waves decay as 1/R2 whereas surface 
waves decay as 1/HR, where R is the distance measured from the sources. Surface 
waves attenuate much more slowly and normally carry more energy than body 
waves in the far-field. Therefore, earthquake damages in the far-field are normally 
associated with surface waves. Thus, they are more important than body waves. 
Shear waves can further be decomposed vertically and horizontally, leading to SV- 
and SH-waves as shown in Fig. 9.1. In seismology, when the surface waves are the 
results of multiple reflections and refractions of waves in a layered stratum, they 
are also called coda waves. 

9.3 WAVES IN INFINITE ELASTIC ISOTROPIC SOLIDS 

Wave propagations in infinite or unbounded solids are of great simplicity because two 
different types of waves exist, and they propagate independently. Wave propagation in 
unbounded solids were first considered by George Green in 1838 and G.G. Stokes in 
1849 (Lamb, 1904).  
 In this section, we start with the equation of motion in terms of the displacement 
field for isotropic solids (compare (2.72)): 
 2( ) ( )� $ $ ( (� � � � � ���� � u u f u  (9.1) 
where ( is the density of the solid. By using the following vector identity (see (1.50)),  
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Figure 9.1 Illustrations of P-wave, S-wave, Love wave, and Rayleigh wave from a seismic source 

and their observations at a seismic station  
 

 2 ( ) ( )� � � �� � � � ��u u u  (9.2) 
We can rewrite (9.1) as 
 2 2( ) ( )d sc c � � � � � ��� � � �u u f u  (9.3) 
where 
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To see the physical meaning of these parameters, we first neglect body force and 
take the divergence of (9.3) to get 
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In deriving (9.5), we have used the vector identity that the divergence of the curl 
of a vector is identically zero. Since �	 u is the dilatation, cd is the dilatational 
wave speed. Similarly, taking the curl of (9.3) gives 
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Applying the following vector identities 
 2[ ( )] ( )] ( )� � � � T � �� ��� � � � � � �u u u ,   ( ) 0g� �� �  (9.7) 
we find 
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Thus, cs can be interpreted as the shear wave speed because � × u/2 is the rotation 
tensor. If the solid is unbounded, these waves are independent. However, at 
boundaries they do interact. By applying formulas in Chapter 2, these wave speeds 
can be rewritten as 
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Therefore, the ratio between dilatational wave and shear wave is a function of 
Poisson’s ratio: 
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For highly compressible solids (# = 0), we have cd/cs = 1.4142, and cd/cs & � for 
incompressible solids.  

9.4 HELMHOLTZ THEOREM AND WAVE SPEEDS 

There is another way to express the wave equations in solids. Recall from Chapter 
4 that Helmholtz’s additive theorem can be applied to decompose the displacement 
vector: 
 �� �� � �u ?  (9.11) 
We have  
 2 2( )� �� � �� � � � �� �u ? �  (9.12) 
Applying (9.12) to (9.5), we arrive at a commonly used form of wave equation for 
the scalar function: 
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Strictly speaking, we should have  
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where f is any arbitrary harmonic function. However, most researchers have been 
restricted to the special case of f being zero. That is, 
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 On the other hand, the curl of (9.11) gives 
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In obtaining (9.16), we have applied the vector identity given in Chapter 1 and 
have used the commonly adopted constraint � 	 ? = 0, which is also known as 
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Lamé’s representation. Substitution of (9.16) into (9.8) and dropping the arbitrary 
harmonic function gives 
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For shallow earthquakes, typical values of these wave speeds are cd ) 5.5�6.2 km/s 
whereas cs ) 3.2�3.6 km/s, depending on the crustal properties. 

9.5 RAYLEIGH WAVES 

9.5.1 Characteristics Equation for Rayleigh Wave Speed 

As illustrated in Fig. 9.1, Rayleigh waves propagate on the surface of the Earth and 
travel more slowly than body waves but their magnitude attenuate much slower than 
body waves. In mathematical terms, we are seeking a decaying SV-wave component 
propagating along the surface of a half-space. The mathematical formulation of this 
wave is first done by Lord Rayleigh in 1887, who was a Nobel Prize winner in physics 
in 1904, and this surface wave was named after him. As we will see in Section 9.10 
that it is of fundamental importance in dynamic fracture mechanics. In terms of scalar 
and vector, we have 
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with ?1 = ?3 = 0. Specializing (9.11) gives the displacement components in terms of 
these Helmholtz scalar and vector fields as: 
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with  
 1 3( , , )x x t� �� ,   2 2 1 3( , , )x x t? ?�  (9.20) 
It can be shown that u2 = 0. As shown in Fig. 9.2, the wave is expressed to 
propagate on the surface and its magnitude drops rapidly with depth.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.2 Schematic diagram of Rayleigh waves 
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Mathematically, the following form is expected: 
 1 3 3 1( , , ) ( ) exp ( )x x t F x i t kx� F� �  (9.21) 
 2 1 3 3 1( , , ) ( ) exp ( )x x t G x i t kx? F� �  (9.22) 
Substitution of (9.21) and (9.22) into (9.18) gives 
 2'' 0F r F� � ,   2'' 0G s G� �  (9.23) 
where  
  2 2 1/2(1 / )R dr k c c� � ,   2 2 1/2(1 / )R ss k c c� � ,  /Rc kF�  (9.24) 
The Rayleigh wave speed is denoted by cR. Thus, in view of the decay condition at x3 
& �, we have  
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The traction-free conditions are 
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on x3 = 0. Substitution of (9.25) and (9.26) into (9.27) and (9.28) yields 
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In terms of the dilatational and shear wave speeds, (9.29) can be expressed as: 
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For nontrivial solutions, we must have the determinant of (9.30) be zero. That is, 

 
2 2 2

2 1/2 1/2
2 2 2(2 ) 4(1 ) (1 ) 0R R R

s d s

c c c
c c c

� � � � �  (9.31) 

The determination of the roots of cR is not straightforward and a more robust and 
routine approach proposed by Segel (1987) will be introduced later in Section 9.5.3. 
Some authors present the characteristic equation (9.31) in terms of wave slowness (or 
the inverse wave speed), which was introduced by Sir W.R. Hamilton in the context of 
optics (Lamb, 1904).  

9.5.2 Rayleigh Wave in Solids Satisfying Poisson Condition  

First, let us consider a special case. To determine the actual roots of the Rayleigh wave 
speed, we consider the Poisson condition (Love, 1944). That is, # = ¼ or � = $. The 
characteristic equation for Rayleigh wave speed becomes 
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3 3

x x x� � � �    (9.32) 

where x = (cR/cs)2. There are four roots for this equation: 

 1 0x � ,    2 4x � ,  3
22
3

x � � ,   4
22
3

x � �  (9.33) 

Some of these solutions are extraneous solutions that come from the squaring process, 
and the actual solution is x4 = 0.8453. The Rayleigh wave speed is smaller than both 
body wave speeds: 
  0.9194 0.5308R s dc c c� �    (9.34) 
Therefore, Rayleigh wave speed is about half of the dilatation wave speed and 90% of 
the shear wave speed.  
 More generally, the Rayleigh wave speed is a function of Poisson’s ratio #. 
Viktorov (1967) proposed a simple approximation to the Rayleigh wave speed: 

 0.862 1.14
1R sc c#

#
�

�
�

   (9.35) 

Note that the Rayleigh wave speed is not a function of the frequency of the wave, and 
it is called a non-dispersive wave (Achenbach, 1973). Using the second part of (9.30) 
gives 

 2 2
2irkB A

k s
�

�
  (9.36) 

Substitution of (9.36) into (9.25) and (9.26) and the results into (9.19) gives 

 3 3
1 1 1 3 12 2

2 sin( ) ( )sin( )rx sxrsu kA e e t kx u x t kx
k s

F F� �K L� � � � �N O
�P Q

�   (9.37) 

 3 3
2

3 1 3 3 12 2
2 cos( ) ( ) cos( )rx sxku rA e e t kx u x t kx

k s
F F� �K LM M� � � � � �N O

�M MP Q
�   (9.38) 

The variations of these displacements with depth have been given in Fig. 5.13 of 
Achenbach (1973) for two different Poisson’s ratios. The corresponding stresses are 
plotted in Fig. 5.14 of Achenbach (1973). In obtaining the above equations, we have 
taken the real parts of the displacement fields. Clearly, (9.37) and (9.38) can be 
combined to give an equation of an ellipse: 

 2 23 1

3 3 1 3
[ ] [ ] 1

( ) ( )
u u

u x u x
� �

� �
  (9.39) 

To consider the nature of particle movement for Rayleigh wave, we first specialize 
(9.39) to the ground surface and consider the Poisson condition of # = 1/4. Thus, we 
have 

 2 23 1[ ] [ ] 1
0.6204 0.4226

u u
kA kA

� �   (9.40) 

Figure 9.3 shows the particle on the ground surface. The major axis is along the 
vertical x3-direction and the minor axis is along the horizontal x1-direction with the 
ellipticity of 1.468. In addition, we can see that the horizontal displacement u1 given in 
(9.37) changes sign at a depth h, which is given by 
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  (9.41) 

where the Rayleigh wavelength is defined by 

  2
R k

�� �   (9.42) 

Thus, the horizontal particle movement changes sign at a depth of about 20% of the 
wavelength. However, the vertical component will not change sign (see Problem 
9.11). To consider the sense of direction of particle movement, we note the following 
forms on the ground surface: 
 1 0.4226 sinu kA F,�   (9.43) 
 3 0.6204 cosu kA F,�   (9.44) 
where  
 1( / )Rt x c, � �   (9.45) 
Now, let us consider the direction of movement at different time ranges within a 
period of 2�/F: 

(i) First quadrant: 0
2
�,
F

= = :   1 0u > ,   3 0u >  

(ii) Second quadrant:  
2
� �,
F F

= = :   1 0u > ,   3 0u =  

(iii)Third quadrant: 3
2

� �,
F F

= = :   1 0u = ,   3 0u =  

(iv) Fourth quadrant: 3 2
2
� �,
F F

= = :   1 0u = ,   3 0u >  

As illustrated in Fig. 9.3, the particle movement is counter-clockwise in elliptical 
motion with a larger vertical component. The motion then turns to clockwise at a depth 
larger than 0.1925 of the wavelength. Therefore, near the surface, when the surface 
wave is traveling to the right, the particle will travel backward to the left. At a depth of 
about 1.6 wavelengths, the displacement will drop to about 5% of its value at the 
ground surface.   
   

 
   

 
 
 

 
 
 

 
 

 
 

 
Figure 9.3 Illustration of particle movements with depth for Rayleigh waves 
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 9.5.3 Segel (1987) Method for Arbitrary Poisson’s Ratio 

Although (9.35) provides a simple approximation of the Rayleigh wave speed with 
Poisson’s ratio, a simple but general technique for determining the Rayleigh wave 
speed is still desirable. In this section, we will present a general technique from 
Segel (1987). In particular, we can rewrite (9.31) as 
 6 4 2 2 2

0 0 08 (24 16 ) 16(1 ) 0c c c< <� � � � � � ,   (9.46) 
where 
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< �  (9.47) 

with c0 in the following range 
 2

00 1c= =    (9.48) 
For c0 = 0, the left-hand side of (9.46) equals �16(1�<2) and thus is negative. At 
the other extreme, for c0 = 1 the left-hand side of (9.46) equals 1. Therefore, there 
must be a real root within the physical range.  
 To give a general method for finding c0 in (9.46), we first note that the 
second part of (9.47) can be expressed in terms of Poisson’s ratio as 
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Inverting (9.49) gives 
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 (9.50) 

On the other hand, (9.46) can be used to solve for <2 in terms of c0 as 
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8 24 16
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c c c
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,  (9.51) 

Therefore, instead of solving for c0 we know from (9.48) that the range of c0 is 
from 0 to 1, so we can calculate backward. That is, for a given value of c0 we can 
find <2 from (9.51), then # from (9.50). Thus, the Rayleigh wave speed cR can be 
found as a function of Poisson’s ratio. Of course, we have to reject the results and 
stop our calculations whenever < > 1 or 0 � # � 1/2 is violated.  
 This is a genius way to solve this seemingly difficult problem. This particular 
technique illustrates that sometimes a difficult problem becomes a simple one if 
you look at the problem from another point of view (in this particular example, we 
look at the problem backward).  
 In the last section, we showed that for solids satisfying Poisson’s condition 
(i.e., the # = ¼ or � = $), the particle movement changes from counter-clockwise to 
clockwise if a critical depth is exceeded. At this critical depth, there is only vertical 
particle movement. We can show that this is true for other values of Poisson’s ratio. 
 Let us start with the magnitude of the displacement fields. From (9.37) and 
(9.38), we have 

 3 3( )
1 3 2 2

2( ) sx r s x rsu x e e
k s

� � �K Lb �N O
�P Q

�   (9.52) 
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�M MP Q

�   (9.53) 

Whether the horizontal and vertical displacements will change sign with the 
increasing depth (x3) depends on the relative values of the two terms in the 
brackets in (9.52) and (9.53). From the definitions of (9.24) that we have r > s 
because cd > cs. Therefore, the first term in these brackets is a decreasing function 
of x3 and it attains a maximum value of one when r & s or cd & cs. Consequently, 
the criteria for having the brackets in (9.52) and (9.53) to change sign for 
increasing x3 are: 

 2 2
21 rs

k s
>

�
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2

2 2
21 k

k s
>

�
    (9.54) 

Substituting the definition of (9.24) into the second term inside the brackets of (9.52), 
we find 
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   (9.55) 

However, cR must satisfy the characteristic equation for Rayleigh wave speed 
(9.31), thus (9.55) becomes 
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 (9.56) 

Since cR < cs , therefore (9.56) must be smaller than 1. Therefore, it is always 
possible to find a depth h such that horizontal displacement vanishes. On the other 
hand, it is straightforward to see the following identity: 
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2 2 2 1

1 ( / ) 2 /R s

k
k s s k c c
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  (9.57) 

Therefore, it is impossible for the vertical displacement to change sign. Therefore, 
the illustration given in Fig. 9.3 is true regardless of the value of Poisson’s ratio. 

9.6 LOVE WAVES 

Note that a Rayleigh wave is a combination of P-waves and SV-waves near the 
surface. However, seismic surface waves recorded at seismic stations also show 
horizontal components of SH-waves. It is thus natural to investigate this possibility. 
This mathematical problem was first solved by Love (1911), and this surface wave is 
therefore named after him. In particular, these waves do not exist in homogeneous 
half-space, but are observed only when there is a low velocity or softer layer 
overlying a high velocity or firmer layer. They usually travel slightly faster than 
the Rayleigh waves, about 90% of the S-wave velocity. On the Earth’s surface, 
geological layering is quite common and thus Love waves are also observed 
during earthquakes.  
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9.6.1 Non-existence of SH-Wave in Homogeneous Half-Space 

 For SH-waves, we have the so-called anti-plane motions, and both u1 and u3 
are zero. The u2 component is 
 3

2 1 3 1( , , ) exp ( )bxu x x t Ae i kx tF�� �   (9.58) 
For a homogeneous half-space, the boundary conditions at ground surface are 

  33 0� � ,      2
32

3
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u
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� $
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�

 (9.59) 

on x3 = 0. The wave equation for anti-plane motions is (e.g., Freund, 1998): 
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�
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     (9.60) 

Substitution of (9.58) into (9.60) gives 
  2 2 2[1 ( / ) ]L sb k c c� �    (9.61) 
where cL = F/k. It is obvious that the first part of (9.59) is identically satisfied since u3 
= 0 whereas the second part of (9.59) gives 
  0Ab �    (9.62) 
Therefore, the SH-type surface wave does not exist on homogeneous half-spaces.  

