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PLASTICITY AND GEOMECHANICS

Plasticity theory is widely used to describe the behaviour of soil and rock in
many engineering situations. Plasticity and Geomechanics presents a concise
introduction to the general subject of plasticity with a particular emphasis on
applications in geomechanics. Metal plasticity is described and elementary
theories are discussed before attention is focused specifically on geomaterials.
The greater part of the book is devoted to the classical aspects of plasticity,
particularly the use of upper and lower bound theorems and slip line theory.
Critical state theory is introduced and Cam Clay is described in detail.

Derived from the authors’ own lecture notes, this book is written with students
firmly in mind; the main body of the work is concerned with applications, while
the more theoretical aspects such as proofs of theorems are placed in appendices.
Excessive use of mathematical methods is avoided in the main body of the text
and, where possible, physical interpretations are given for important concepts.
In this way the authors present a clear introduction to the complex ideas and
concepts of plasticity as well as demonstrating how this developing subject is
of critical importance to geomechanics and geotechnical engineering.

Although entirely self-contained, this book constitutes a companion volume
to the acclaimed Elasticity and Geomechanics by the same authors, and will
appeal to students and researchers in the fields of civil, mechanical, material
and geological engineering. It may be used as a text for senior-level under-
graduate and graduate courses in soil mechanics, foundation engineering and
geomechanics.

r. o. davis is Professor of Civil Engineering at the University of Canterbury.
a. p. s. selvadurai is Professor of Civil Engineering and Applied Mechan-
ics at McGill University. Both authors are dedicated educators and researchers
in the fields of geotechnical engineering and geomechanics with a combined
experience exceeding 50 years. They are joint authors of the well-received Elas-
ticity and Geomechanics published in 1996 by Cambridge University Press, and
Professor Selvadurai is also the author of the two-volume monograph Partial
Differential Equations in Mechanics (2000).
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Preface

Plasticity and Geomechanics follows on from our earlier book Elasticity and
Geomechanics. Like the earlier book, this one is very much a textbook rather
than a treatise or reference book. It has grown from lecture notes and is written
with students firmly in mind. Hopefully it will provide an easy, accessible intro-
duction to a subject which, while being widely used in engineering practice, is
often difficult for students to assimilate. The plasticity of metals is itself a sub-
ject of some complexity. When, instead of metals, the material we are concerned
with is either soil or rock, the level of complexity is increased significantly. We
have attempted here to untangle the ideas and concepts, and to lay out as clear
a picture as possible of a subject area that is still in a state of development and
discovery.

The book is organised as follows. Chapters 1 and 2 review some of the basic
elements of stress and strain as well as the fundamentals of elasticity. Chapter 2
also presents a general discussion of inelastic response in soil, emphasising the
defining characteristics of yield under isotropic compression and dilatancy as
a result of shearing. Chapters 3 and 4 set out the fundamental ideas of yield
surface and flow rules. The geometry of principal stress space is developed in
detail. Yield loci for metals, for Coulomb materials and for some modifications
of Coulomb materials are all presented. The Cam Clay and Modified Cam Clay
surfaces are summarised. Chapter 4 develops the basic ideas of normality and
the associated flow rule as well as non-associated flow. The concepts of perfect
plasticity and work hardening are introduced and a complete stress–strain rela-
tionship for a general material with non-associated flow is derived. Whenever
possible, important concepts such as normality are demonstrated by simple ex-
amples. A more complex but practically important example involving cavity
expansion is also considered. Chapter 5 introduces the collapse load theorems
and limit analysis. This is the longest chapter. In it we attempt to provide a clear
introduction to what might be termed the art of finding useful stress (lower

ix



x Preface

bound) and deformation (upper bound) fields for practical problems. Chapter 6
presents an introduction to slip line fields. In the interest of simplicity, the topic
is developed initially for purely cohesive materials. Frictional materials are
introduced as an embellishment of the purely cohesive case and complicated
mathematics is avoided wherever possible. Finally, in Chapter 7, work harden-
ing and critical state soil mechanics are described. As in the preceding chapters
we try to avoid excessive detail, but endeavour to demonstrate important con-
cepts by appealing to examples. The fundamentals of critical state theory are
developed using Cam Clay together with a simple example problem. A micro-
mechanical theory for normal or virgin compression of an idealised soil is also
presented in this chapter. Throughout the book our choice of material is guided
by a belief in the importance of simplicity and a desire to make fundamental
ideas accessible to students.

Each chapter is followed by a short reading list detailing original sources for
the material presented, complemented by references to additional reading of a
more general nature. Also, following each chapter is a selection of problems
that may be used to help develop the reader’s understanding and skill.

The book concludes with a collection of appendices. These expand or elabo-
rate on topics that do not fit easily with the flow of writing in the main text. Most
aspects of a more mathematical nature are placed here. In particular, proofs as-
sociated with the important theorems of limit analysis as well as a complete
development of Mohr’s circle, virtual work and uniqueness of solutions are
given. The appendices provide rigour for those readers who wish it without
interrupting the more physical development in the chapters.

The bulk of the book is devoted to perfectly plastic materials. This may
seem odd in light of the current interest in critical state theories for soils, but
in our view it is essential knowledge. A firm understanding of basic principles
is the foundation for expertise in any subject, and plasticity is no exception.
We share in a growing concern that the demands on engineering curricula in
current times are such that many students have had little opportunity to gain an
adequate background in what might be termed the more ‘classical’ aspects of
plasticity theory. This occurs because of two recent developments. The first is
critical state soil mechanics. Critical state theory has become the new paradigm
for the analysis of geotechnical problems. This is quite proper but, as with
any rapidly developing paradigm, there is a tendency for a gold-rush attitude
to infiltrate and subvert the normal course of study. The second development
is the advent of computer methods in engineering. The widespread availability
of powerful, inexpensive computers together with commercial software has
revolutionised all aspects of engineering design over the last 20 years. This
all too often creates a culture of uninspired thought, sometimes lacking in
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judgement. Numerical solutions now proliferate where once thoughtful, critical
analysis was the ‘only game in town’. Of course, there is no doubt that both
critical state soil mechanics and numerical solutions are positive developments,
but, to use them safely and efficiently, these advances must be underpinned
by a well-developed understanding of both basic plasticity and elements of
continuum mechanics. Our purpose here is to provide an introduction to the
basic concepts in as painless a way as possible.