9.6.2 Love Waves in an Elastic Layer on a Half-Space 

We now turn to the problem of an elastic layer of thickness H on the top of a 
homogeneous half-space, as shown in Fig. 9.4. With the origin located at the interface, 
we have the boundary conditions at ground surface as 
  33 0I� � ,      32 0I� �  (9.63) 
on x3 = �H where I indicates the top layer. The interface continuity gives 
  33 33

I II� �� ,   32 32
I II� �� ,      2 2

I IIu u�  (9.64) 
on x3 = 0. The wave equations of the top layer I and the underlying half-space II are 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.4 An elastic layer over a half-space 
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We obtain the solutions of u2 for layer I and half-space II as 
 2 1 3 1 3 1( , , ) ( ) exp ( )I

Lu x x t f x ik x c t� �    (9.66) 

  2 1 3 2 3 1( , , ) ( ) exp ( )II
Lu x x t f x ik x c t� �    (9.67) 

where cL is the Love wave speed: 
  /Lc kF�    (9.68) 
Substitution of (9.66) and (9.67) into (9.65) gives 
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Since the solution in the half-space must decay to zero as x3 & �, the solution form of 
f2 must be 
  2 3exp( )f A bx� �  (9.70) 
where 
  2 2 2

2[1 ( / ) ]L sb k c c� �     (9.71) 
However, for layer one there are two possibilities for the solution form: 
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For Case 1, the solution form is 
 2 1 3 1 2 3 2 2 3 1( , , ) [ exp( ) exp( )]exp[ ( )]I

Lu x x t D q x D q x i x c t� � � �    (9.73) 
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where 
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The first part of (9.63) is satisfied identically since u3 9 0. The second part of (9.63) 
gives 
 1 2D D D� �    (9.76) 
Then the solution for the layer becomes 
 2 1 3 2 3 1( , , ) cosh( )exp ( )I

Lu x x t D q x ik x c t� �    (9.77) 
The second and third continuity conditions given in (9.64) can be expressed as 
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 ,    2 2
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on x3 = 0. Substitution of (9.73) and (9.74) into (9.78) gives two equations for the 
unknown constants: 
 1 2 2 2sinh( ) exp( )q D q H bA bH$ $� � �  (9.79) 
 2cosh( ) exp( )D q H A bH� �  (9.80) 
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The condition for the nontrivial solution gives 
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Since q2 > 0, it is obvious that (9.81) cannot be satisfied. That is, the Love wave 
does not exist for Case 1.  
 We now turn to Case 2, where the solution forms are 
 2 1 3 1 1 3 2 1 3 1( , , ) [ sin( ) sin( )]exp ( )I

Lu x x t B q x B q x ik x c t� � �   (9.82) 
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where  
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The boundary condition on ground surface (x3 = 0) requires 
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This condition leads to 
 1 0B �     (9.86) 
Continuity conditions of (9.78) give two equations for the unknown constants:  
 1 1 2 1 2sin( ) exp( )q B q H bA bH$ $� �  (9.87) 
 2 1cos( ) exp( )B q H A bH� �  (9.88) 
Nontrivial solution gives the following characteristic equation for the Love wave 
speed: 
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Since q1 > 0 and b > 0, we must have from (9.71) and (9.84) that  
    1 2s L sc c c� �     (9.91) 
That is, the half-space must be stiffer than the elastic layer in order to have a Love 
wave exist.   
 We now consider two special cases. If cL & cs2, we have the right-hand side of 
(9.89) approaching zero. This corresponds to k & 0 or � & �, and thus it is the 
long wavelength limit. If cL & cs1, we have the right hand side of (9.89) 
approaching infinity. The only possibility is that the argument in the tangent 
function on the left must be a multiple of �/2: 

     2 1/2
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2 [( / ) 1] (2 1)
2L s

H c c n� �
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� & �    (9.92) 

However, the bracket term on the left side of (9.92) approaches zero, and thus the only 
possibility is for � & 0. Therefore, cL & cs1 corresponds to short wavelength limit. 
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That is, the longer the Love wave wavelength, the faster is its wave speed. 
Therefore, Love waves are dispersive.  
 For an anisotropic solid, the characteristic equation of the Love wave was given 
by Stoneley (1949). 

9.6.3 Dispersion Characteristics of Love Waves  

To examine the dispersion characteristics of Love waves, we first rewrite (9.84) as 
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Equivalently, we have  
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Using (9.94), we can eliminate cL from (9.89) to get  

    
1/22 22

1 12
1 2 2 2 2

1 1 2 2

4tan( ) (1 )s s

s s

c c
q H

q c c
$ �
$ �

2 3
� � �4 5

4 56 7
    (9.95) 

Alternatively, (9.95) can be rewritten as  
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We can take the derivative of (9.94) to get 
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Taking the derivative of (9.96) with respect to � gives 
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In deriving (9.98), we use the following identity 
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We now note that since cs2 > cs1 (see (9.91)), we must have K > 0 and, thus, from 
(9.98) d(�q1)/d� > 0. Therefore, (9.97) shows that dcL/d� > 0. Therefore, the 
dispersion is normal (Achenbach, 1973). The group velocity can be defined as 
(Achenbach, 1973) 
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and thus, the group velocity of the Love wave is always smaller than the phase 
velocity. 
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 We can also consider the penetration depth of the Love wave by considering 
the following ratio: 
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For a depth of one wavelength, we have 
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The decay ratio is smaller for larger cL, and from (9.94) we see that a longer 
wavelength gives a larger cL. Thus, long wavelength Love waves travel faster and 
penetrate farther into the ground. 
 One major observation is that dispersion of waves only occurs in problems 
with a length scale. For Love waves, the length scale is the layer thickness H. For 
Rayleigh waves, there is no length scale, and thus the wave is nondispersive. That 
is, the wave speed is independent of the frequency of the waves. Naturally, if there 
is no length scale in the problem, whether wave are “long” or “short” is not 
meaningful and how fast a wave travels is always meaningless without a length 
scale. Therefore, Rayleigh waves must be nondispersive. 

9.7 STONELEY WAVES 

Rayleigh waves were considered in Section 9.5, and they propagate along a free 
surface. Stoneley has extended the analysis to the case that waves travel along an 
interface between two half-spaces (see Fig. 9.5).  
 The traction continuity on the interface at x3 = 0 is 
  (1) (2)

33 33� �� ,   (1) (2)
31 31� ��      (9.104) 

and the displacement continuity on the interface at x3 = 0 is 
  (1) (2)

3 3u u� ,    (1) (2)
2 2u u�  (9.105) 

The following displacement fields in the half-space (1) are sought: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.5 Stoneley waves travel along the interface between two half-spaces 
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and these displacements decay to zero for x3 & ��. Substitution of (9.106) and (9.107) 
into the wave equations gives 
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In half-space (2), the displacement fields are 
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Substitution of (9.109) and (9.110) into the wave equations gives 
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Interface continuity leads to four homogenous equations for four unknowns. For 
nontrivial solutions, the determinant of the system of equations must vanish. This leads 
to 

  

1 2 3 4
2 2

31 1
1 2 2

2 2 2 42 2
2 2

1 1
2 2

2 22 2

1 1 1 1
/ / / /

2 / (2 ) 2 ( ) (2 )det 0

(2 ) 2 (2 ) 2

s s

s s

b k k b b k k b

bc k c kb k
b k bc c

c c
c c

$ $
$ $

$ $
$ $

� �

� � �

� � � �

   (9.112) 

Written out (9.112) explicitly gives (Ewing et al., 1957) 
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where 

  
1/22

1 1[1 ( / ) ]LA c c� � ,        
1/22

1 1[1 ( / ) ]sB c c� �  (9.114) 

   
1/22

2 2[1 ( / ) ]LA c c� � ,        
1/22

2 2[1 ( / ) ]sB c c� �  (9.115) 
It is straightforward to show that when we take the limiting cases of (1 = 0 and $1 = 0, 
the Rayleigh wave speed equation given in (9.31) is recovered as a special case. 
 Ewing et al. (1957) concluded that the Stoneley wave speed is slightly larger 
than the Rayleigh wave speed in the stiffer half-space. Only for the cases where the 
density ratio and shear wave speed ratio between the half-spaces are close to unity can 
the Stoneley wave exist. This condition is normally called Wiecherts’ condition 
(Scholte, 1947). The following condition for the existence of Stoneley waves is 
simplified from Cagniard (1962):  
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where 
  1 2/� ( (� ,    2 2

1 2 1/s dc c0 � ,  2 2
2 2 2/s dc c0 � ,    2 2

3 2 1/s sc c0 �  (9.117) 

9.8 ELASTIC-PLASTIC WAVES 

9.8.1 Acceleration Waves in Solids 

We will present the Hadamard compatibility for acceleration waves in elastic-plastic 
solids in this section. The classification of waves in elastic-plastic solids was 
considered by Mandel in 1962. The presentation mainly follows that of Lubliner 
(1990). Consider an acceleration wave front in a solid with unit normal n and speed c. 
A time-dependent field � is assumed to be continuous across a wave front but with 
discontinuous derivative of � across it, as shown in Fig. 9.6. The total differential of 
the field �  is 

  d d dt cdt dt
t t

� � � �� � � � �
� � � �

� � � �
� �x n

x x
 (9.118) 

The jump across the wave front is denoted by a square bracket [...], and the jump in 
total differential of � is [d�] = 0. Thus, we have 

  [ ] [ ] 0c
t

� �� �
� �

� �
�n

x
 (9.119) 

However, since only the component of � along n undergoes a jump, we must have the 
spatial derivative proportional ni. Consequently, we have 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.6 Jump of derivative of � across the acceleration wave front  
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    [ ] [ ] i
i

c n
x t
� �� �

� �
� �

 (9.120) 

Now consider the velocity field, and the jump in velocity gradient becomes 
   ,[ ] [ ]i j i jc v v n� � �  (9.121) 
This is called Hadamard’s compatibility condition. In addition, the momentum 
balance across the wave front is 
   [ ] [ ]ij j in c v� (� �� �  (9.122) 
In terms of rate formulation, we can write the stress rate in terms of the tangent 
modulus tensor as 
   [ ] [ ]ij ijkl klC� �� ��  (9.123) 
By recognizing the following definition of strain rate for small deformation,  

   , ,
1[ ] ([ ] [ ])
2kl k l l kv v� � ��  (9.124) 

Combining Hadamard’s compatibility condition, momentum balance, and constitutive 
law, we have 

   1[ ] [ ] [ ]ij j ijkl j l k in C n n v c v
c

� (� � � �� � �  (9.125) 

Rearrangement of (9.125) gives 
   2( )[ ] 0ijkl j l ik kC n n c v( �� ��  (9.126) 
For a nontrivial solution for the speed of acceleration waves, we must have 
   2 2det( ) det( ) 0ijkl j l ik ik ikC n n c A c( � ( �� � � �  (9.127) 
The tensor Aik is called the acoustic tensor (Love, 1944).  

9.8.2 Shear Banding as Stationary Acceleration Wave 

Rice (1976) interpreted (c2 as the eigenvalue of Aik . When a solid is subject to a 
perturbation, if (c2 is real and larger than zero, we have stability, whereas if (c2 is real 
and smaller than zero, we have divergent growth of the deformation caused by the 
perturbation. When (c2 is complex, the solid may undergo fluttering instability. 
However, it is normally argued that fluttering instability is impossible in solids because 
it needs continuous supply of energy to sustain this kind of instability. Therefore, from 
stable to divergent growth response, we pass through c = 0. A stationary acceleration 
wave (or c = 0) in a solid corresponds to the so-called strain localization or shear 
banding (e.g., Rudnicki and Rice, 1975; Rudnicki, 1977): 
   det( ) 0ijkl j lC n n �  (9.128) 
Recently, Osinov and Wu (2009) showed that the correspondence between stationary 
acceleration wave and shear band analysis is not true for the case of incrementally 
nonlinear solids. Earlier strain localization works in Russia can be found in the review 
by Guz (1985). The result of (9.128) should be interpreted as the upper bound solution 
of a linear comparison solid (Vardoulakis, 1994). For the case of lower bound 
bifurcation stress, we refer to the work by Raniecki and Bruhns (1981).  
 



 Waves and dynamics   355 

 

9.8.3 Acoustic Tensor for Geomaterials 

We now recall the result in Chapter 5 that the deformation theory of a plastically 
deforming solid satisfying the non-normality rule gives the tangent modulus tensor as: 

   
e e
ijmn mn pq pqkle

ijkl ijkl e
rs rsmn mn

C P Q C
C C

h Q C P
� �

�
 (9.129) 

where P and Q can be related to the yield function f and plastic potential g as 

   ij
ij

fQ
�
�

�
�

,  ij
ij

gP
�
�

�
�

 (9.130) 

The scalar function h is a tangent hardening modulus. The yielding direction in the 
stress space is given by Q wheras the plastic flow direction is controlled by P. If they 
are the same, the solids are said to obey the normality rule. But for geomaterials, such 
a normality rule usually does not hold, or deformation is governed by the non-
normality rule. When bifurcation analysis for strain localization given in (9.128) is 
applied to solids obeying (9.129) with P � Q, the solid is normally called a linear 
comparison solid because no unloading is considered explicitly.  
 If the solid deforms elastically, we have the acoustic tensor as 
   e e

ik ijkl j lA C n n�  (9.131) 
This is also called Christoffel stiffness. The wave speed in elastic anisotropic solids, in 
general, is not purely transverse or purely dilatational like in isotropic solids as 
discussed in Section 9.3. For the special case of isotropic solids, we have the acoustic 
tensor as 
   ( )e

ik i k ikA n n� $ $�� � �  (9.132) 
Substitution of (9.132) into (9.127) gives two wave speeds: 
 

 2
dc � $

(
�

� ,   sc $
(

�  (9.133) 

which describe wave speed normal to the wave front and parallel to the wave front, 
respectively. These dilatational and shear wave speeds were obtained in (9.4) in 
Section 9.3 following a different approach.  
 For general elastic-plastic or elasto-plastic solids, (9.127) can be expressed as 

   
e
ijmn mne

ij ijkl kl e
rs rsmn mn

C P
C g

h Q C P
� �� � = >

�
��  (9.134) 

where  
   e

pq pqkl klg Q C �= >� �  (9.135) 

The Macauley bracket is defined as 

   
0 0

0
g g

g g
� �

� >
 (9.136) 

The inclusion of this Macauley bracket in (9.134) makes the second term on the 
right of (9.134) only appear when continuous plastic loading is applied. For 
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unloading, the strain rate becomes negative, and this leads to zero contribution 
from the Macauley bracket. 
 We now consider the jump of the stress rate across the wave front: 

   [ ] [ ] [ ]
e
ijmn mne

ij ijkl kl e
rs rsmn mn

C P
C g

h Q C P
� �� � = >

�
��  (9.137) 

with 
   [ ] [ ]g gB�  (9.138) 
Four different cases of wave propagation in elastic-plastic solids can be identified 
(Lubliner, 1990): 
Case 1: plastic wave 0, 0; 1g g B� �> > �  (9.139) 

Case 2: unloading wave 0, 0, 0 1g g B� �> � = =  (9.140) 

Case 3: reloading wave 0, 0, 0 1g g B� �� > = =  (9.141) 

Case 4: elastic wave 0, 0, 0g g B� �� � �  (9.142) 
where g+ and g� are the values of g ahead of and behind the wave front, respectively. 
In Case 1, the solid is plastically deforming on both sides of the wave front; in Case 2, 
the solid is plastically deforming in front of the wave front but is elastically unloading 
behind the wave front; Case 3 is called the reloading wave because the material is 
elastically deforming ahead of the wave front but plastically deforming behind the 
wave front; and Case 4 represents that the body is deforming elastically when the 
wave passes through. Since B = 0 for case 4, the second term in (9.137) vanishes and 
thus Case 4 represents an elastic wave. 
 Lubliner (1990) considered two more cases of the material ahead of the wave 
front elastic but about to yield (.i.e., g+ >0), and B is defined as: 

 g
g g

B
�

� �
�

�
 (9.143) 

Then, two more cases occur: 
Case 5: strong loading wave  0; 1g g B� �> > >  (9.144) 

Case 6: weak loading wave  0; 0g g B� �> > =  (9.145) 
The effective tangent modulus can now be expressed as: 

    e
ijkl ijkl ij klC C N MB� �  (9.146) 

where  

   /e e
ij ijkl kl mn mnkl klN C P h Q C P� �   (9.147) 

    /e e
ij ijkl kl mn mnkl klM C Q h Q C P� �  (9.148) 

Consequently, the acoustic tensor becomes 
    e

ik ik i kA A d dB� � �  (9.149) 
where the elastic acoustic tensor is defined in (9.131) and  
    i ij jd N n� ,   i ij jd M n��  (9.150) 
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9.8.4 Wave Speed Analysis 

Note from (9.149) that for geomaterials the acoustic tensor is not symmetric (i.e., Aij � 
Aji). However, when there is no plastic deformation, the elastic acoustic tensor is 
symmetric. Therefore, the eigenvalues of elastic acoustic tensor Ae and A are assumed 
as: 
    1 2 3

e e eA A A� � ,   1 2 3A A A� �  (9.151) 
Note in general that A� (� = 1,2,3) may not be real because A is unsymmetric. For the 
time being, we assume that real eigenvalue exists for A such that its value is A. The 
characteristic equation for A is: 

   
1 1 1 1 2 1 3

2 1 2 2 2 2 3

3 1 3 2 3 3 3

det( ) 0

e

e

e

A d d A d d d d

IA d d A d d A d d

d d d d A d d A

B B B

B B B

B B B

� � � �

� � � � � � �

� � � �

� � �

� � �

� � �
A   (9.152) 

or 
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  (9.153) 
For B = 0, we have only elastic wave speeds. For B > 0, it is straightforward to see that  
   1( ) 0eF A � ,    2( ) 0eF A � ,    3( ) 0eF A �  (9.154) 
Therefore, we must have: 
    1 1 2 2 3 3

e e eA A A A A A� � � � �    (9.155) 
Note also that A� decreases monotonically with B. For B = 1, we have the plastic wave 
speed, and for 0 < B < 1 we have the unloading wave speed. Thus, the elastic wave 
speed is larger than the unloading wave speed and even larger than the plastic wave 
speed: 
    p u eA A A� � �� �      � = ,1,2,3 (9.156) 

9.9 WAVES IN VISCOELASTIC SOLIDS 

9.9.1 Complex Moduli  

In Chapter 7, we considered quasi-static problems in viscoelastic solids. In this section, 
we will consider wave speeds in viscoelastic solids. For dynamic viscoelastic 
problems, it is more advisable to use the Fourier transform instead of the Laplace 
transform for the time variables. For example, we can again start with the force 
equilibrium of the three-parameter standard linear solids or Model A given in Fig. 
7.3(a): 

 2 1
2 2

1 2 1 2
(1 ) ( )

t t
B $

� $ B .
$ $ $ $

� �
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  (9.157) 

Let us consider a loading of harmonic type. The corresponding harmonic response is: 
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  ( ) * i tt e F� �� ,  ( ) * i tt e F. .�  (9.158) 
 1 2 2 1 2 2( ) * ( ) *i i$ $ B F � $ $ B F .� � � �   (9.159) 
Therefore, a complex shear modulus can be defined as 
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It is straightforward to show that  
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Note that the superscript prime in (9.161) and (9.162) has nothing to do with 
differentiation. For general time harmonic motions, we have the constitutive law in 
transformed space as  
 * * *( ) 2 ( )ij s ijs G eF F�  ,    * * *( ) 2 ( )kk B kkG� F F ��  (9.163) 
The spring-dashpot model of standard linear solid gives the complex shear modulus 
but not the complex bulk modulus. As discussed in Chapter 7, the complex bulk 
modulus is normally assumed to be elastic. For viscoelastic responses, the stress can be 
expressed in terms of the relaxation functions in shear and in bulk deformations: 
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t t ijkk
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Alternatively, in Fourier transform space (9.164) can be expressed as  

 * * * * * *2( ) [ ( ) ( )] 2 ( )
3ij ij B s kk s ijG G G� F � F F � F �� � �   (9.165) 

where  
 * i t

ij ije
F� �� ,   * i t

ij ije
F� ��  (9.166) 

9.9.2 Longitudinal and Transverse Waves Speeds  

We consider a time harmonic wave of the form: 
 exp[ ( )]A i k tF� ��u m x n ,   (9.167) 
where n and m are the unit vectors along the direction of propagation and the direction 
of particle motion, respectively. Substitution of (9.167) into the displacement-strain 
relation gives 

 ( ) exp[ ( )]
2

ikA i k tF� ��mn + nm x n� ,   (9.168) 

Substitution of (9.165), (9.167), and (9.168) into the Fourier transform of the 
following equation of motion 
 (� � ��� u�  (9.169) 
gives 
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If the particle motion is along the direction of propagation, we have 
  ;m = n ,    1��m n  (9.171) 
Thus, we have for this longitudinal wave  
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If the motion is perpendicular to the direction of propagation, we have 
  0��m n  (9.173) 
For this shear or transverse wave, we have 
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From (9.160), (9.172), and (9.174) that wave number k must be complex for both 
longitudinal and shear waves. That is, waves in viscoelastic solids are dispersive and 
thus energy dissipating. Substitution of a complex k into (9.167) illustrates that the 
wave motion is a decreasing function of x. Therefore, viscoelastic behavior induces 
both dispersion and attenuation. The shape of a propagating pulse will change with 
distance in viscoelastic solids. 
 In general, we have discussed the correspondence principle between static and 
viscoelastic problems. Actually, the same principle can also be extended to solve 
dynamic problems (Achenbach, 1973). Details will not be given here. Full coverage 
of wave propagation in viscoelastic layered media is given by Borcherdt (2009). 
Because of the complex nature of (9.172) and (9.174), Borcherdt (2009) showed 
that the waves in homogenous isotropic linear viscoelastic solids can be classified 
as P-wave (elliptical particle motion), Type I S-wave (elliptical particle motion), 
and Type II S-wave (linear particle motion). In addition, Borcherdt (2009) showed 
that Rayleigh-type and Love-type waves also exist in homogenous isotropic linear 
viscoelastic half-spaces or layered half-spaces. For example, the P-wave motion is 
not parallel to the free surface whereas Type I S-wave motion is not perpendicular 
to the free surface. Because of attenuation, the reciprocal quality factor or the Q 
factor also enters the solution. These solutions can be applied to seismology and 
geophysics problems. 

9.10 DYNAMIC FRACTURE MECHANICS 

Introduction to fracture mechanics was covered in Chapter 6, but it was restricted to 
static loading and quasi-static crack propagation. However, under dynamic loadings, 
the stress intensity factor as well as the fracture propagation process is a function of 
time. In general, four cases can be classified (Achenbach, 1974): 

Case 1: Quasi-static loading and quasi-static fracture 
Case 2: Quasi-static loading and dynamic fracture 
Case 3: Dynamic loading and dynamic fracture 
Case 4: Dynamic loading and quasi-static fracture 
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For case 1, the inertia effect can be completely neglected but the fracture can still 
propagate nonlinearly. Development of dynamic fracture mechanics started in the 
1950s. Some fundamental problems in dynamic fracture mechanics were considered 
by Yoffe in 1951, Craggs in 1960, Broberg in 1960, Baker in 1962, Freund in the 
early 1970s, and many others (Rice, 1968b; Ravi-Chandar, 2004). For some historical 
developments on this topic, we refer to Rice (1968b), Freund (1998), Broberg (1999), 
and Ravi-Chandar (2004). In this section, we will not go into the details of the analysis 
of dynamic fracture; instead, some essential results of dynamic fracture mechanics 
reported in Freund (1998) and Ravi-Chandar (2004) will be summarized as an 
introduction to dynamic fracture mechanics. 

9.10.1 Dynamic Solutions for a Stationary Crack 

A special situation of case 4 is a dynamic stress intensity factor for a stationary crack 
(see Fig. 9.7). A suddenly applied traction on the crack face leads to the following 
elastodynamic solution near the tip of a stationary crack (Freund, 1998): 
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These solutions are for modes I, II, and III, respectively. The corresponding stress 
intensity factors are: 
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These solutions can be obtained by the Wiener�Hopf method based on the Laplace 
transform (Freund, 1998). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.7 Dynamic loading on stationary crack  
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9.10.2 Asymptotic Fields near a Moving Crack Tip 

The asymptotic expansion of the stress field around a moving crack tip, shown in Fig. 
9.8 can be written in a universal form: 
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2 2 2

I II IIII II III
ij ij ij ij

K K Kv v v
r r r

� � 
 � 
 � 

� � �

) � �     (9.177) 

For mode I, the characteristic angular variations for the case of subsonic crack 
speed are (i.e., v � cs) (Ravi-Chandar, 2004; Freund, 1998) 
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where  

    2 21 /s sv c� � � ,   2 21 /d dv c� � � ,   � �21 sin /d dv c. 
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Note that D is the Rayleigh function given on the left-hand side of (9.31). For 
mode II, the characteristic angular variations for the case of subsonic speed are 
(i.e., v � cs) (Ravi-Chandar, 2004; Freund, 1998): 
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Figure 9.8 Asymptotic field near a moving crack tip  
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For mode III, the characteristic angular variations for the case of subsonic speed 
are (i.e., v � cs) (Ravi-Chandar, 2004; Freund, 1998) 
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where 
 1

2 1tan ( / )s s
 � < <��         (9.186) 
The angular variation differs little from the corresponding quasi-static results for 
v/cs < 0.4, but the velocity effect cannot be neglected for larger v. In addition, the 
terminal crack speed is normally much smaller than the Rayleigh wave speed of 
the solids. A concise derivation of the universal forms given in (9.177) can be 
found in Ravi-Chandar (2004). More generally, the crack propagation speed can in 
general be classified into three regimes: 

Subsonic: sv c=         (9.187) 
Transonic: s dc v c= =         (9.188) 
Supersonic: dv c>         (9.189) 

Photographs of isochromatic fringes around a moving crack tip for the transonic case 
can be found in Figs. 3.10�3.11 of Ravi-Chandar (2004). The crack tip fields given in 
(9.177) remains valid for crack moving with nonuniform speed, with the exception 
that KI = KI (t,v) (Ravi-Chandar, 2004). There were also different terminologies for 
crack speed classification used in the literature. For example, Slepyan (2002) defined 
(9.188) as intersonic, and the subsonic region can further be divided into “sub-
Rayleigh” and “super-Rayleigh” regions. From the energy release point of view, the 
latter case corresponds to an energy source propagating at the crack tip and it was 
argued that it is possible as a result of the action of residual stress (Slepyan, 2002). 
Another term commonly used for transonic defined in (9.188) is “supershear” (Lu et 
al., 2010), and there is observational evidence of the 2001 Kokoxili (Tibet) earthquake 
rupturing at supershear speed (Vallée et al., 2008). 

9.10.3 Dynamic Energy Release Rate 

The energy release rate introduced by George Irwin can be extended to dynamic 
cases. A universal form can be obtained which is independent of applied loading 
and body configuration. In particular, the energy release rate is (Freund, 1998) 
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For v & 0+  we have all functions AI(v), AII(v) and AIII(v) & 1. The definitions for 
other parameters have been given in the previous sections. The limiting speed for 
modes I and II is cR (i.e., D(cR) = 0), whereas the limiting speed for mode III is cs.  
 



 Waves and dynamics   363 

 

( )IDK v

IdK

? 
IaK

/ Rv c

dyn
IK

9.10.4 Dynamic Fracture Toughness 

In Chapter 6, we discussed the concept that once the stress intensity factor at a 
crack tip equals the critical stress intensity factor or fracture toughness. However, 
the fracture toughness for dynamic crack propagation is more complicated than 
static crack growth. The following discussion is adopted from Ravi-Chandar 
(2004). In particular, similar to the quasi-static case we can assume that dynamic 
crack propagation occurs when the dynamic stress intensity factor attains a critical 
value: 

  ( , )dyn dyn
IdI IK K T K      (9.192) 

where KId is the dynamic initiation toughness and is in general a function of 
temperature T and loading rate. Once crack growth starts the propagation speed 
will jump to a large finite value instantaneously, as shown by the arrow in Fig. 9.9. 
The subsequent growth must be determined by another growth criterion called 
dynamic crack growth toughness KID: 

  ( ; , )dyn dyn
IDI IK K v T K     (9.193) 

Experiments showed that this dynamic crack growth toughness is also a function 
of crack speed v (e.g., see Figure 1.28 of Kannien and Popelar, 1985). Note that 
the dynamic initiation toughness KId is not on the KID curve shown in Fig. 9.9. That 
is,  

  ( 0; , )dyn
ID IdIK v T K K     (9.194) 

However, the measurement of crack growth at low speed v is very difficult 
because of the jump character of crack speed during initiation (Ravi-Chandar, 
2004). Therefore, the lower part KID curve is shown by a dotted line with a 
“question mark.” Crack propagation will stop if 

  ( )dyn
IaIK K T    (9.195) 

For more detailed discussion see Ravi-Chandar (2004). The situation of dynamic 
fracture toughness closely resembles the case of static and the kinetic frictional 
coefficient of a sliding block on a rough surface. That is, the kinetic frictional 
coefficient is smaller than the static friction coefficient once the sliding motion 
starts. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.9 Dynamic crack growth criteria (after Ravi-Chandar (2004) with permission from 
Elsevier) 
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9.11 VIBRATIONS AND SOIL DYNAMICS 

One of the main problems in wave propagation in soil is the amplification of 
seismic waves during an earthquake. In this section, following Das (1993), we will 
consider a simple case of soil of thickness H overlying a rock stratum and subject 
to a seismic shear motion of ug(t). The equation of motion for a soil column of unit 
cross-section area is 
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   (9.196) 

where (, G, and c are the density, shear modulus, and damping coefficient of the 
soil, respectively. We look for a solution of the following form: 
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With the traction boundary on the free surface, we have 
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Substitution of (9.198) into (9.196) gives 
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where 

  (2 1)[ ]
2n
n G

H
�F

(
�

� , 
2n

n

cD
(F

�    (9.200) 

Once ug(t) is given, the displacement solution can be evaluated by solving (9.199). 
Actually, this formulation can easily be extended to a multi-layered system. For 
details see Idriss and Seed (1968). For real soil, both the shear modulus G and 
damping coefficient Dn is a function shear strain .. Therefore, we have to update 
the modulus and damping. Once we find a solution, we can find an equivalent 
shear strain for the whole soil layer. This value can be substituted into 
experimental curves of G(.) and Dn(.) or an empirical model, to yield the updated 
modulus and damping. For example, Hardin and Drnevich (1972) made the 
following predictions: 
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where e is the void ratio and OCR is the over-consolidation ratio. The number of 
cycles of loading is denoted by N, the frequency is f, K is a function of the 
plasticity index ranging from 0 to 0.5, and K0 is the lateral earth pressure 
coefficient at rest. 
 Once the updated G and Dn are found, they can be back-substituted into 
(9.199) to give an updated solution. The newly calculated . can be used to find 
another updated G and Dn. This iterative procedure will be continued until an 
converged solution is obtained. This is sometimes called an equivalent linear wave 
analysis for nonlinear constitutive soil response. 
 For the complicated cases of soil�pile�structure interactions, an analytical 
solution has been obtained by Koo et al. (2003). For soil�pile interaction, the 
nonlinear dynamic stiffness of the soil�pile system has been calculated using the 
equivalent linear analysis discussed in this section (Chau and Yang, 2005).  