There are of course many excellent books on the theory of plasticity. For
beginning students, Calladine’s monograph Engineering Plasticity (full cita-
tion given at the end of Chapter 4) is a superb introduction to aspects of metal
plasticity. Nadai’s treatise, Theory of Flow and Fracture in Solids (cited in
Chapter 6), is not only a reference work of great depth and scope but is also
notable for taking pains to develop a variety of ideas in the context of mod-
ern soil mechanics, together with strong links to continuum mechanics. In the
realm of geotechnical literature, nearly all modern textbooks contain varying
amounts of material related to both the theory and the application of plasticity.
A number of books more or less devoted to critical state theory have appeared
since the seminal work Critical State Soil Mechanics by Schofield and Wroth
(cited in Chapter 3). Our book in no way competes with any of these. Indeed,
the exact opposite is true. We delve into critical state theory but only in the
most elementary way and only after we have dealt with the classical topics
of limit analysis and slip line theory. We merely wish to expose the reader to
the potential of critical state analysis in the hope of encouraging further study.
Among the more specialised geotechnical literature, two books deserve special
mention. Chen’s Limit Analysis and Soil Plasticity (cited in Chapter 5) contains
a wealth of solutions in limit analysis covering many topics of practical interest
to geotechnical engineering, and Sokolovski’s Statics of Soil Media (cited in
Chapter 6) presents the most thorough development of slip line analysis. Both
books are dedicated to specific aspects of plasticity and could be regarded as
required reading for research students. Neither, however, would be especially
suitable as an introductory text. Our aim in this book is to fill the gap between
elementary soil mechanics and more specialised books such as those by Chen
or Sokolovski, as well as the books devoted to critical state theory.

Finally, there are several individuals and organisations to whom we express
thanks for their assistance in preparing this book. We are indebted to the Institut
A für Mechanik, University of Stuttgart, Germany and Ecole National des Ponts
et Chaussées in Paris, where parts of the work were researched and written. One
of us (APSS) thanks the University of Canterbury for the award of a Visiting
Erskine Fellowship and the Canadian Council for the Arts for the award of
a Killam Research Fellowship. The libraries of Cambridge University were a
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great help in obtaining original references, both early and modern. Professor
Malcolm Bolton of Cambridge University first showed us how simply the Cam
Clay model can be developed in the context of simple shearing. His development
is reiterated in Chapter 7. Dr Glenn McDowell of the University of Nottingham
and Professor Jim Hill of the University of Wollongong reviewed parts of the
manuscript and made many constructive comments. Much of the writing was
done in a Hertfordshire cottage belonging to Mr and Mrs K.A. Maclean. Their
hospitality is acknowledged with gratitude. The friendship and encouragement
of Mr Norman Travis is also acknowledged with special thanks. Finally, we
thank Anne and Sally for their patience and understanding throughout the trials
and tribulations of lost files, crashing hard disks, jammed printers, headaches,
backaches and all the other joys of writing, and Sally is specially thanked for
compiling the index for this volume.

R. O. Davis A. P. S. Selvadurai
Christchurch Montreal
June 2002 June 2002



1
Stress and strain

1.1 Introduction

How a material responds to load is an everyday concern for civil engineers. As
an example we can consider a beam that forms some part of a structure. When
loads are applied to the structure the beam experiences deflections. If the loads
are continuously increased the beam will experience progressively increasing
deflections and ultimately the beam will fail. If the applied loads are small
in comparison with the load at failure then the response of the beam may be
proportional, i.e. a small change in load will result in a correspondingly small
change in deflection. This proportional behaviour will not continue if the load
approaches the failure value. At that point a small increase in load will result
in a very large increase in deflection. We say the beam has failed. The mode of
failure will depend on the material from which the beam is made. A steel beam
will bend continuously and the steel itself will appear to flow much like a highly
viscous material. A concrete beam will experience cracking at critical locations
as the brittle cement paste fractures. Flow and fracture are the two failure modes
we find in all materials of interest in civil engineering. Generally speaking, the
job of the civil engineer is threefold: first to calculate the expected deflection
of the beam when the loads are small; second to estimate the critical load at
which failure is incipient; and third to predict how the beam may respond under
failure conditions.

Geotechnical engineers and engineering geologists are mainly interested in
the behaviour of soils and rocks. They are often confronted by each of the
three tasks mentioned above. Most problems will involve either foundations,
retaining walls or slopes. The loads will usually involve the weight of structures
that must be supported as well as the weight of the soil or rock itself. Failure
may occur by flow or fracture depending on the soil or rock properties. The
geo-engineer will generally be interested in the deformations that may occur
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2 Stress and strain

when the loads are small, the critical load that will bring about failure and what
happens if failure does occur.

When the loads are smaller than a critical value, the geotechnical engineer
will often represent the soil or rock as an elastic material. This is an approxima-
tion but it can be used effectively to provide answers to the first question: what
deformations will occur when loads are small? The approximation of soil as
a linear elastic material has been explored in a number of textbooks including
our own – Elasticity and Geomechanics.∗ For convenience we will refer to this
book as EG. In EG we outlined the fundamentals of the classical or linear
theory of elasticity and we investigated some simple applications useful in
geotechnical engineering. The book you now hold is meant to be a logical
progression from EG. Plasticity and Geomechanics carries the reader forward
into the area of failure and flow. We will outline the mathematical theory of
plasticity and consider some simple questions concerning collapse loads, post-
failure deformations and why soils behave as they do when stresses become
too severe. Like EG this book is not meant to be a treatise. It will hopefully
provide a concise introduction to the fundamentals of the theory of plastic-
ity and will provide some relatively simple applications that are relevant in
geo-engineering.

As a matter of necessity some of the material from EG must be repeated
here in order that this book may be self-contained. In the present chapter we
will cover some fundamental ideas concerning deformation, strain and stress,
together with the concept of equilibrium. Chapter 2 then outlines basic elastic
behaviour and discusses aspects of inelastic behaviour in respect to soil and
rock. The nomenclature used here is similar to that adopted in EG. Readers
who feel they have a firm grasp of stress, strain and elasticity, especially those
who may have spent some time with EG, may wish to omit this chapter, and
parts of the next, and move more quickly to Chapter 3. In Chapter 3 the concept
of yielding is introduced. This is the state at which the failure process is about
to commence. In Chapter 4 we investigate the process of plastic flow. That is,
we try to determine the rules that govern deformations occurring once yield has
taken place. Chapter 5 considers two important theorems that provide bounds
on the behaviour of a plastically deforming material. These theorems may be
extremely useful in approximating the response of geotechnical materials in
realistic loading situations without necessitating any elaborate mathematics.
Chapter 6 briefly touches on the mathematics of finding exact solutions for
a limited class of problems and, finally, Chapter 7 introduces certain modern
developments in the use of plasticity specifically for soils. The main body of

∗ Complete references to cited works are given at the end of the chapter where they first appear.
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the book is followed by appendices that offer a more rigourous development of
several important aspects.

1.2 Soil mechanics and continuum mechanics

Even the most casual inspection of any real soil shows clearly the random,
particulate, disordered character we associate with natural materials of geologic
origin. The soil will be a mixture of particles of varying mineral (and possibly
organic) content, with the pore space between particles being occupied by
either water, or air, or both. There are many important virtues associated with
this aspect of a soil, not least its use as an agricultural medium; but, when we
approach soil in an engineering context, it will often be desirable to overlook its
particulate character. Modern theories that model particulate behaviour directly
do exist and we will discuss one in Chapter 7, but in nearly all engineering
applications we idealise soil as a continuum: a body that may be subdivided
indefinitely without altering its character.

The treatment of soil as a continuum has its roots in the eighteenth century
when interest in geotechnical engineering began in earnest. Charles Augustus
Coulomb, one of the founding fathers of soil mechanics, clearly implied the
continuum description of soil for engineering purposes in 1773. Since then
nearly all engineering theories of soil behaviour of practical interest have de-
pended on the continuum assumption. This is true of nearly all the soil plasticity
theories we discuss in this book.

Relying on the continuum assumption, we can attribute familiar properties
to all points in a soil body. For example, we can associate with any point x in
the body a mass density ρ. In continuum mechanics we define ρ as the limiting
ratio of an elemental mass �M and volume �V

ρ = lim
�V →0

�M

�V
(1.1)

Of course we realise that were we to shrink the elemental volume �V to zero
in a real soil we would find a highly variable result depending on whether the
point coincides with the position occupied by a particle, or by water, or by air.
Thus we interpret the density in (1.1) as a representative average value, as if
the volume remains finite and of sufficient size to capture the salient qualities
of the soil as a whole in the region of our point. Similar notions apply to other
quantities of engineering interest. For example, there will be forces acting in
the interior of the soil mass. In reality they will be unwieldy combinations of
interparticle contact forces and hydrostatic forces. We will consider appropriate
average forces and permit them to be supported by continuous surfaces. We can
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then consider the ratio of an elemental force on an elemental area and define
stresses within the soil. It is elementary concepts such as these that we wish to
elaborate in this chapter.

Although the concept of a continuum is elementary, it represents a powerful
artifice, which enables the mathematical treatment of physical and mechanical
phenomena in materials with complex internal structure such as soils. It allows
us to take advantage of many mathematical tools in formulating theories of
material behaviour for practical engineering applications.

1.3 Sign conventions

Before launching into our discussion of stress and strain, we will first consider
the question of how signs for both quantities will be determined. In nearly all
aspects of solid mechanics, tension is assumed to be positive. This includes
both tensile stress and tensile strain. In geomechanics, on the other hand, most
practitioners prefer to make compression positive, or at least to have com-
pressive stress positive. This reflects the fact that particulate materials derive
strength from confinement and confinement results from compressive stress.
We will adopt the convention of compression being positive throughout this
textbook.

Naturally, if compressive stress is considered to be positive then so must be
compressive strain, and that requirement introduces an awkward aspect to the
mathematical development of our subject. We can see the reason for this by
considering a simple tension test as shown in Figure 1.1. In the figure a bar of
some material is stretched by tensile forces T applied at each end. The axis of
the bar is aligned with the coordinate axis x , and the end of the bar at the origin
is fixed so that it cannot move. If the bar initially has length L , then application
of the force T will be expected to cause an elongation of, say, �. Let the
displacement of the bar be a function of x defined by u = u(x) = �(x/L).
Physically the displacement tells us how far the particle initially located at x
has moved, due to the force T . The extensional strain in the bar may be written
as ε = du/dx = �/L . If we were to adopt the solid mechanics convention
of tension being positive, then the force T would be positive and so would be

x
T

T

y

z

Figure 1.1. Prismatic bar in simple tension.
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the extensional strain. Obviously all is well. On the other hand, if we wish to
use the geomechanics convention that compression is positive, then the tensile
force T is negative; but the strain, defined by ε = du/dx remains positive. We
could simply prescribe ε as a negative quantity, but that would not provide a
general description for all situations. Instead we need some general method to
correctly produce the appropriate sign for the strain.

There are two possible solutions to our problem. One approach is to redefine
the extensional strain as ε = −du/dx . This will have the desired effect of mak-
ing compressive strain always positive, but will have the undesirable effect of
introducing negative signs in a number of equations where they may not be ex-
pected by the unwary and hence may cause confusion. The second solution is to
agree from the outset that positive displacements will always act in the negative
coordinate direction. If we adopt this convention, then the displacement of the
bar is given by u = u(x) = −�(x/L). This second solution is the one we will
adopt throughout the book. As a result nearly all the familiar equations of solid
mechanics can be imported directly into our geomechanics context without any
surprising negative signs. Moreover, there will be few opportunities where we
must refer directly to the sign of the displacements, and so the convention of a
positive displacement in the negative coordinate direction will mostly remain in
the background. Specific comments will be made wherever we feel confusion
might arise.