9.12 SUMMARY AND FURTHER READING 

9.12.1 Summary 

In this chapter, we have summarized some essential results for seismic waves, 
including P-waves, S-waves (body waves), Rayleigh waves (surface waves), Love 
waves (SH surface waves), and Stoneley waves (interface waves). The wave 
equations in elastic isotropic solids can be obtained by Helmholtz theorem for 
vector decomposition, which has been introduced in Section 4.2.1 of Chapter 4 for 
“Method of Solution for 3-D Elasticity.” The wave speed and wave motion for 
Rayleigh waves are discussed in full detail when considering the special solution 
for solids satisfying Poisson’s conditions in Section 9.5.1 and 9.5.2. The solution 
of the Rayleigh wave speed together with the particle motion for the arbitrary 
Poisson’s ratio is discussed in Section 9.5.3. It was shown that the solution for 
Rayleigh wave characteristic equation can be evaluated easily if we look at the 
problem from a different point of view. Love waves and their dispersion 
characteristics are introduced in Section 9.6, and Stoneley waves are discussed in 
Section 9.7. The general wave equation for elastic-plastic waves in geomaterials is 
discussed in Section 9.8, including Hadamard’s jump condition for acceleration 
waves, and the interpretation of strain localization as a stationary acceleration 
wave. Wave speed, dispersion, and attenuation in viscoelastic solids are 
summarized in Section 9.9. Some essential results of dynamic fracture mechanics 
are introduced in Section 9.10, including the time-dependent stress intensity 
factors for modes I, II, and III of a stationary crack subject to a suddenly induced 
traction on the crack faces. The general asymptotic stress field near the tip of a 
moving crack is given in Section 9.10.2 and the universal form of speed 
dependence of the dynamic energy release rate is summarized in Section 9.10.3. 
Finally, soil amplification of ground motion is discussed in Section 9.11. 
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9.12.2 Further Reading 

Dynamic problems are in general more complicated than static problems because 
of the inertia effect and time dependence. It is impossible to give a comprehensive 
review in a chapter of this size. Here are some recommendations for further 
reading: 

9.12.2.1 Waves in Solids and Elastodynamics 
For detailed but more elementary introduction to elastodynamic problems, we 
highly recommend Chapter 8 of Mal and Singh (1991). Many important dynamic 
problems are presented in a simplified manner that most readers with basic training 
in engineering mathematics should be able to follow. For wave propagation in 
inelastic solids, readers can refer to Nowacki (1978). For general wave 
propagations in elastic solids, we recommend the book by Achenbach (1973). 
Important solution techniques included Green’s function method, integral 
representation of wave solutions in terms of body forces, Kirchhoff’s formula for 
inhomogeneous wave equation, the Laplace transform, the Fourier transform, the 
Mellin transform, the Hankel transform, the method of deepest descent and 
stationary phase, the Wiener�Hopf technique, and the Cagniard�de Hoop method. 
Lamb’s problem of impulsive point force and line loads on half-space, which is 
importance to many applications, is also covered. More advanced treatment on 
elastodynamics is given by Eringen and Suhubi (1975). 

9.12.2.2 Seismic Waves on Earth 
For more advanced treatment on seismic waves, we refer the readers to the 
comprehensive book by Ben-Menahem and Singh (1981), Ewing et al. (1957), and 
Cagniard (1962), and Aki and Richards (1980). Surface waves traveling along the 
sea bottom can be considered a special case of Stoneley waves, and this is also 
called Scholte waves (see Cagniard, 1962). For seismic waves traveling in layered 
half-space, we refer to Ewing et al. (1957) and Ben-Menahem and Singh (2000). 
The problem of a point force being applied impulsively on the surface of a half-
space (also known as Lamb’s problem) is of particular importance in dynamics of 
geomaterials (Lamb, 1904), and it is the dynamic equivalent problem of the 
Boussinesq problem for elastic half-space. This paper was considered by some the 
start of theoretical seismology. Another related problem is the free vibrations of 
the Earth. After the 1960 Chile earthquake, the Earth was set into vibrations for 
days. This provided an opportunity to study the interior structures of the Earth. 
The most fundamental paper is by Lamb (1882) who showed that vibrations of an 
elastic sphere can be divided into two classes: the first-class vibrations or the 
toroidal modes (zero dilatation and radial displacement), and the second-class 
vibrations or the spheroidal modes (zero radial component of the curl of 
displacement). Some related papers were reviewed by Chau (1998b) when he 
considered the toroidal vibrations of anisotropic elastic spheres with spherical 
isotropy.  
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9.12.2.3 Waves in Porous Media 
 
Wave propagation in poro-elastic solids was considered by Biot (1956b). Surface 
waves in porous media are covered by Deresiewicz (1961, 1962), and Stoneley 
wave in poroelastic solids by Markov (2009).  

9.12.2.4 Dynamic Fracture Mechanics 
A good introduction to dynamic fracture mechanics is given in a review by 
Achenbach (1974). The most comprehensive coverage on dynamic fracture 
mechanics is the book by Freund (1998), and experimental results are compiled in 
the book by Ravi-Chandar (2004), which covers some of the most fundamental 
problems, including Yoffe’s problem (a crack of fixed length propagating at a 
steady speed in a solid under plane strain far-field tension) and Broberg’s problem 
(self-similar problem of crack growth from zero initial length under far-field 
tension). The book by Broberg (1999) provides an excellent introduction and a lot 
of early references on dynamic fracture mechanics and detailed coverage of the 
topic. Slepyan (2002) also provided some fundamental solutions (like the mode II 
Yoffe’s problem) in dynamic fracture mechanics.  

9.12.2.5 Dynamic Fragmentation 
Section 8.7 of Freund (1998) gives a brief review on microcracking and 
fragmentation under dynamic loading. This topic has become more important 
recently in geomechanics, and it relates to mining, blasting, and explosion 
problems. For example, the size of fragments can be estimated as 
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where Kcr, �0 , c, and ( are the representative fracture toughness for high-speed 
crack growth, the initial applied strain, wave speed of energy propagation, and 
density of the solid, respectively. Although the power of 2/3 appears to fit 
experimental data, the fragment size is overestimated by 30%. Chau et al. (2000) 
and Wu et al. (2004) conducted some experiments on the fragmentation of spheres 
under diametral impacts. The fragmentation process is also related to the stress 
focusing phenomenon of induced waves in spheres (Wu and Chau, 2006). For 
current research on particle breakage, we refer to a Powder Technology Handbook 
volume, Particle Breakage, compiled by Salman et al. (2007). 
 

9.13 PROBLEMS  

Problem 9.1. Use equations (9.50) and (9.51) to plot the Rayleigh wave speed 
versus Poisson’s ratio (rejected unphysical range of the results). 
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Problem 9.2. Use the results of Problem 9.1 to plot the relative horizontal and 
vertical displacements against the normalized depth to 1.5 wavelengths of 
Poisson’s ratio for 0.2 and 0.4 (Hint: Similar results have been plotted in Figure 
5.13 in Achenbach (1973) for # = 0.25 and 0.35). 
 
Problem 9.3. Use results of Problem 9.1 and plot the relative stresses against the 
normalized depth to 1.5 wavelengths for Poisson’s ratio of 0.2 and 0.4 (Hint: 
Similar results have been plotted in Figure 5.14 in Achenbach (1973) for # = 0.25 
and 0.35.) 
 
Problem 9.4. Extend the analysis for Love waves to the problem of two elastic 
layers on the top of an elastic half-space, as shown in Fig. 9.10. More specifically, 
we are searching for the SH-component of surface waves, which decay in the half-
space. Show that the characteristic equation for wave speed c is 
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Figure 9.10 Two finite layers over an elastic half-space  
 

Problem 9.5.  Demonstrate that by taking the appropriate limit the result given in 
Problem 9.4 converges to the characteristic equation for Love waves. 
 
Problem 9.6.  Show that the SH-type of interface wave (analogous to the Stoneley 
wave) does not exist between the interface between two elastic half-spaces. 
 
Problem 9.7.  Derive the following characteristic equation for wave speed for the 
SH-type of interface wave for an elastic layer of thickness h between two elastic 
half-spaces (see Fig. 9.11): 
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where 
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Figure 9.11 An elastic layer between two half-spaces  
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Problem 9.8  Demonstrate that by taking the appropriate limit the result given in 
Problem 9.7 converges to the characteristic equation for Love waves. 
 
Problem 9.9.  Write a simple computer program to solve (9.116) and plot � = 
(1/(2 with � as the vertical axis and (cs1/cs2)2 as the horizontal axis. Show the 
region in the parameter space where the Stoneley wave exists (Hints: similar plot 
is available in Cagniard (1962), and some useful Fortran subroutines can be used 
directly from Numerical Recipes by Press et al. (1992).)  
 
Problem 9.10. Rederive the formulas in Section 9.9 for the case of 
nonhomogeneous soil layer of thickness H governed by the following equation: 
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Hint: The answer can be found in Idriss and Seed (1968): 
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Problem 9.11. Show that u3 will not change sign with depth x3 for the Rayleigh 
wave in solids satisfying Poisson’s condition considered in Section 9.5.2. 
 
Problem 9.12. Take the differentiation of (9.96) and derive (9.98). 
 
Problem 9.13. Show that by setting (1 = 0 and $1 = 0 in (9.113), the Rayleigh 
wave speed given in (9.31) is recovered. 
 
Problem 9.14. Show the validity of (9.170). 
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Appendix A: Nanson Formula 

A.1 NANSON FORMULA  

The Nanson formula has been used in the derivation of the first Piola�Kirchhoff 
stress and the second Piola�Kirchhoff stress in Chapter 2. The proof of the Nanson 
formula is given here. As shown in Fig. A.1, consider a surface dS0 with normal N 
in the reference body V0 which is mapped to the deformed surface dS with normal 
n in the current body. The sizes of these reference and deformed elements can be 
related by deformation gradient as 
 d d	�x F x ,    � �� 	x F x  (A.1) 

The areas of these elements are 
 0dS d �� �N x x ,    dS d �� �n x x  (A.2) 

In component form, we have 
 0 ijk j kiN dS e dx x�� ,    i ijk j kn dS e dx x��  (A.3) 

Recall from (2.10) that the Jacobian of the deformation is defined as 
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The Jacobian can be related to the inverse of the deformation gradient F as 
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Using (A.1), the first part of (A.3) becomes 
 1 1

0 ijk jm m kn niN dS e F dx F x�� �� ,   (A.6) 

Multiplying another inverse of deformation gradient gives 

 

1 1 1 1
0

0

0

il ijk jm kn il m ni

lmn m n

l

N F dS e F F F dx x

e dx x

n dS

�

( �
(

(
(

� � � ��

�

�

  (A.7) 

The second of (A.7) is a consequence of (A.5), and the last of (A.7) is obtained by 
applying the second of (A.3). Rearranging (A.7) gives 
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which is the Nanson formula used in Chapter 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.1 Deformed area for deriving Nanson formula  
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Appendix B: The Laplace Transform 

B.1 LAPLACE TRANSFORM  

The Laplace transform was used in Chapters 7 on viscoelasticity and 8 on 
poroelasticity to handle the time-dependent effect of viscoelasticity on relaxation 
and creeping and time-dependent pore pressure dissipation. One should note that 
the Laplace transform is very useful for removing time dependence and replacing 
it by algebraic dependence on the transformed parameter space. However, it 
cannot be applied to a number of problems, such as problems with a moving 
boundary or a boundary condition that depends on the solution of the problem 
(such as the Stefan problem of moving interface of solidification discussed in 
Davis, 2001), problems with traction boundary changing to displacement boundary 
with time, and vice versa, and problems governed by differential equations 
between stress and strain having time-dependent coefficients. Hetnarski and 
Ignaczak (2011) remarked that the integral involved in the Laplace transform was 
first considered by Euler in 1744, but it was Laplace’s work in 1782 that 
introduced the method in a way that now is so useful. The application of the 
Laplace transform to differential equations was largely due to Heaviside in the 
1890s when he worked on electric circuit problems in what was then called 
operational calculus. Later contributors who put the Laplace transform on a 
rigorous mathematical basis include Bromwich, Carson, and van der Pol.  
 By assuming the existence of the Laplace transform of a function f(x), the 
function has to be continuous for x � 0, and f(0) = 0, and more importantly, f(x) 
does not grow faster than exponential form e.x for x � 0, with the real part of . 
larger than zero (note from the definition of the inverse Laplace transform that the 
function does not depend on .).  

B.2 FALTUNG OR CONVOLUTION THEOREM OF LAPLACE 
TRANSFORM  

To prove the Faltung theorem used in Chapter 7, we first assume the existence of 
two time functions g(t) and f(t) and their Laplace transforms: 
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Their inverse transforms can be written as 
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where . is a real number such that it lies on the right of all singularities, including 
poles and branch points. With these definitions, we consider the following inverse 
of the Laplace transform: 

 

0

( )

0

0

1 1ˆ ˆˆ( ) ( ) ( ) ( )
2 2

1 ˆ( ) ( )
2

( ) ( )

i ist st s

i i

i s t

i

e f s g s ds e f s g e d ds
i i

g f s e dsd
i

g f t d

. . ,

. .

. ,

.

, ,
� �

, ,
�

, , ,

� � � � � �

� � � �

� � � �

� �

�

�

�

� �

� � �

� �

�

 (B.5) 

Since f(t�,) = 0 if t�, < 0, the integrand in the last part of (B.5) can be rewritten as 
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Now we can take the Laplace transform for both sides of (B.6), and we have 
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This is the Faltung or convolution theorem of the Laplace transform. For example, 
to consider the Laplace transform of (7.31) we can make the following 
identifications: 
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Then, we have 
 1

ˆ ˆ( ) ( )f s G s� ,   ˆ( ) ( )ijg s se s�  (B.9) 

The Faltung or convolution theorem of the Laplace transform can now be applied 
to give 
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This gives the Laplace transform of (7.31) given in (7.59). Similarly, (7.60)�(7.62) 
can be obtained in the same way.  