1.4 Deformation and strain

We begin by considering a continuum body with some generic shape similar
to that shown in Figure 1.2. The body is placed in a reference system that
we take to be a simple three-dimensional, rectangular Cartesian coordinate

deformation

Reference
   configuration

Deformed
    configuration

z

y

x

Figure 1.2. Reference and deformed configurations of body.
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frame as shown in the figure. A deformation of the body results in it being moved
from its original reference configuration to a new deformed configuration.

All deformations of a continuum are composed of two distinct parts. First
there are rigid motions. These are deformations for which the shape of the body
is not changed in any way. Two categories of rigid motion are possible, rigid
translation and rigid rotation. A rigid translation simply moves the body from
one location in space to another without changing its attitude in relation to the
coordinate directions. A rigid rotation changes the attitude of the body but not
its position.

The second part of our deformation involves all the changes of shape of the
body. It may be stretched, or twisted, or inflated or compressed. These sorts of
deformations result in straining. Strains are usually the most interesting aspect
of a deformation.

One way to characterise any deformation is to assign a displacement vector
to every point in the body. The displacement vector joins the position of a point
in the reference configuration to its position in the deformed configuration. We
represent the vector by

u = u(x, t) (1.2)

where x denotes the position of any point within the body and t denotes time. A
typical displacement vector is shown in Figure 1.3. Since there is a displacement
vector associated with every point in the body, we say there is a displacement
vector field covering the body. In our x, y, z coordinate frame, u has components
denoted by ux , uy, uz . Each component is, in general, a function of position

z

y

x

The displacement vector u
links the position of a point
in the reference configuration
to its position in the
deformed configuration

Figure 1.3. The displacement vector.
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and time, and, according to our sign convention, components acting in negative
coordinate directions will be considered to be positive.

If we know the displacement vector field, then we have complete knowledge
of the deformation. Of course, part of the displacement field may be involved
with rigid motions while the remainder results from straining. Our first task is
to separate the two.

We begin by taking spatial derivatives of the components of the displacement
vector. We arrange the derivatives into a 3 × 3 matrix called the displacement
gradient matrix, ∇u.∗ If we are working in a three-dimensional rectangular
Cartesian coordinate system we can represent ∇u in an array as follows:

∇u =




∂ux

∂x

∂ux

∂y

∂ux

∂z
∂uy

∂x

∂uy

∂y

∂uy

∂z
∂uz

∂x

∂uz

∂y

∂uz

∂z




(1.3)

Note the use of partial derivatives. Note also that the derivatives of u will not
be affected by rigid translations. This might suggest we could use (1.3) as a
measure of strain. But rigid rotations will give rise to non-zero derivatives of
u, so we need to introduce one more refinement. We use the symmetric part of
∇u. Let

ε = 1

2
[∇u + (∇u)T ] (1.4)

We call ε the strain matrix. Note that the superscript T indicates the transpose
of the displacement gradient matrix. Also note that ε is a symmetric matrix. As
its name implies, ε represents the straining that occurs during our deformation.
Just as is the case with the displacement vector, ε is also a function of both
position x and time t .

We write the components of ε as follows:

ε =

 εxx εxy εxz

εyx εyy εyz

εzx εzy εzz


 (1.5)

The diagonal components of ε are referred to as extensional strains,

εxx = ∂ux

∂x
, εyy = ∂uy

∂y
, εzz = ∂uz

∂z
(1.6)

∗ We use the symbol ∇ to denote the del operator ∂
∂x î + ∂

∂y ĵ + ∂
∂z k̂, where î , ĵ , k̂ denote the triad

of unit base vectors.
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z

y

x

90° θ

Two material filaments in
reference configuration

Same filaments in 
deformed configuration

Figure 1.4. Physical meaning of shearing strain.

Each of these represents the change in length per unit length of a material
filament aligned in the appropriate coordinate direction.

The off-diagonal components of ε are called shear strains

εxy = εyx = 1

2

(
∂ux

∂y
+ ∂uy

∂x

)

εyz = εzy = 1

2

(
∂uy

∂z
+ ∂uz

∂y

)

εzx = εxz = 1

2

(
∂uz

∂x
+ ∂ux

∂z

)
(1.7)

These strains represent one-half the increase∗ in the initially right angle be-
tween two material filaments aligned with the appropriate coordinate directions
in the reference configuration. For example, consider two filaments aligned with
the x- and y-directions in the reference configuration as shown in Figure 1.4.
After the deformation the attitude of the filaments may have changed and the
angle between them is now θ . Then 2εxy = 2εyx = θ − π/2. The presence of
the factor of 1

2 in (1.7) is important to ensure that the strain matrix will give the
correct measure of straining in different coordinate systems. Often the change
in an initially right angle (rather than one-half the change) is referred to as the
engineering shear strain. It is usually denoted by the Greek letter gamma, γ .
Obviously if we know one of the shear strains defined in (1.7), then we can
determine the corresponding engineering shear strain.

∗ In solid mechanics the shear strain represents the decrease in the right angle. We have the increase
because of the assumption that compression is positive and our sign convention for displacements.
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An important aspect of the definition of the strain matrix in (1.4) is the require-
ment that the displacement derivatives remain small during the deformation.
Sometimes the matrix ε is referred to as the small strain matrix. The name is
meant to imply that the components of ε are only a correct measure of the ac-
tual straining so long as the components of ∇u are much smaller in magnitude
than 1. More complex definitions of strain are required in the case where de-
formation gradient components have large magnitudes. If the components of
∇u are �1, then products of the components can be ignored and the small-
strain definition (1.4) results. There are substantial advantages associated with
the small-strain matrix ε because it is a linear function of the displacement
derivatives, while the large-strain measures are not. Because of this fact we
may find that ε is used in some situations where it is not strictly applicable.
Simple solutions are often good solutions, even if they are technically only
approximations, and in geotechnical engineering the virtue of simplicity may
justify a considerable loss of rigour.

Arising from the small-strain approximation is another measure of strain,
the volumetric strain, e. It represents the change in volume per unit volume of
the material in the reference configuration. It is defined as the sum of the three
extensional strains:

e = εxx + εyy + εzz = ∇ · u (1.8)

Here ∇ · u represents the divergence of the vector u.∗ There are a number of
instances where the sum of the diagonal terms of a matrix gives a useful result.
Because of this we define an operator called the trace, abbreviated as tr, which
gives the sum. Thus (1.8) could also be written as e = tr(ε).