B.3 LAPLACE TRANSFORM OF DERIVATIVES  

One of the main advantages of using an integral transform is to remove differential 
operators by algebraic operators in any differential equations. Algebraic equations 
are, of course, much easier to solve, but the price to pay is to deal with the 
subsequent inverse Laplace transform. More importantly, we have the following 
Laplace transform of derivatives: 
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If the initial deviatoric stress and its derivatives are zeros at t = 0, we have the 
simple form of  
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This is the formula that we used to obtain the transforms of the hereditary integrals 
in Chapter 7. 

B.4 LAPLACE TRANSFORM OF UNIT STEP AND DELTA FUNCTION 

Two of the most popular situations that we encounter in solving viscoelastic 
problems involve time functions of Heaviside unit step and Dirac delta functions. 
Their proofs are given here: 
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Note from Fig. 7.8 and (7.168) that the Dirac delta function �(t) can be defined as 
the derivative of the Heaviside step function H(t). The derivative in (B.16) can be 
evaluated by using (B.11). These formulas are also compiled in Table B.1. 

B.5 TABLE OF LAPLACE TRANSFORM 

For the inversion of the Laplace transform, a number of mathematical handbooks 
should be consulted (Erdelyi, 1954; Abramowitz and Stegun, 1964; Gradshteyn 
and Ryzhik, 1980; Spiegel, 1965; Nixon, 1965). There are 166 formulas in Spiegel 
(1968), 55 formulas in Gradshteyn and Ryzhik (1980), 129 formulas in 
Abramowitz and Stegun (1964), and 33 formulas in Carslaw and Jaeger (1959).  
 If F(t) is the inverse Laplace transform of f(s), we have the following general 
properties: 
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Table B.1 Table of Laplace transform 
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 1 ( )[ ( )] ( 1) ( )n n nf s t F t� � �L  (B.21) 
Some formulas are more useful in solving viscoelasticity problems presented in 
Chapter 7. They are compiled in Table B.1 for easy reference. 

B.6 APPROXIMATE METHODS FOR INVERSION OF THE LAPLACE 
TRANSFORM 

Here we summarize essential ideas about approximate methods for the inverse 
Laplace transform. The standard approach is to use Bromwich’s integral formula 
to evaluate the inverse: 

 1 1ˆ ˆ( ) [ ( )] ( )
2

i st
ij ij iji

s t s s e s s ds
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� �
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The integration is to be performed along a line s = . in the complex plane where s 
= x + iy. The real number . is chosen so that s = . lies to the right of all the 
singularities (poles, branch points, or essential singularities) but is otherwise 
arbitrary. The Cagniard�de Hoop method deals exclusively with this inverse 
transform (Achenbach, 1973).  

B.6.1 Widder’s General Inversion Formula 

Widder’s (1946) inversion formula is based on the property of Dirac delta 
function, which is defined as 
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where , > 0 and the Dirac delta function is defined as 
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with , > 0. Equation (B.23) is called the shifting property of the Dirac delta 
function (see Fig. B.1). We are going to find an approximation for the Dirac delta 
function. To do so, we first take differentiation of a Laplace transform n times 
under the integration sign (compare (B.21)): 
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The key is that the term in the brackets [..] on the right-hand side can be 
approximately regarded as a delta function after normalization. We note from 
formula 3.351.3 of Gradshteyn and Ryzhik (1980) that 
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Thus, the following approximation is made: 
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Figure B.1 Shifting property of Dirac delta function 
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To find t0, we can find the maximum of the function on the left of (B.28) 

 
1 1

1{ } { } 0
! !

n n
n st n st n std s st e nt e st e

dt n n

� �
� � � �� � �  (B.29) 

 
Therefore, we find that this function has a maximum at t = t0, where 
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Thus, the Dirac delta function can be replaced by a distribution functions 
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This distribution sense of delta function approaches the Dirac function as n & �. 
We can now multiply (B.31) by f(t) and integrating from 0 to �, we have  
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The second part of (B.32) is a result of the substitution of (B.31) and (B.27) into 
the first part of (B.32). Finally, rewriting (B.19) gives the approximate Widder’s 
(1946) formula: 
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B.6.2 Alfrey’s and ter Haars’ Approximation  

If we set n = 1, Alfrey’s formula is obtained: 

 2

1/

ˆ ( )( )
s t

df sf t s
ds

�

2 3
� �4 5

4 56 7
 (B.34) 

Clearly, Alfrey’s formula is the first approximation of Widder’s formula. 
Sometimes taking the differentiation of the transformed space can be tedious. An 
alternate way of alleviating this problem is to rewrite (B.26) by setting n = 0: 
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Note that this formula is exact. We now approximate the delta function by the first 
order term in (B.31) we have the following approximate for delta function 
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Substitution of (B.36) into (B.35) gives 
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It is similar to the first-order Widder’s formula with n = 1, but no differentiation 
with respect to s is needed. The location of the peak of the distribution function is 
t0 = 1/s, and with this result we get 
 T S2
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Alternatively (B.38) can be rewritten as 
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This is ter Haars’ formula. 

B.6.3 Schapery’s Direct Method of Approximation  

Schapery’s (1962) direct method of approximation gives the exact result as ter 
Haar’s formula except for the relation between t and s. The key assumption of 
Schapery’s method is that 
 10

ˆ ( ) logsf s sb  (B.40) 
This assumption implies that  
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is a slowly varying function. Now, let us write  
 ˆ ˆ( ) ( )f u s s?� ,  ( ) ( )f v t?�  (B.42) 
where 
 logu s� ,  10us �  (B.43) 

 logv t� ,  10vt �  (B.44) 
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If we define  
 log log log( )w v u s t st� � � � �  (B.45) 
 
we have 
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Multiplying both sides by p, we obtain 
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Using the following change of variables 
 ln1010w wst e� �  (B.48) 
we have 
 ln(10)10wsdt dw�  (B.49) 
With this result (B.42) is now rewritten as 
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The weighting function is now treated as the delta function 
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which is illustrated in Fig. B.2. Note that (B.51) is the key of the whole 
approximate method. Then, we have 
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The choice of w0 is somewhat arbitrary. One way is to expand f(v) in a Taylor 
series about the point v0 = w0 � u: 
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Figure B.2 Weighting function given in (B.38) used as the Dirac delta function 
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Substitution of (B.53) into (B.52) gives 
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Substitution of (B.52) into the first of (B.54) gives 
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Actually, (B.52) implies that the integral in (B.55) should be zero in order to have 
the same order of approximation. Thus, we have 
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Schapery (1962) gave the following result for w0 as 
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The last part of (B.57) is a consequence of (B.56). This value of w0 can now be 
substituted into (B.52), and we recall (B.42): 
  0 0ˆ ( ) ( ) ( ) ( )s s f w u f v t? ?� � � �  (B.58) 
Note from (B.44) that  
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Substitution of (B.45) into (B.58) gives 
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This gives  
 0.56Cst e�� �  (B.61) 
  
Back substitution of (B.61) into (B.58) gives 
 0.5/ˆ( ) [ ( )]s tt s s? ? ��  (B.62) 
Schapery (1962) suggested that 0.5 should be used instead of 0.56 in (B.61). This 
is the Schapery’s approximate formula used in Chapter 7. 

B.7 INITIAL-VALUE AND FINAL-VALUE THEOREMS 

The short-term solution for t & 0 can be obtained exactly by using  
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The long-term or final-value solution can be found by  
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It is obvious from (B.62) that Schapery’s (1962) approximate formula is exact for 
both initial-value and final-value solutions, for t & 0 and t & �, respectively.  
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Appendix C: Legendre Transform and 
Work Increments 

 
The Legendre transform or more precisely the Legendre differential transform was 
originally proposed by Legendre for transforming variables in differential 
equations. For example, consider a function f(x,y): 

 f fdf udx vdy dx dy
x y

� �
� � � �

� �
 (C.1) 

There exists another but related function g1(u,y) defined as 
  1( , )g u y f ux� �  (C.2) 
The differential form is 
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We can actually also define other related functions as 
  2 ( , )g x v f vy� � ,  3 ( , )g u v f vy ux� � �  (C.4) 
This transformation is simple but a powerful technique to write a differential 
equation in different forms. Its application to thermodynamics was first proposed 
by Gibbs for transforming between internal energy, enthalpy, the Helmholtz 
function, and the Gibbs free energy. In analytic mechanics, the Legendre transform 
links Lagrangian to Hamiltonian (Arnold, 1989). In elasticity, it links strain energy 
to complementary energy. In variational principles, it links Hu-Washizu 
principle to Hellinger-Reissner principle. In essence, the Legendre transform can 
be used to rewrite the problems in different variables (u versus x or v versus y in 
the example above). 
 In this appendix, we will express all possibilities for the case of 
poroelasticity. The work increment for a poroelasticity solid under constant 
temperature can be written if strain evolves under stress and fluid content evolves 
under pore-water pressure: 
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In this differential form, the variables are �ij and m. Alternatively, we can also use 
�ij and p as variables. There are altogether four possible choices of two 
combinations of variables. 
 Introducing the following potential, we can change the variable from m to p 
by using the following Legendre transformation: 
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 Alternatively, we can change the variable from �ij to �ij by using the 
following Legendre transformation: 
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The final choice of Legendre transformation is 
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The results shown in (C.5)�(C.11) for these differential forms can be summarized 
in Table C.1. 
 

Table C.1 Table of Legendre transform 
 

No. Potentials Work Increment Variables 
1 08  0 : (1/ )d d pdm8 (� �� �  , m�  

2 1 0 /pm8 8 (� �  1 : (1/ )d d mdp8 (� �� �  , p�  

3 2 0 ij ij8 8 � �� �  2 : (1/ )d d pdm8 (� � �� � , m�  

4 3 0 /ij ij pm8 8 � � (� � �  3 : (1/ )d d mdp8 (� � �� � , p�  

 
The constitutive constraint can be expressed as four different forms and the one 
used in (8.49) is only one of them. The four are 
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The physical meaning of these potentials is illustrated in Fig. C.1. More specifically, 
these potentials are  
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Figure C.1 Strain energy vs. complementary energy 
 
 



 

 

 
 

  
SELECTED BIOGRAPHIES  

 
Knowing the background of scientists can lead to a better appreciation on the part 
of the reader of the significance of their work. Many of the individuals described 
here have made great discoveries in diverse areas that have greatly impacted our 
daily lives. Some of these stories are inspiring. Biographies of a number of 
individuals whose works are covered or mentioned in this book are included here. 
The main references for this section are Jenkins-Jones (1996) and Millar et al. 
(2002). This section will hopefully form a mini-Who’s Who in Mechanics and 
Geomechanics that will motivate readers to develop an interest in mechanics. 
 
Achenbach, J.D. (1935�) is a Netherlands-born American mechanician who has 
made significant contributions to wave motions, acoustics, and fracture mechanics, 
including major contributions to the inspection of fatigue cracks in airplanes. His 
book Wave Propagation in Elastic Solids, published in 1973, remains a classic. He 
is a member of the National Academy of Engineering and the National Academy 
of Sciences (USA). He received the Timoshenko Medal in 1992, the National 
Medal of Science in 2005, and the von Karman Medal of the ASCE in 2010.  
 
Airy, G.B. (1801�1892) was a British mathematician, astronomer, and 
geophysicist. The Airy stress function has been of great importance to the analysis 
of 2-D elasticity problems. He considered the bending of beams and published in 
1862 the use of stress function on rectangular beam. However, he did not consider 
compatibility condition at the time and thus his formulation was incomplete. 
Nevertheless, it was the first time that a stress function was used. His mathematical 
skills were used to establish the border between Canada and the USA. He also was 
involved in laying the transatlantic telegraph cable, and the construction of the 
clock of Big Ben. Airy was, however, better known for serving as the Astronomer 
Royal for 46 years and for measuring Greenwich mean time by stars crossing the 
meridian observed through his telescope. In geophysics, Airy proposed a floating 
mountain theory to explain gravitational anomalies. Airy was arrogant and perhaps 
best known for his failure to exploit Adam’s prediction of a new planet, Neptune. 
While still an undergraduate, Adam sent his prediction to Airy, but Airy was 
sceptical and ignored it. Nine months later Leverrier made the same prediction, 
which led to the discovery of Neptune. 
 
Bazant, Z.P. (1937-) is a Czech-born American mechanician who has made 
significant contributions to size and scale effect in strength, creeping, stability, 
fractures, and damages of solids or structures. He is the fifth-generation civil 
engineer in his family. He is a member of the National Academy of Engineering 
and the National Academy of Sciences (USA). He received the Timoshenko Medal 
in 2009. He is also a downhill-skiing enthusiast who has patented a safety ski 
binding called ZPB binding. 
 



386  Analytic Methods in Geomechanics  

 

Biot, M. (1905�1985) was a Belgian-born American physicist and engineer, who 
proposed a theory of poroelasticity which is now known as Biot’s theory. This 
theory is the basis for Chapter 8. Biot also developed the response spectrum 
method for earthquake engineering. Biot contributed to irreversible 
thermodynamics, viscoelasticity, and thermoelasticity. He received the 
Timoshenko Medal in 1962. 
 
Beltrami, E. (1835�1900) was an Italian mathematician who made notable 
contributions to differential geometry, non-Euclidean geometry, and mathematical 
physics. He developed the singular decomposition theory for matrices. In 1892, 
Beltrami derived the compatibility equation and the stress function, which were 
discussed in Chapters 2 and 4, respectively.  
 
Bessel, F.W. (1784�1846) was a German astronomer and mathematician. He was 
the first to measure a star’s distance by parallax. He studied the perturbation of 
planetary and stellar motions and he developed a mathematical function, now 
called the Bessel function. This function had wide applications in many other areas 
of mechanics. The Hankel transform for cylindrical coordinates is based on the 
Bessel function. Bessel made fundamental contributions to positional astronomy, 
geodesy, and calculating the sizes of stars, galaxies, and clusters of galaxies. Based 
on irregularities of Uranus’ orbit, he predicted the existence of Neptune in 1840, 
but died a few months before its discovery. 
 
Boltzmann, L.E. (1844�1906) was an Austrian physicist who is the founder of 
statistical mechanics in physics. He studied the kinetic theory of gases and derived 
a formula giving the number of molecules with a given energy at a specific 
temperature, the so-called Boltzmann constant. His theories about atomistic 
structures were opposed by others and he was so depressed that he committed 
suicide. His integral on viscoelastic formulation is classic, and viscoelastic solids 
are also called Boltzmann solids. The Boltzman lattice model has been widely used 
in solid mechanics recently. 
 
Boussinesq, J.V. (1842�1929) was a French mathematician and physicist who 
made significant contributions to hydrodynamics, vibration, light, and heat. He 
also laid down the mathematical theory of solitons, which was observed by Russell 
in channels. He also derived the Boussinesq equation in fluid mechanics and made 
significant contributions on turbulent flows in fluids. Boussinesq’s solution for 
point force on half-space is considered by some the start of geomechanics 
research. 
 
Brace, W.F. (1926�) is an American rock mechanician and geophysicist who has 
made major contributions to the development of theoretical and experimental 
fracture mechanics for rocks. Together with J.B. Walsh, Brace contributed to 
experimental rock fractures, including fracture energy, rock fabric, and 
microcracks. Brace was elected to the National Academy of Sciences (USA) in 
1971. He received the Bucher Medal of the American Geophysical Society and the 
Distinguished Achievement Award from the U.S. National Committee on Rock 
Mechanics in 1987.  
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Budiansky, B. (1925�1999) was an American mechanician who made significant 
contributions to solid and structural mechanics, microcracked rocks, the slip theory 
of plasticity, and yield vertex theory in plasticity. His Ph.D. advisor at Brown was 
William Prager. Budiansky’s research interests included elasticity, fracture 
mechanics, plasticity, buckling and post-buckling behavior, biomechanics, and 
aeroelasticity. He received the von Karman medal in 1982, the Eringen medal in 
1985, and the Timoshenko Medal in 1989. He was a member of the National 
Academy of Sciences and the National Academy of Engineering (USA).  
  
Burgers, J.M. (1895�1981) was a Dutch physicist who made significant 
contributions to fluid dynamics, turbulence, dislocation theory, and viscoelasticity. 
In hydrodynamics, he derived the Burgers equation, which is used extensively in 
condensed matter and cosmology. Burgers vector in dislocation theory is named 
after him. In viscoelasticity, a Maxwell model in series with the Kelvin�Voigt 
model is called Burgers material. He was one of the co-founders of the 
International Union of Theoretical and Applied Mechanics (IUTAM) in 1946. 
 
Cauchy, A.L. (1789�1857) was a French civil engineer, mathematician, and 
mechanician who founded complex analysis and contour integration (on which the 
inverse Laplace transform is based). He also made major contributions in 
continuum mechanics and elasticity. He published 7 books and over 700 papers, 
on such topics as calculus, definite integrals, limits, probability, convergence of 
infinite series, mechanics, astronomy, geometry, wave modulation, and complex 
functions. There are 16 concepts and theorems named after him, the most of any 
mathematician. The story is told that when Cauchy presented his theory of 
convergence of series, Laplace rushed home and checked those series that he used 
in his books on celestial mechanics (luckily they all converged). He was a devoted 
teacher, was the most carefully in citing other people’s works, and candidly 
admitted errors in his publications. 
  
Cerruti, V. (1850�1909) was an Italian mathematician and civil engineer who 
derived the horizontal point force solution on the surface of a half-space. The 
problem is now called the Cerruti problem and is of fundamental importance to 
geomechanics. Cerruti also made contributions to rational mechanics and structural 
analysis. Already as a student, he published a paper on analytical geometry. He 
extended Betti’s reciprocal theorem from statics to dynamics. In 1873, Cerruti 
submitted his thesis on elastic truss analysis simultaneously with C.A. 
Castigliano’s similar thesis to the Royal technical school of application to 
engineers. They were awarded the same marks by the committee, but somehow 
Cerruti was awarded first and Castigliano second. The rest is history as we know 
Castigliano’s work as the “Castigliano principle” whereas Cerruti’s work on 
elastic trusses has almost been forgotten (Capecchi and Ruta, 2011).  
 
Clapeyron, B.P.E. (1799�1864) was a French engineer and physicist who made 
contributions to thermodynamics, phase transition, perfect gas, bridge engineering, 
and elasticity. The Clapeyron theorem in elasticity gives the form of strain energy 
in elastic bodies. The Clausius–Clapeyron relation in thermodynamics and 
Clapeyron theorem in beam bending bear his name. 
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Coulomb, C.A. de (1736�1806) was a French scientist, military engineer, and 
physicist who discovered the inverse square law of electric and magnetic 
attraction. The force between two electric charges is called Coulomb’s law of 
force. He extended Amontons’ friction law (which is now believed first discovered 
by Leonardo da Vinci in the 15th century but Leonardo’s result was never 
published) to kinetic friction law. He invented torsion balance to measure electric 
force, and thus the unit of electric charge, the Coulomb, is named for him.  
 
Dirac, P.A.M. (1902�1984) was a British theoretical physicist, a main contributor 
to quantum mechanics who predicted the existence of the positron and other anti-
particles, which is the theoretical basis for the popular TV program “Fringe.” He 
worked out the relativistic theory of electrons. The Fermi�Dirac statistics for 
determining the distribution of electrons at different energy levels is named in part 
for him. He also worked on large number hypothesis, and how it relates to the ratio 
of different kinds of forces, such as the electrical force of electrons to gravitational 
force of protons as 1039. He predicted the meeting of an electron and a positron can 
result in mutual annihilation, giving out energy as photons or light. All these 
predictions were observed experimentally by Anderson in 1932. The same 
argument leads to the existence of antiparticles of all particles. Dirac shared the 
1933 Nobel prize in physics with Schrödinger. Dirac delta function is commonly 
used in modeling dynamic problems. 
 
Drucker, D.C. (1918�2001) was an American mechanician and engineer who 
made significant contributions to photoelasticity and plasticity. His Drucker’s 
postulate provided the framework for metal plasticity. He was the first Ph.D. 
student of Mindlin. His work with Prager formed the basis of plasticity theory for 
geomaterials. His leadership and service appear unparalleled. He was the president 
of American Academy of Mechanics, the American Society of Mechanical 
Engineering, and the International Union of Theoretical and Applied Mechanics. 
He is remembered as a brilliant scholar, a leader in education, a spokesman for 
engineering, and a thoughtful, kind, generous gentleman. He received the 
Timoshenko Medal in 1983 and the National Medal of Science in 1988. The 
ASME Drucker Medal was named in his honor in 1998. 
 
Dundurs, J. (1922�) is a Latvia-born American engineer and mechanician who 
made major contributions in classical elasticity, singular stress field, cracks and 
dislocations. The Dundurs constants for bimaterial or composite material are 
recognized internationally. He is known for his lucid lectures and as a pre-eminent 
educator. He was a recipient of the Theodore von Karman Medal from ASCE in 
1990.  
 
Einstein, A. (1879�1955) was a Germany-born American theoretical 
physicist who developed the theory of general relativity, resulting in a revolution 
in physics. The Einstein notation has been widely adopted in tensor analysis as 
discussed in Chapter 1. For this achievement, Einstein is often regarded as the 
father of modern physics. He received the 1921 Nobel Prize in Physics “for his 
discovery of the law of the photoelectric effect.” Einstein published more than 300 
scientific papers.  
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Eshelby, J.D. (1916�1981) was a British scientist who made fundamental 
contributions to micromechanics, plastic deformation, fractures, and dislocations. 
After a serious illness at age 13, Eshelby did not go to school. He was mostly self-
educated. His seminal paper “The force on an elastic singularity” was not widely 
known before Rice derived his J-integral. Ellipsoidal inclusion is sometimes 
referred as “Eshelby inclusion.” Eshelby was elected a Fellow of the Royal 
Society in 1974, and he was awarded the Timoshenko Medal in 1977. 
  
Euler, L. (1707�1783) was a Swiss mathematician, physicist, and astronomer. He 
is recognized as the greatest mathematician genius of all time. He wrote almost 
900 papers, memoirs, books, and other works, and is one of the most prolific 
mathematicians ever (his 900 papers are second only to Paul Erdös’ 1,500 papers). 
In terms of mechanics, he contributed to the principle of superposition, the 
principle of virtual work, the free-body and section principle, the Euler multiplier 
(also called the Lagrangian multiplier), tidal theory, and the Laplace equation in 
potential flow. His investigation of the seven bridge problem of Konigsberg 
marked the beginning of graph theory. Euler made major contributions to all areas 
in mathematics, engineering, and science, including calculus, differential 
equations, analytic and differential geometry of curves and surfaces, number 
theory, infinite series (such as Euler’s constant in infinite series), calculus of 
variations, optics, acoustics, light, and hydrodynamics. It was estimated that three-
quarters of analytical mechanics consists of Euler’s contributions. He also 
contributed to the design of telescopes, microscopes, and ships. His solution of the 
three-body problem of Earth, Moon, and Sun improved navigational tables. He 
developed much of classical perturbation theory. In geometry, the beautiful Euler’s 
formula for polyhedron relates numbers of vertices, edges, and faces. Euler’s 
formula of e�i+1 = 0 is considered by many to be the most famous and beautiful 
formula in all of mathematics. In structural mechanics, Euler’s buckling formula 
for columns remains a classical result today. He investigated the base of the natural 
logarithm e (Euler’s number). Eulerian formulation for large deformations is 
named in honor of him. We define Eulerian strain in Chapter 2. Most of our 
modern mathematical notations are those of Euler. After Euler lost his eye in 
Russia, he said “now I have less distraction and can focus more.” Euler processed 
prodigious memory and could perform complex calculations in his head when he 
became blind in his old age. 
 
Filon, L.N.G. (1875�1938) was a French-born British applied mathematician and 
elastician who contributed to the theory of elasticity. He coined the term anti-
plane. He also independently proposed the use of complex variable technique in 
elasticity in 1903. He was a follower of Karl Pearson and derived the 3-D solution 
for solid cylinders subject to axisymmetric loads, and non-uniform stress of 
cylinders under compression with end constraint (Meleshko and Selvadurai, 2003). 
Although this solution has been revised by many subsequent mechanicians, it is 
one of the classical solutions for a practical problem. He was elected to Fellowship 
of the Royal Society in 1910. After World War I, Filon served as vice-chancellor 
of the University of London (Jeffery, 1938). 
 
Freund, L.B. 1942� is a American mechanician who has made major 
contributions to dynamic fracture mechanics. His Ph.D. advisor at Northwestern 
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University is J.D. Achenbach. Freund worked in many areas, including stress 
waves in solids, fracture mechanics, seismology, computational mechanics, 
dislocation theory, thin films, microstructure evolution in films, and engineering 
education. He is a member of the National Academy of Engineering (1994) and 
the National Academy of Sciences (1997). He received the Timoshenko Medal in 
2003. 
 
Fung, Y.C. (1919�) is a Chinese-born American who has made major 
contributions to bioengineering and is recognized as the father of biomechanics. 
He is a member of the National Academy of Engineering and the National 
Academy of Sciences (USA). He received the Timoshenko Medal in 1991 and 
National Medal of Science in 2000. In 1957, Fung went on sabbatical to Germany 
and got into biomechanics by accident. At that time his mother was suffering from 
glaucoma (eye disease caused by high intraocular pressure) in China, and he 
translated all newly published papers on glaucoma and sent them to his mother’s 
surgeon. He then quit his job at Caltech and started a new career at the University 
of California at San Diego in physiology and bioengineering. Later in his career, 
he also conducted research on blood pressure because of his wife’s strategy of 
taking medicine as needed, instead of finishing a dosage as advised by doctor. It 
turns out that his wife is right, Based on continuum mechanics prediction, he 
concluded that she was correct. His book Foundations of Solid Mechanics has 
been quoted extensively in this book. 
 
Galerkin, B.G. (1871�1945) was a Russian/Soviet structural engineer, 
mathematician, elastician, and engineer who made significant contributions to 
numerical methods for solving differential equations and to the theory of three-
dimensional elasticity by extending Love’s potential to 3-D cases. He grew up in a 
poor family and went to work in the Russian Court as a calligrapher at age of 12. 
At college years, he had to work as a private tutor and draftsman to support 
himself. His involvement in political activities when he worked as a railway 
engineer resulted in a 1.5 year jail sentence. It was the turning point in his life. He 
lost interest in politics and devoted himself to science and engineering. He wrote 
his first paper (130 pages) while in prison. In 1915, Galerkin published a paper on 
the approximate solution of differential equations applied to plate bending 
problems. This method is now known as Galerkin method. This method forms the 
basis of the finite element method. He was a member of the Academy of Sciences 
(USSR). 
 
Gauss, K.F. (1777�1855) was a German mathematician considered by many to be 
one of the greatest of all mathematicians. He contributed to all areas of 
mathematics, especially number theory, statistics, and topology. In statistics, 
normal distribution is called Gaussian distribution. Gauss also originated the 
method of least squares for best fit curves among data points. In science, Gauss 
made contributions in geodesy, electric telegraph, crystallography, optics, 
mechanics, electricity, magnetism, and capillarity. His book on arithmetic is the 
basis of modern number theory. The Gauss theorem, introduced in Chapter 1, is of 
great impact in mechanics. Note its use in the proof of the J-integral in Chapter 6.  
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Gibbs, J.W. (1839�1903) was an American physical chemist and theoretical 
physicist. He developed the mathematical approach to thermodynamics and 
founded vector methods in mechanics and physics. He was awarded the first 
American doctorate in engineering from Yale in 1863. He introduced the concept 
of enthalpy (or heat content) and entropy (a measure of the disorder of a chemical 
system) in thermodynamics. He was not a good teacher and few understood his 
work. Some of his works were later rediscovered by Planck and Einstein, but even 
Poincaré, the leading French mathematician of his time, found Gibbs’ papers 
difficult to read (Millar et al., 2002).  
  
Gibson, R.E. (1928�2008) was a British geotechnical engineer and mathematician 
who proposed the NcNamee�Gibson displacement potential for Biot’s theory. A 
class of nonlinear soil originated by him was called Gibson soil. He proposed 
analytical solutions for a model to describe the consolidation behavior of very soft 
soils. 
  
Green, G. (1793�1841) was a British mathematical physicist who introduced 
Green’s theorem and Green’s function method for partial differential equations. 
These methods had huge impacts in applied mathematics and mechanics. His work 
on potential theory ran parallel to that of Gauss. He introduced the Green strain 
tensor and Green-elastic (or hyperelastic) discussed in Chapter 2, and wave 
propagation in infinite solid discussed in Chapter 9. Green’s story is remarkable in 
that he was almost entirely self-taught; he only had one year of formal education at 
the age of eight. The son of a baker, he worked his childhood years in a bakery, 
except for one year of formal schooling at Robert Goodacre Academy. He 
published his famous Green’s theorem “An Essay on the Application of 
Mathematical Analysis to the Theories of Electricity and Magnetism” at his own 
expense at the age of 35 in 1828. This work was considered by some to be one of 
the most significant mathematical works of all time. The way that he acquired his 
mathematical skill remains a mystery. He was encouraged by Sir Bromhead to 
enroll as an undergraduate at Cambridge University at the age of 40. But he died 
before his work were discovered and publicized by Lord Kelvin (see biography of 
Lord Kelvin). His works were further developed by James Maxwell to formulate 
the electromagnetic theory. The Cauchy�Green strain tensor in elasticity bears his 
name. Green was the first one formulated elastic constitutive law using 21 
constants (Timoshenko, 1953). To commemorate the 200th anniversary of his birth 
in 1993, a plaque bearing Greens’s name was placed in Westminster Abbey near 
Isaac Newton’s grave. Similar honors have been given to Michael Faraday, 
William Thomson (Lord Kelvin), and James Clerk Maxwell.  
 
Griffith, A.A. (1893�1963) was an English aircraft engineer who worked on 
fracture. His 1920 paper on fractures triggered the subsequent development of 
fracture mechanics. 
 
Gurtin, M.E. (1934�) is an American mathematician, engineer, and mathematical 
physicist who has made significant contributions in nonlinear continuum 
mechanics and thermodynamics, and dynamical phase transitions. His Ph.D. 
advisor was E. Sternberg, and their work on viscoelasticity is of fundamental 
importance. Gurtin developed nonclassical theories for phase transitions, fracture 
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dynamics, atomic diffusion, and crystalline plasticity. He received the Timoshenko 
Medal in 2004.  
 