In classical plasticity theory where metals are the primary material of interest,
it is usual to assume that the material is incompressible and hence e is always
zero. This is often not the case for soils, at least when they are permitted to drain.
In undrained situations a fully saturated soil may be nearly incompressible, but
if drainage can occur volume change is likely. In keeping with our definition
of extensional strain, compressive volumetric strain will be considered to be
positive.

Finally, note that all of the development above is based on the assumption
that we are using a rectangular or Cartesian coordinate frame. At times it may
be more convenient to use cylindrical or spherical coordinates. In that case there
will be some subtle differences in many of the results given thus far. Appendix A

∗ It is the scalar quantity defined by ∇ · u = ( ∂
∂x î + ∂

∂y î + ∂
∂z ĵ) · (ux î + uy ĵ + uz k̂) = ∂ux

∂x + ∂uy
∂y

+ ∂uz
∂z .
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outlines how one moves from rectangular to cylindrical or spherical coordinates
and summarises the main results in non-Cartesian coordinate frames.

1.5 Strain compatibility

An important concept with regard to deformation and strain is the idea of strain
compatibility. In simplest terms this is the physically reasonable requirement
that when an intact body deforms, it does so without the development of gaps
or overlaps. To be a little more precise, consider a point in the reference config-
uration, and construct some small neighbourhood of surrounding points. If we
examine that same point in the deformed configuration, then we would hope
to find the same neighbouring points surrounding it and, moreover, we would
expect them to have similar relationships to the central point. That is, if neigh-
bouring points α and β are arranged in the reference configuration so that α is
closer and β more distant from the central point, then that arrangement should
prevail in the deformed configuration as well.

Another way to look at this concept is to consider the definition of the strain
matrix itself (1.4). We see that six independent components of strain are ob-
tained from three independent components of displacement. If the displacement
vector field is fully specified, then there is clearly no difficulty in determining the
strains, but what if the problem is turned around? Suppose the six components
of strain are specified. Is it then possible to integrate (1.4) to determine the three
displacements uniquely? In general it is not. Moving from strains to displace-
ments we find that the problem is over-determined, i.e. we have more equations
than unknowns.

The great French mathematician Barré de Saint-Venant solved the general
problem of strain compatibility in 1860. He showed that the strain components
must satisfy a set of six compatibility equations shown in (1.9). A derivation
of these equations may be found in Appendix A of EG. The derivation shows
how equations (1.9) given below ensure that (1.4) can be integrated to yield
single-valued and continuous displacements:

∂2εxx

∂y2
+ ∂2εyy

∂x2
= 2

∂2εxy

∂x∂y

∂2εyy

∂z2
+ ∂2εzz

∂y2
= 2

∂2εyz

∂y∂z

∂2εzz

∂x2
+ ∂2εxx

∂z2
= 2

∂2εxz

∂x∂z
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∂2εxx

∂y∂z
= −∂2εyz

∂x2
+ ∂2εzx

∂x∂y
+ ∂2εxy

∂x∂z
(1.9)

∂2εyy

∂z∂x
= −∂2εzx

∂y2
+ ∂2εxy

∂y∂z
+ ∂2εyz

∂y∂x

∂2εzz

∂x∂y
= −∂2εxy

∂z2
+ ∂2εyz

∂z∂x
+ ∂2εzx

∂z∂y

Finally, it is perhaps worth noting that the compatibility conditions impose
a kinematic constraint on the strains in a continuum where the mechanical
behaviour is as yet unspecified.

1.6 Forces and tractions

We approach the concept of stress through considering the forces that act on an
exterior boundary or inside the body. We are aware that there are two distinct
types of forces: contact forces and body forces. Body forces are forces caused
by outside influences such as gravity or magnetism. They are associated with
the volume or mass of the body and they are fully specified at the outset of
any problem. Contact forces are associated with surfaces, either surfaces inside
the body or segments of the exterior bounding surface of the body. Contact
forces result from the action of the body on itself, such as the tension that exists
inside a stretched rubber band or from specified boundary conditions such as
an applied load on the upper surface of a beam.

For the time being we will concentrate our attention on contact forces. Every
contact force is associated with a surface, so we consider a small element of
surface d A embedded somewhere inside our continuum body. If we magnify
the element as shown in Figure 1.5 then we can see its associated contact force
as a vector d F. Presumably d F results from the action of the body on itself
since d A lies in the interior of the body. We then define the surface traction
vector, T, as the limiting value of the ratio of force and area.

T = lim
d A→0

d F
d A

(1.10)

We are aware of course that in the context of a real soil the limiting process
must be treated with considerable care. We are concerned with a continuum, or
at least a continuum approximation of the real material. In a real soil we would
not wish to shrink d A to zero area, rather to terminate the limiting process at
some point giving a reasonable representation of the soil structure.
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x

y

z

n̂

dF 

Surface element dA

Figure 1.5. Traction vector acting on a surface element.

Note that the traction vector T is directly associated with the particular
surface element we have chosen. If we choose a different surface element at
the same point in the body, we will generally find a different traction vector.
Therefore we see that the orientation of the surface element plays an impor-
tant role. Since there are infinitely many possible orientations for our surface,
there are infinitely many traction vectors operating at any given point in the
body. This fact raises significant problems with regard to the description of
stress. A number of eminent researchers in the eighteenth century were unsure
of how stress might be easily characterised in all but simple problems. As it
turns out, the problem is not difficult. We will only need to know tractions on
three surfaces in order to fully prescribe the traction on any other surface.