Hadamard, J. (1865�1963) was a French mathematician who founded the area 
functional analysis and calculus of variations. Hadamard was one of the most 
influential mathematicians of his time. He published over 300 papers containing novel 
and highly creative works. He made contributions to logic, complex analytic functions, 
number theory, geodeics, and hydrodynamics. He proved the prime number theorem 
(proposed by Gauss and Riemann) independently with Poussin that the number of 
prime numbers less than x approach x/lnx as x & �. This remains perhaps the most 
important result in number theory. He published book on psychology of mathematical 
minds and initiated the concept of “well posed” in differential equations. He was an 
acclaimed and inspiring lecturer. Hadamard’s compatibility condition is of 
fundamental importance to acceleration waves and localization analysis, as discussed 
in Chapter 9. 
 
Hankel, H. (1839�1873) was a German mathematician who made significant 
contributions to complex and hypercomplex numbers, and the theory of function. The 
Hankel functions provided a solution to Bessel equation. The Hankel transform 
used in Chapter 8 bears his name. He originated the “measure” theory of point sets 
which are useful in probability, cybernetics, and electronic. 
 
Heaviside, O. (1850�1925) was a British physicist and mathematician. Lacking a 
university education, he worked initially as a telegraph operator until deafness 
forced him to stop. Working alone, he developed much of the mathematics behind 
telegraphy and electric circuits. The Heaviside step function was adopted as a 
standard in mechanics. Together with Gibbs in the USA, he was the founder of 
vector calculus and analysis (Struik, 1987). He was one of the developers of the 
rigor of the Laplace transform in solving electromagnetic theory. Heaviside 
predicted independently and almost simultaneously with Kennelly the existence of 
an ionized layer in the upper atmosphere, which was known as the 
Kennelly�Heaviside layer or the E layer of the ionosphere. Radio signals would 
not be able to transmit around the world without reflecting off the layer of the 
ionosphere. Most of his earlier works was ignored, but eventually he was 
recognized by being electing a Fellow of the Royal Society. He never held an 
academic position and died in poverty. 
 
Helmholtz, H. von (1821�1894) was a German physicist, mathematician, and 
physiologist. He discovered the law of conservation of energy, developed a theory 
on the nature of harmony and musical sound (he was a skillful musician), and 
invented the ophthalmoscope for viewing human retina. Boltzmann was one of his 
students. Helmholtz was considered the most versatile scientist of his century. He 
has been called the last scholar whose work covered science, physiology, and arts. 
Helmholtz believed that his diversified interests helped him adopt novel ideas in 
research. Together with Kirchhoff, he was one of the main contributors to 
mathematical physics in Germany in the 19th century. His work on Riemann’s 
quadratic measures led to the “Lie�Helmholtz space problem” which is important 
to Einstein’s relativity, group theory, and physiology (Struik, 1987). Helmholtz’s 
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decomposition theorem is of fundamental importance to both dynamic and static 
elastic problems, as discussed in this book. 
 
Hill, R. (1921�2011) was a British applied mathematician who made significant 
contributions to mathematical theory of plasticity and to the uniqueness and 
stability in nonlinear continuum mechanics. In 2008, the International Union of 
Theoretical and Applied Mechanics established the Rodney Hill Prize in his honor. 
 
Hu, H.C. (1928�2011) was a Chinese mechanician who made significant 
contributions to the variational principle and the general solutions of transversely 
isotopic elastic solids. He was in charge of theoretical development for China’s 
first satellite. He was a member of the China Academy of Sciences. The 
Hu�Washizu variational principle used all 15 components of displacements, 
strains, and stresses as variables, and is a powerful tool in finite element 
formulation. Although Hu’s theory on transversely isotropic elastic solids is less 
known in Western countries, his paper was published in English and was widely 
cited in the Russian literature. 
  
Irwin, G.R. (1907�1998) was an American scientist who made significant 
contributions to fracture mechanics. The stress intensity factor and fracture 
toughness and energy release rate were first defined by Irwin. He was a member of 
the National Academy of Engineering in the U.S. He received the Timoshenko 
Medal in 1986.  
 
Jaeger, J.C. (1907�1979) was an Australian mathematician, physicist, and 
engineer. At Sydney University, he changed from engineering to science under the 
influence of Prof. H.S. Carslaw, with whom he co-authored the classic book 
Conduction of Heat in Solids. After graduating with first class honors in both 
physics and mathematics, Jaeger continued his graduate studies at Cambridge 
University. Despite his Tripos success in applied mathematics, Jaeger lost out on a 
research fellowship to S. Chandrasekhar (the India-born U.S. physicist studying 
white dwarf stars who obtained the 1983 Nobel Prize in physics) in theoretical 
physics and never enrolled in Ph.D. studies. After some ups and downs at 
Cambridge while working on quantum mechanics, he returned to Australia and 
began to work in applied mathematics, including the Laplace transform, the Bessel 
function and hypergeometric functions. In addition to working on heat conduction 
with Carslaw, he also worked on rock mechanics, fractures, charcoal production, 
radio waves, meteorology, heating of retina by solar radiation, palaeomagnetism, 
seismology, in-situ measurement of rock stress, geothermal flux, rock joints, rock 
friction, and prediction of dust thickness on the Moon’s surface through solar 
eclipse. His book Fundamentals of Rock Mechanics co-authored with N.G.W. 
Cook is a classic in rock mechanics. He was elected a fellow of the Royal Society 
(UK) and a fellow of the Australian Academy of Sciences.  
 
Karman, von T. (1881�1963) was a Hungarian-born American mathematician, 
physicist, and aerospace engineer who made significant contributions to 
aerodynamics and is often referred as the father of rocket science. His name is 
associated with at least 16 equations, theories, phenomena, constant, and models, 
from aerodynamics, turbulence, crystallography, transportation, and aerofoil 
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theory to vortex theory. He has been called a “genius’s genius.” He invented the 
triaxial test for testing marbles and sandstones, which is now widely adopted for 
soil testing as well. He was awarded the Timoshenko Medal in 1958, and was first 
recipient of the National Medal of Science (USA) in 1963. Since 1960 the 
American Society of Civil Engineers (ASCE) has awarded the Theodore von 
Karman medal in his honor. 
 
Keer, L.M. (1934�) is an American mechanician, who made major contributions 
to tribology, contact mechanics, integral equations for elasticity, fracture 
mechanics, earthquake mechanics, and wave propagation in solids. His contact 
mechanics results led to more reliable design of gears, bearings, and railway rails. 
He was elected to the National Academy of Engineering in 1997. He was awarded 
the Drucker Medal in 2003 and the Mindlin Medal in 2011. He is known as an 
excellent teacher who has influenced and trained generations of students with his 
teaching. 
 
Kelvin, Lord (Thomson, William) (1824�1907) was an Irish mathematician, 
physicist, and mechanician. Kelvin is probably best known for his introduction of 
the absolute temperature scale Kelvin. As a young man, he discovered Green’s 
work, then little known, and publicized it. Since then Green’s method has become 
a powerful tools in mathematical physics. His work on the conservation of energy 
led to the second law of thermodynamics. He was an unusual scientist with 
unparalleled enthusiasm, energy, and talent. He invented the tide gauge, an 
improved compass, and simpler method for fixing a ship’s position at sea. He 
investigated many different areas of science. He published 661 papers and many 
books and was the author of several patents. He coined the term “turbulence” in 
fluid mechanics. The Kelvin solution in elasticity remains one of the most 
fundamental contributions to applied mechanics. He always shared ideas and gave 
credit to others. For his role in the Kelvin�Stokes Theorem see the biography of 
G.G. Stokes. He directed the first successful project for a transatlantic cable 
telegraph, which became operational in 1866, and brought him considerable 
wealth. The Cambridge Dictionary of Scientists says he was “probably the first 
scientist to become wealthy through science” (Millar et al., 2002).  
 
Kirchhoff, G.R. (1824�1887) was a German physicist and a pioneer in 
spectroscopy. He also made major contributions to plate theory and elasticity. An 
early accident made him a wheelchair user but did not alter his cheerful character 
or hinder his scientific curiosity. He formulated Kirchhoff’s law for electrical 
networks. Kirchhoff and his lifelong friend and colleague Bunsen established 
spectroscopy as an analytical technique in chemical analysis. Using spectroscopy, 
they discovered the elements caesium and rubidium, and were able to analyze the 
chemical element present in the Sun’s atmosphere (see, however, the biography of 
Stokes for his role in the development of spectroscopy). The spectrometer, 
telescope, and microscope are the most dominant scientific instruments of our 
time. The first and second Piola�Kirchhoff stresses are named for him.  
 
Kolosov, G.V. (1867�1936) was a Russia/ Soviet mathematician and engineer 
who proposed the complex variable method for plane elasticity in his doctoral 
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thesis in 1908. The method was formalized by his student N.I. Muskhelishvili. He 
was a corresponding member of the Russian Academy of Sciences.  
 
Lamb, H. (1849�1934) was a British applied mathematician who made major 
contributions to elasticity, hydrodynamics, and mechanics. His book 
Hydrodynamics remains a classic. His 1882 paper on vibrations of spheres 
identified two kinds of vibrations; the first class is now known as toroidal modes 
with zero dilatation and radial displacement and the second one is now known as 
spheroidal modes with zero radial component of the curl of the displacement. His 
predicted vibration period was observed after the 1960 Chile earthquake set the 
Earth in free vibrations. His 1904 paper on a suddenly applied point force on a 
elastic half-space was seminal contribution in theoretical seismology. This is now 
known as Lamb’s problem. Lamb was also the first to use the integral transform 
for elasticity problems. He was an excellent lecturer. 
 
Lamé, G. (1795�1870) was a French engineer and elastician who made significant 
contributions to the development of the theory of elasticity. The Lamé strain 
potential is discussed in Chapter 4. Lamé published the first book on elasticity in 
French. He was the first to formulate elastic problems in cylindrical and spherical 
coordinates. For isotropic elastic solids, two constants were found sufficient, and 
these constants are now known as Lamé’s constants in the theory of elasticity.  
 
Laplace, P.-S. (1749�1827) was a French mathematician, astronomer, and 
mathematical physicist. The story has often been told of how D’Alembert gave 
him difficult mathematical problems to test his ability, and found that Laplace was 
able to solve them overnight. Much impressed, D’Alembert helped secure Laplace 
a teaching job at the École Militaire in Paris. He is one of the founders of 
probability, and he made his name in celestial mechanics by publishing a five- 
volume survey of celestial mechanics. He theorized that the solar system 
originated from a cloud of gas (called nebular hypothesis). Laplace developed the 
concept of ‘potential’ and the study of the Laplace equation. He was from a poor 
family, but he was appointed minister and later senator by Napoleon. The Laplace 
transform, that bears his name, is of fundamental importance for solving 
differential equations. Many considered Laplace being the most illustrious scientist 
of France’s golden age, and one of the most influential scientists of all time. Our 
current unit of length, the meter, was proposed by Laplace in 1790. Laplace is 
considered only second to Newton in scientific talent. He was known for his 
arrogance, and he frequently neglected to acknowledge the sources of his results. 
He was notorious for overusing the term “it is obvious” in mathematical 
derivations when it was far from obvious (James, 2002). 
  
Lee, E.H. (1916�2006) was a British-born American mechanician who made 
significant contributions to plasticity, viscoelasticity, and inelastic wave 
propagation. He recognized the correspondence between elastic and viscoelastic 
problems in 1955. He became a member of the National Academy of Engineering 
in 1975 and was a recipient of the Timoshenko Medal in 1976.  
 
Legendre, A.M. (1752�1833) was a French mathematician who contributed to 
number theory, celestial mechanics, and elliptical functions. In celestial mechanics, 
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he derived the Legendre equations and the Legendre polynomials. As shown in 
Chapter 4, it is closely related to spherical harmonics. Legendre also invented the 
theory of least squares. The Legendre transformation, a powerful tool in 
mechanics, is discussed in Appendix C. 
 
Love, A.E.H. (1863�1940) was a British elastician who made significant 
contributions to elasticity and geophysics. His book A Treatise on the 
Mathematical Theory of Elasticity is a classic work on elasticity even by today’s 
standards. He also shown the possibility of a surface seismic wave in a layer half-
space, which is now known as Love’s wave. The Love’s strain potential was 
developed for solving axisymmetric elastic problems. 
 
Maxwell, J.C. (1831�1879) was a Scottish physicist who derived the Maxwell 
equations coupling electricity, magnetism, and light. Maxwell was the most able 
theoretician of the 19th century. He showed all colors are derived from three 
primary colors: red, green, and blue. This led him to produce the first color 
photograph in 1861. He and Boltzmann each independently developed kinetic gas 
theory. He theorized the rings of Saturn must consist of many small objects. Many 
believe his theory of electromagnetism can only be matched by that of Newton and 
Einstein. In structural engineering, he formulated virtual force and reciprocal 
theorem for the analysis of statically indeterminate frames (Kurrer, 2008). The 
Maxwell stress function in 3-D elasticity discussed in Chapter 4 demonstrates his 
diversified interests.  
 
Michell, J.H. (1863�1940) was an Australian mathematician who made 
significant contributions to elasticity and hydrodynamics. He was elected a Fellow 
of the Royal Society in 1902. The compatibility condition equation bears his name.  
  
Mindlin, R.D. (1906�1987) was an American mechanician who made seminal 
contributions to applied mechanics. His Ph.D. thesis at Columbia University was 
on the fundamental problem of a point applied within the interior of a half-space, 
and the result was published in 1936, the year he obtained his Ph.D. (Deresiewicz, 
1987). It is amazing to note that he completed the work without any guidance at 
Columbia. His other contributions include dynamics of package cushioning, wave 
propagation, contact problems, micropolar elasticity, photoelasticity, plate theory, 
and piezoelectric crystals. He made major contributions to the development of 
proximity fuse during the wartime, for which he received the Presidential Medal 
for Merit. He was a member of the National Academy of Engineering and the 
National Academy of Sciences (USA), and received the Theodore von Karman 
medal in 1961, and the Timoshenko Medal in 1964, and the National Medal of 
Science in 1979. To honor his contributions to engineering mechanics, ASCE 
founded and awarded the Mindlin Medal in 2006 in his name.  
  
Mohr, O. (1835�1918) was a German civil and structural engineer. He published 
the first paper on influence lines on structural analysis. Further developing 
Culman’s work, Mohr completed the analysis of stress at a point, what is now 
called Mohr’s circle. The failure of solid based on shear is known as the 
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Mohr�Coulomb failure condition, which is still used widely for concrete, soil, and 
rocks, and is presented in Chapter 5.  
 
Morera, G. (1856�1909) was an Italian engineer and mathematician who derived 
the Morera theorem in complex variable theory and the Morera stress function for 
3-D elasticity. His teachers are among some of the most famous mathematicians 
and engineers of his time, including E. Beltrami, E. Betti, F. Klein, H. von 
Helmholtz, G. Kirchhoff, L. Kronecker, and K. Weierstrass. Morera also 
contributed to the fields of differential equations, rational mechanics, the potential 
theory of ellipsoidal harmonics, and differential geometry.  
 
Muki, R. (1929�2004) was a Japanese-born American civil engineer and 
elastician, whose seminal work “Asymmetric Problems of the Theory of Elasticity 
for a Semi-infinite Solid and a Thick Plate” is the basis of the Laplace-Hankel 
transform method used in Chapter 8 on poroelasticity. He obtained post-doctoral 
training at Brown University under E. Sternberg. 
 