1.7 The stress matrix

In 1823 the French mathematician Augustin Cauchy showed how we may
solve the problem of determining the traction vector for a given surface. First
we need to identify the orientation of the surface we are interested in. This is
accomplished by the construction of a unit vector n̂ normal to the surface as
shown in Figure 1.5. Then Cauchy showed that the product of a 3 × 3 square
matrix σT with the vector n̂ gives the traction T acting on the surface,

T = σT n̂ (1.11)

This equation is derived in detail in Appendix C of EG. In equation (1.11) the
superscript T indicates the transpose of the matrix. The matrix σ is called the
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x y 

z

σxx

σxy

σxz

Figure 1.6. Components of the stress matrix acting on a surface perpendicular to the
x-direction.

stress matrix. Its component form looks like this

σ =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


 (1.12)

Each of the components, σxx , σxy, etc. is a component of a particular surface
traction vector. For example, the components of the first row of σ are precisely
the components of the traction vector that acts on a surface which is perpen-
dicular to the x-axis as shown in Figure 1.6. This follows immediately if we
note that the unit normal vector to the surface is n̂ = [1, 0, 0] T . Similarly,
the second and third rows of the σ matrix are composed of, respectively, the
components of traction vectors acting on surfaces perpendicular to the y- and
z-axes. The subscripts of the stress matrix components identify which compo-
nent of which surface traction is being represented. The xx-component, σxx ,
is the x-component of the traction acting on the surface perpendicular to the
x-direction. Similarly, σxy is the y-component of that same traction. The yz-
component, σyz , is the z-component of the traction acting on the surface per-
pendicular to the y-direction.

Note that in Figure 1.6 the stress matrix components are drawn pointing in
the opposite direction to the coordinate axes. Because of this σxx appears to be
a compressive stress. This is the usual sign convention in geomechanics where
compression is positive.

The diagonal components of σ(σxx , σyy, σzz) are called the normal stress
components, or simply the normal stresses. They act normal to the three sur-
faces perpendicular to the three coordinate directions. The off-diagonal com-
ponents, σxy, σyz, . . . are called the shear stress components, or simply shear
stresses. They act tangential to the three surfaces. Cauchy also showed that, in
the absence of internal couples, the shear stresses must be complementary and
hence the stress matrix is symmetric, i.e. σxy = σyx , σxz = σzx , σzy = σyz .
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Because of this fact, the transpose of σ in (1.11) is not really important. We
choose not to omit it, however, since the understanding of the physical meaning
of the stress components springs directly from the equation.

1.8 Principal stresses

At any point in the body there will always be at least three surfaces on which
the shear stresses σxy, σyz, . . . will vanish. These are the principal surfaces or
principal planes. To see how this comes about note that if there is no shear stress
on a surface the traction vector T must be parallel to the unit normal vector n̂.
Then using (1.11) we see that

T = σT n̂ = α n̂ (1.13)

where α is a scalar multiplier. We can rearrange this result to obtain

(σ − αI) n̂ = 0 (1.14)

where I denotes the identity matrix and we have used the fact that σ is a
symmetric matrix. Equation (1.14) gives three homogeneous linear equations.
We know from linear algebra that there will either be no solutions, infinitely
many solutions or a unique solution for any system of homogeneous linear
equations. The condition for the existence of a unique solution is

det(σ − αI) = 0 (1.15)

So we have an eigenvalue problem. If we expand the determinant in (1.15) we
find the following characteristic equation:

−α3 + I1α
2 − I2α + I3 = 0 (1.16)

where the coefficients I1, I2 and I3 are functions of the stress matrix components
σxx , σxy, . . . . This cubic equation will have three roots (or three eigenvalues)
for the multiplier α. Referring back to (1.13) we see that the roots will be the
physical magnitudes of the traction T on each of the surfaces where there is no
shear stress. We call these the principal stresses and denote them by σ1, σ2 and
σ3. Compression is taken to be positive here as everywhere in our development.

The greatest and least principal stress are called the major principal stress
and minor principal stress, respectively. The remaining stress is called the
intermediate principal stress. In some applications it is convenient to agree to
number the principal stresses so that σ1 is the major principal stress while σ3 is
the minor principal stress. This is a common convention but it may not always
be the preferred option and we will not apply any particular rule to how σ1, σ2
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and σ3 may be related. In some circumstances we may have the conventional
definition of σ1 ≥ σ2 ≥ σ3, but at other times it may be more convenient to
have σ3 ≥ σ2 ≥ σ1, or one of the other four possible permutations of the three
indices.

If we now substitute each of σ1, σ2 or σ3 back in (1.13) to replace α, we
can solve for the corresponding eigenvectors n̂1, n̂2, n̂3. These three vectors
are called the principal directions. They define the three principal surfaces,
i.e. the surfaces on which T and n̂ are parallel and therefore the surfaces that
support no shear. A theorem from linear algebra assures us that the eigenvectors
will be mutually orthogonal, hence the principal surfaces will also be mutually
orthogonal. This can be a particularly useful result. It means that we can always
find some coordinate system, say x ′, y′, z′, such that the coordinate directions are
parallel to the principal directions (or perpendicular to the principal surfaces).
In that coordinate system the stress matrix will have this simple form

σ =

σ1 0 0

0 σ2 0
0 0 σ3


 (1.17)

That is, in this particular coordinate system, surfaces that are perpendicular to
the coordinate axes support no shear. They are the principal surfaces.

Another interesting point arises here. Note that regardless of what coordinate
system we happen to use, the principal stresses are independent entities. The
components of σ at a point will, in general, be different in different coordinate
systems, but the three principal stresses that we determine by finding the roots
of (1.16) will always be the same. They are unique quantities associated with
the particular point of interest in the continuum. We say that the principal
stresses are invariant under a coordinate transformation. Invariants are often
useful quantities owing to their independence from our choice of coordinate
directions. This can be especially useful when it comes to creating descriptions
of how materials behave. Obviously a material cannot know what coordinate
directions we have chosen to use for its description. Therefore it would be
unwise to create a model for the material stress–strain response that depended
on the coordinate axis directions. But if we model the material using invariant
quantities such as principal stresses, then there is no connection between the
material model and the chosen frame of reference.

Of course σ1, σ2 and σ3 are not the only invariant quantities associated with
the stress matrix. It also follows from (1.16) that the three coefficients I1, I2

and I3 must also be invariants. This must be true since, if we were to substitute
one of the invariant principal stresses for the quantity α, the equation would be
satisfied. If the principal stresses do not depend on the choice of coordinates,
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then neither can the coefficients I1, I2 and I3. We call I1, I2 and I3 the principal
stress invariants. They are related to the components of the stress matrix by the
following equations:

I1 = tr(σ)

I2 = 1

2
[(trσ)2 − tr(σ2)] (1.18)

I3 = det(σ)

where we recall that the trace operator tr gives the sum of the diagonal compo-
nents of the matrix. In the event that our coordinate system happened to align
with the principal directions, and the stress matrix had the simple form shown
in (1.17), the above equations would become

I1 = σ1 + σ2 + σ3

I2 = σ1σ2 + σ2σ3 + σ3σ1 (1.19)

I3 = σ1σ2σ3

Of course these equations are always true regardless of the choice of coordinate
system. The sum of two invariant quantities will itself be invariant, as will the
product of two invariants. For that matter any combination of invariants will also
be an invariant. Equation (1.19) is simply the universal relationship between the
principal stresses and the principal stress invariants. Note that the dimensions
of the three principal invariants are [stress], [stress2] and [stress3].

One other invariant quantity that is often defined is the mean stress or pres-
sure, denoted by p. It is equal to one-third of the first invariant, I1/3. Thus
p = (σ1 + σ2 + σ3)/3 = (σxx + σyy + σzz)/3. In the theory of elasticity, ten-
sile stress is commonly taken as positive and the pressure is defined as the
negative of I1/3 so that positive pressure is compressive. We have no need of
that definition since we have made compressive stress positive from the outset.

1.9 Mohr circles

Next, suppose we want to consider the stress state in a body at a specified point.
Let us assume that the components of the stress matrix are known. In that case
(1.11) applies and we can determine the traction T acting on any surface passing
through the point. We could characterise the stress state by simply writing
out the stress matrix, or we could list the principal stresses and the principal
directions. In either case six independent numbers would be required.∗ If we

∗ Why are only six numbers needed to describe the three principal stresses and three principal
directions? See Exercise 1.5.
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Figure 1.7. One of infinitely many surface elements generated by the ŷ-axis.

wished, we could visualise the stress state as a point in a six-dimensional space.
However, there is another way to characterise the stress. We can create a simple
graphical representation called the Mohr stress circle. The Mohr stress circle,
or simply Mohr circle, is so important in relation to the theory of plasticity that
Appendix B is completely devoted to its development. Only the major points
will be described here to ensure that this introductory chapter remains brief.

Again suppose that the components of the stress matrix are known for some
particular point in the body. Then we could solve the eigenvalue problem (1.14)
to find the principal directions n̂1, n̂2, n̂3. These three vectors form the basis for
a coordinate system that we might represent by x̂, ŷ, ẑ as shown in Figure 1.7.
We know that the principal surfaces must be perpendicular to these coordinate
directions. Suppose we now consider a family of surfaces composed of all the
surfaces that are perpendicular to the (x̂, ẑ)-plane. One particular surface is
shown in Figure 1.7. Any other member of the family could be obtained by rotat-
ing that surface about the ŷ-axis. The ŷ-axis is called a generator for the family
of surfaces. We can use (1.11) to ascertain the traction vector T for each surface
of our family. This will give us infinitely many traction vectors, but we won’t
worry about that point for the moment. Each traction vector T will have com-
ponents in the x̂- and ẑ-directions, but the component in the ŷ-direction will
always be zero. This is a consequence of using the principal directions as our
coordinate system.

To obtain a Mohr stress circle, we now plot the components of all the traction
vectors for all the surfaces of our family. However, we do not plot the traction
components acting in the x̂ and ẑ directions. Instead we plot the components
that act normal and tangential to the surface on which T acts. To be more precise,
consider the surface shown in Figure 1.7. If we arrange our view point so that
we look directly down the ŷ-axis, we see the situation shown in Figure 1.8.
In that figure the ŷ-axis is perpendicular to the plane of the figure and we see
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Figure 1.8. Traction vector acting on the surface element in Figure 1.7.

it as a point at the origin. Our surface appears as a line. Both the normal vector
to the surface n̂ and the traction vector T are shown and both lie in the plane of
the figure.

If we use the angle θ shown in Figure 1.8 to identify the particular surface,
then the unit normal vector components can be written as

n̂ =
[

sin θ

cos θ

]
(1.20)

Also, since the coordinate axes are parallel to the principal directions, the stress
matrix will have the form (1.17). Then (1.11) gives the following result for the
components of T in the x̂- and ẑ-directions:

T =
[

σ1 sin θ

σ3 cos θ

]
(1.21)

Now let σ and τ identify the components of T that act normal and tangential
to our surface. We find σ by taking the inner product of T and n̂

σ = T · n̂ = σ1 sin2 θ + σ3 cos2 θ (1.22)

It is similarly easy to show that

τ = (σ1 − σ3) sin θ cos θ (1.23)

The final step is to plot τ against σ for all the surfaces as θ varies between
0 and π .∗ The result is a circle, the Mohr circle. A typical Mohr circle is
shown in Figure 1.9. Each point on the circumference of the circle identifies
the normal and tangential components of the traction vector acting on one
particular member of our family of surfaces. We refer to the points on the circle
circumference as stress points.

∗ Note that there is no need to let θ run to 2π since a rotation of only π radians brings us back to
our starting surface.



1.9 Mohr circles 19

σσ1σ3

τ

Figure 1.9. Mohr stress circle.

The centre of the circle must lie on the σ-axis. The circle crosses the σ-axis
at the points that correspond to the two surfaces that support zero shear: the
principal surfaces. As a result the diameter of the circle is the principal stress
difference, in this case (σ1 − σ3). The greatest and least shear stresses are equal
to the positive and negative values of the circle radius (σ1 −σ3)/2. If once again
we think of physically rotating the surface shown in Figure 1.8, then a rotation
of π radians will result in the corresponding stress point moving completely
around the circle and returning to its original starting point. In Appendix B
the exact relationship between any surface and its corresponding stress point is
developed in full.

The Mohr circle in Figure 1.9 contains all the stress information for all the
surfaces of our family. Obviously, however, there are many other surfaces we
have not yet considered. We could easily go through the same procedures for
surfaces generated by the x̂-axis and this would give another Mohr circle. Since
the x̂-axis corresponds to the n̂1 principal direction, the resulting circle would
cross the σ-axis at the principal stresses σ2 and σ3. Similarly, if we considered
surfaces generated by the ẑ-axis, we would obtain a third circle spanning the
principal stresses σ2 and σ1. The three circles might look like those sketched
in Figure 1.10. Note how the circles join at the principal stresses and how each
circle spans two of the principal stress values. We have drawn the figure as if
σ1 > σ2 > σ3, i.e. the usual convention used for numbering principal stresses,
but we realise that any other numbering, such as σ2 > σ3 > σ1, is equally
possible.