Mura, T. (1925�2009) was a Japanese-born American applied mathematician who 
made significant contributions to micromechanics, fractures, dislocation, and 
fatigue. His book Micromechanics of Defects in Solids is a bible in the field. He 
coined the term “eigenstrain” for the “transformation strain” of Eshelby and 
developed a powerful and unified method to solve micromechanics problems. In 
dislocation theory, he derived a line integral for curved dislocation loops in 
anisotropic solids which is called the Mura formula. In 1956, he and Kinoshita 
derived the boundary integral equation for elasticity, which is the basis of the 
boundary element method used today. Mura was a member of the National 
Academy of Engineering. He was a highly respected professor. He was open-
minded and generous in sharing research ideas. 
  
Muskhelishvili, N. (1891�1976) was a Georgian and Soviet mathematician, who 
continued the work of Kolosov and formalized the use of complex variable 
technique in 2-D elasticity.  
 
Nemat-Nasser, S. (1937�) is a Iranian-born American mechanician who made 
significant contributions to a wide spectrum of problems, including structural 
instability, granular materials, brittle rocks, compressive fractures, high strain-rate 
response, composites, polymers, micromechanics, finite plasticity, liquefaction, 
crack kinking, curving and branching, integrated sensors for structural health 
monitoring, shape memory alloy, dislocation, and viscoplasticity. A series of 
theoretical and experimental papers co-authored with H. Horii formed the 
foundation for compressive fracturing in brittle solids. He is known for being 
energetic, enthusiatic, humorous, and rigorous. He received the Timoshenko 
Medal and the Theodore von Karman Medal in 2008.  
  
Neuber, H. (1906�1989) was a German mechanical engineer. He showed that a 
three-dimensional solution for elasticity theory can be expressed in terms of four 
harmonic functions, which is now known as the Papkovitch�Neuber potential. He 
was a student of L. Foppl. He helped standardize the aircraft contruction method in 
Germany (Kuhn, 2006). He also published books on stress concentrations at holes. 
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Papkovitch, P.F. (1887�1946) was a Soviet scientist and structural engineer who 
helped design and build warships and passenger vessels in Russia. He mainly 
worked on the structural mechanics of ships. Papkovitch showed that elasticity 
problems can be solved by introducing four harmonic functions in 1932. The 
general solution derived independently by Neuber in 1934 and Grodski in 1935 
(Goodman, 1974), is now called the Papkovitch�Neuber displacement function. 
 
Piola, G. (1794–1850) was an Italian physicist who made contributions to 
pendulums, the calculus of variations, analytical mechanics of Lagrange, and large 
deformation of bodies. The first and second Piola�Kirchhoff stresses bear his 
name in part. 
 
Poisson, S.D. (1781�1840) was a French mathematician and physicist who made 
contributions to probability theory, elasticity, electricity, magnetism, heat, and 
sound. In probability, we have the Poisson distribution (the basis for modern 
hazard analysis) and in elasticity we have Poisson ratio. In complex analysis, he 
was the first to carry out path or contour integration of complex functions (called 
contour integration). He was the first to recognize that there are compressional 
waves and shear waves in isotropic elastic solids. 
 
Prager, W. (1903�1980) was a German-born American applied mathematician. 
Together with Synge, he developed the hypercircle method for solving the 
equilibrium of an elastic body. Prager made contributions to plasticity, continuum 
mechanics, and structural optimization. Drucker and Prager’s (1952) work formed 
the basis of plasticity applied to geomaterials. He was a member of the National 
Academy of Engineering and the National Academy of Sciences (USA). He 
received the Timoshenko Medal in 1966. Since 1983 the Society of Engineering 
Society has awarded the Prager Medal in his honor. 
 
Rayleigh, Lord (Strutt, J.W.) (1842�1919) was a British mathematician and 
physicist and Nobel Prize winner for his work on gas density and on argon. His 
work on Rayleigh waves is only a small part of his wide range of interests in 
physical problems. Rayleigh made major contributions to sound, light, and 
electricity. He wrote his classic book Theory of Sound partly on boathouse on the 
Nile. He inherited the title Lord Rayleigh from his father, and succeeded Maxwell 
in Cambridge. Rayleigh explained the blue color of sky from the scattering of light 
by dust particles in the air. His enthusiasm on precise measurement led him to the 
standardization of electrical units in 1884: the ohm, ampere, and volt. The 
inconsistency of the Rayleigh�Jeans equation (published by Rayleigh in 1900), 
which describes the distribution of wavelengths in black-body radiation, led 
Planck to the formulation of quantum theory. In numerical analysis, the 
Rayleigh�Ritz method is a powerful approximate method that bears his name.  
  
Rice, J.R. (1940�) is an American mechanician and geophysicist who has made 
significant contributions to many aspects of solid mechanics. His undergraduate 
project with George Sih led to an influential paper in bimaterial crack problem. His 
B.S., M.S., and Ph.D. advisor at Lehigh University was Ferdinand Beer. He 
finished the three degrees in 6 years, which remains a Lehigh record (Chuang and 
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Rudnicki, 2001). Rice went to Brown University for post-doctoral work under 
D.C. Drucker and continued his academic career there before moving to Harvard 
University in 1981. The J-integral in fracture mechanics that he derived has played 
a great role in the development of fracture mechanics because of its path 
independence. He made major contributions to shear band and localization, 
dislocation theory, fracture mechanics, material science, plasticity, 
thermodynamics and state variables, earthquake mechanics and dynamics, 
nonlinear finite element analysis of solids, poroelasticity, slope stability, and state 
dependent friction law. Rice is a member of the National Academy of Sciences and 
the National Academy of Engineering (USA). Rice received the ASME 
Timoshenko Medal in 1994 and the ASCE Biot Medal in 2008. In addition to his 
academic accomplishments, Rice is known for his intellectual honesty and 
integrity, and his generosity in sharing ideas and insights. 
 
Riemann, G.F.B. (1826�1866) was a German mathematician, who originated 
Riemann geometry which was used by Einstein in the theory of general relativity. 
He also made breakthrough in conceptual understanding of theory of functions, 
vector analysis, differential geometry, and topology. He was a student of Gauss. 
Riemann took into account the possible interaction between space and the bodies 
placed in it. In complex variable theory, he developed the concept of Riemann 
surface which separates multi-connected surfaces by branch cuts. The 
differentiable condition for complex variable is now known as Cauchy-Riemann 
relation. He defined the Riemann zeta function and formulated a Riemann 
hypothesis of this function. It remains one of the most important unsolved 
problems of number theory and analysis. The Clay Mathematical Institute of 
Cambridge offered 1 million US dollars for its proof (Sabbagh, 2003). Riemann 
died at the age of 39 because of tuberculosis.  
  
Roscoe, K.H. (1914�1970) was a British geotechnical engineer who was one of 
the founders of the Cam-clay model. Roscoe was a prominent athlete at Cambridge 
University where he excelled at ruby and cricket. He was unable to take his 
examination because of arm injury and thus was awarded an aegrotat degree, but 
he requested to stay on for the fourth year and obtained the First Class Honors. 
Shortly thereafter he served in the British army despite his arm injury, and was 
sent to France in 1939. He was captured and spent five years in a prison camp. In 
the prison, he helped organize a university course on mathematics and science 
without the use of textbooks. After the war, he went back to Cambridge and 
motivated by Hvorslev’s thesis, he became one of the founders of the Cam-clay 
model in 1958. 
 
Rudnicki, J.W. (1952�) is an American mechanician who has made significant 
contributions to theory of localizations of rocks, poroelasticity, and earthquake 
mechanics. His yield vertex model is widely adopted. His 1975 paper with Rice 
has become a classic (this was actually his master’s thesis). His publications has 
been recognized as precise, rigorous, and elegant. He derived a series of solutions 
for crack propagation in poroelastic solid, and applied them to predict well water 
fluctuation before earthquake. By correcting Cleary’s fundamental solutions, 
Rudnicki was the first to derive the point force and fluid point source solutions for 



400  Analytic Methods in Geomechanics  

 

poroelastic full space. He is recognized as a dedicated teacher. He received the 
ASCE Biot Medal in 2006 and the ASME Drucker Medal in 2011. 
 
Schiffman, R.L. (1923�1997) was an American geotechnical engineer who 
proposed the Schiffman Fungaroli displacement function for solving the three-
dimensional Biot theory. He was probably influenced by the stimulating lectures of 
Mindlin while a student at Colombia University. He also made contributions to 
finite strain application to consolidation problems, tailing dams, sedimentation, 
waste disposal, viscoelasticity application to secondary consolidation, numerical 
analysis in geomechanics, and offshore engineering problems. 
 
Seed, H.B. (1922�1989) was a British-born American civil engineer. He made 
major contributions to geotechnical earthquake engineering, and is recognized as 
the father of this discipline. He worked on seismic site responses, potential of 
liquefaction, earthquake-resistant design of earth dams, and soil-pile interactions. 
He supervised 50 Ph.D. students and published over 300 papers and reports. He 
was a member of the National Academy of Sciences (USA) and was awarded the 
National Medal of Science by President Reagan. He is remembered as a generous, 
compassionate, and witty scholar and educator with incisive insights (NAE, 
1992a).  
 
Segel, L.A. (1932�2005) was an American applied mathematician, who made 
significant contributions to mathematical biology and hydrodynamics. His Ph.D. 
advisor at MIT was C.C. Lin, who was the Timoshenko Medal recipient in 1975. 
He studied nonlinear convection of fluid heated from below (Rayleigh Benard 
convection), and had explained the spontaneous appearance of rolling pattern. The 
amplitude equation for this phenomenon is now known as Newell Whitehead
Segel equation. The Society of Mathematical Biology established the Lee Segel 
Prize in his honor. His classic book Mathematics Applied to Continuum Mechanics 
has been referenced in this book. 
  
Sternberg, E. (1917�1988) was an Austrian-born American mechanician. He 
made major contributions to applied mechanics, worked on stress concentrations 
around holes and cavities, static and dynamic thermoelasticty, viscoelasticity, 
finite deformation effect on stress singularities, spheres under diametral point 
loads, and completeness of general solutions for three-dimensional elasticity. 
Sternberg was a member of the National Academy of Engineering and the National 
Academy of Sciences (USA). When he accepted the Timoshenko Medal in 1985, 
he said “As you know, medals:much like arthritis:are a common symptom of 
advancing years” (NAE, 1992b). He was described as humble, charming, and full 
of humor and warmth. He was beloved by his students and colleagues. 
 
Stokes, G.G. (1819�1903) was an Irish mathematician and physicist who made 
fundamental contributions to fluid dynamics. The most general governing 
equations for fluid dynamics are called the Navier Stokes equations. Stokes 
described the phenomenon of fluorescence in 1852. His Stokes law for a sphere 
settling in a fluid also bears his name. He was the first to explain the fundamentals 
of spectroscopy. When Kirchhoff published his work on spectroscopy, Stokes 
modestly disclaimed “any part of Kirchhoff's admirable discovery.” However, the 



 Selected Biographies   401 

 

Stokes theorem discussed in Chapter 1 was in fact discovered by Lord Kelvin and 
communicated to Stokes in 1850, and Stokes set the theorem as a question for the 
1854 Smith’s prize exam, which led to the result bearing his name. Therefore, 
some mathematicians called it the Kelvin-Stokes theorem. Stokes served as 
president of the Royal Society. 
 
Stoneley, R. (1894�1976) was a British mathematician, geologist, seismologist, 
and geophysicist. He was a fellow of the Royal Society and the president of the 
International Seismological Association. Stoneley developed a passion for 
chemistry at the age of 12, and obtained a chemistry scholarship at Cambridge. He 
then moved to mathematics under the influence of his mathematics professors. One 
of his first papers was on the interface wave trapped between two half-spaces, and 
this wave is now known as the Stoneley wave. He was interested in music and an 
amateur pianist (Jeffrey, 1977).  
 
Timoshenko, S.P. (1878�1972) was a Ukrainian-born American engineer and 
elastician who is considered the modern father of engineering mechanics. His 
books on elasticity, elastic stability, plate and shells, and strength of materials were 
adopted as textbook worldwide. His textbooks have been published in 36 
languages. He made significant contributions to buckling, stability, beam 
deflection, Rayleigh method, railway contacts, and plate and shells. In 1957, the 
ASME established the Timoshenko Medal in his honor, and he was the first 
recipient. Some consider the Timoshenko Medal as the equivalent of the Noble 
Prize in applied mechanics. 
  
Vardoulakis, I. (1949�2009) was a Greek scientist who contributed to the 
modeling of geomaterials, geohazards, and geotechnical processes. He was one of 
the pioneers of the bifurcation theory of geomechanics, and his book Bifurcation 
Analysis in Geomechanics became the standard textbook for such analysis. He also 
made constitutive modeling of shear bands and worked extensively in 
experimental geomechanics. 
 
Verruijt, A. (1940�) is a Dutch geotechnical engineer who extended McNamee-
Gibson and Schiffman Fungaroli displacement functions to allow for fluid 
compressibility. These functions are called the McNamee Gibson Verruijt and 
the Schiffman Fungaroli Verruijt displacement functions in this book. Many 
wonderful teaching tools for soil mechanics can be found on his website: 
http://geo.verruijt.net/. 
 
Voigt, W. (1850�1919) was a German physicist who made contributions to 
thermodynamics, crystal physics, and electro-optics. The current usage of the term 
“tensor” was introduced by him. He demonstrated that isotropic solids must be 
described by two constants and eneral anisotropic solids by 21 constants. One of 
the mechanical models of viscoelasticity discussed in Chapter 7 also bears his 
name. He also formulated a framework of Voigt transformation (which is the 
coordinate transformation between a rest reference frame and a moving reference 
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frame) which is similar to the Lorentz transformation. Both transformations 
formed the basis for the theory of relativity.  
 
Volterra, V. (1860�1940) was an Italian mathematician who contributed to 
functional theory, nonlinear integro-differential equations, biological and 
population growth, and dislocation theory. Volterra integral equations were named 
after him. His contribution to dislocation was introduced in Chapter 2. During the 
World War I, he was involved in designing armaments, and he was also the first to 
propose the use of helium to replace hydrogen in airships. 
 
Westergaard, H.M. (1888�1950) was a Danish-born American mechanician, 
whose Westergaard stress function was a standard tool in obtaining the stress 
intensity factor in 2-D crack analysis. He also made contributions to plate bending, 
concrete pavement analysis, structural buckling, and seismic dam analysis 
(Newmark, 1974). Together with Casagrande, Westergaard was in charge of the 
seismic resistance and atomic-bond resistance of the Panama Canal in 1947. In 
1938, Westergaard extended the Bousinesq half-space solution to a half-space 
being laterally constrained, simulating a half-space of alternative layers of stiff and 
soft materials. This solution has been widely adopted in foundation engineering 
manuals.  
 
Wong, T.F. (1952�) is a Macau-born American applied mathematician, 
mechanician, and geophysicist who has made significant contributions to both 
experimental and theoretical geomechanics, seismology, earthquake mechanics, 
fluid flow in rocks, micromechanics and grain crushing. Wong obtained his 
undergraduate degree from Brown University, his master’s degree in applied 
mathematics from Harvard University, and his Ph.D. in Geophysics from 
Massachusetts Institute of Technology (MIT). His advisors were B. Budiansky at 
Harvard and Bill Brace at MIT. With this diversified training, he is probably the 
most renowned geomechanician in the world, excelling in both experiments and 
theories. He received the Basic Research Award from the U.S. National 
Committee for Rock Mechanics in 1986, and the Louis Néel Medal from the 
European Geosciences Union in 2010 for his outstanding contributions to rock 
mechanics.  
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