Now we have exhausted all the obvious possibilities for surfaces. We have
considered all the surfaces that are generated by each of the three principal
directions and this has led to three Mohr circles. What about all of the other
possible surfaces that are not generated by the principal directions but instead
are oriented at non-right angles to the principal surfaces? These surfaces will
generally have traction vectors that have non-zero components in all three of
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Figure 1.10. Mohr stress circle for the three-dimensional stress state.

the coordinate directions x̂, ŷ and ẑ. If we determine their components normal
and tangential to their respective surfaces, and plot the components σ and τ

we find that the resulting points exactly fill the regions between the three Mohr
circles. That is, the stress points associated with these remaining surfaces all
fall within the hatched regions in Figure 1.10. The three circles plus the interior
points represent the entire stress state graphically.

Often, because of symmetry about the σ-axis, only the upper half of the
Mohr stress circle is drawn. Also only the outermost circle is frequently shown.
This reflects the fact that the most extreme stress states are represented by
points on the outermost circle. Regardless of these details, the Mohr circle is an
extremely useful tool. It allows one to visualise the entire stress state at any point
in a body easily and it permits an intuitive grasp of stress that is not possible
by considering formal equations such as (1.11). Later in the book when we
consider yield criteria the Mohr circle will be a very valuable tool.

1.10 The effective stress principle

A concept familiar to all geotechnical engineers is the effective stress princi-
ple. It was formulated by one of the founding fathers of soil mechanics, Karl
Terzaghi, in 1925. Terzaghi realised that in a saturated soil the solid particle
skeleton must play a much more important role than the pore water. This is
particularly true in regard to shearing stresses since the pore water can carry
no shear stress at all. All shearing stresses are supported by the solid par-
ticle skeleton. The situation with normal stresses, however, is not quite so
clear.
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Let us consider a fully saturated soil that has been subjected to loads of
one kind or another. For any surface within the soil we can determine σ, the
component of the traction vector T that acts normal to the surface. The effective
stress principle tells us that we may view the normal stress σ as if it were
composed of two parts. The stress in the pore water will be an isotropic stress
called the pore pressure. It is usually denoted by u. The remaining normal
stress is the part of σ that is supported by the solid particle skeleton. It is called
the effective normal stress or simply the effective stress. We denote it by σ ′.
The overall stress σ is often referred to as the total stress. The effective stress
principle states that

σ = σ ′ + u (1.24)

In other words, Terzaghi suggested that we can decompose the total stress into
two parts: the effective stress and the pore pressure, each associated with a
different soil constituent.

The total stress σ is the stress that has global significance in the sense that
it conforms to the requirement for equilibrium. We discuss equilibrium in the
next section, but, from an intuitive standpoint, we can view σ as being the stress
necessary to ensure that the soil mass remains in equilibrium with whatever
forces may be acting on it. In contrast, neither u or σ ′ is directly related to
equilibrium of the soil mass. Generally u results simply from hydrostatic forces
within the pore fluid. The effective stress σ ′ is, in some undefined way, an
average normal stress acting within the solid particle skeleton and associated
with the particular surface in question.

We can generalise the effective stress concept to define an effective stress
matrix σ′. It is given by

σ′ = σ − uI (1.25)

Now consider the state of stress at some point within a body of saturated soil.
Suppose we wish to plot the Mohr stress circle for this point. It turns out that
we can use either σ or σ ′ as the normal stress component. That is, we can plot
the total stress Mohr circle, using σ , or we can plot the effective stress Mohr
circle, using σ ′. Note that since u is an isotropic stress, its Mohr circle is simply
a point. The pore water supports no shear stress. Equation (1.24) then holds the
key to how we can plot two Mohr circles. For any surface the total and effec-
tive stresses differ by the pore pressure u. Therefore the two Mohr circles will
be separated by an amount equal to u. The effective stress circle will lie to the
left of the total stress circle, so long as u > 0. A typical example is shown in
Figure 1.11. Every corresponding stress point on the two circles is separated
horizontally by an amount u.
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Figure 1.11. Total stress and effective stress Mohr circles.

1.11 Equilibrium

To conclude this chapter we need to introduce the concept of equilibrium of
forces in relation to the body forces and contact forces that may be found inside
the body. We will consider static equilibrium only, although the generalisation
to dynamic conditions is not difficult. To begin, consider some region of the
body with volume V and surface S such as that shown in Figure 1.12. This
might be any part of the body or even all of it.

Both contact and body forces will act on V . We can think of the body forces
simply as being gravity. Other body forces are possible, but gravity will gener-
ally be the only body force of interest to geotechnical engineers. Let the body
force per unit volume be represented by a vector b. We can think of b as being
a vector with magnitude equal to the product of the acceleration of gravity
times the mass density ρ, and direction pointing to the centre of the Earth. Then
the total body force acting on V will be given by the integral of b over the

Volume V 

Surface S
z

x

y

Figure 1.12. An arbitrary region with surface S and volume V.
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volume V :

total body force =
∫
V

b dV (1.26)

Note that b may be a function of position inside V, assuming the mass density
changes from place to place.

There will be contact forces associated with surfaces throughout the
volume V, but nearly all of them will make no difference to equilibrium. The
reason is, for any surface inside V, there will be equal and opposite traction
vectors acting on either side of the surface and they will equilibrate each other.
It is only on the surface S that we find non-equilibrating tractions or contact
forces. The surface S separates V from the remainder of the body. That part of
the body outside S will exert contact forces on V and we must take them into
account when working out equilibrium. The contact force on some element of
surface d S will be given by the product T d S. The total contact force acting on
V is therefore

total contact force =
∫
S

T d S =
∫
S

σT n̂ d S (1.27)

where (1.11) has been used. The vector n̂ is the outward unit normal vector
to the surface S. We must take the outward-pointing normal vector in order to
obtain the traction that acts from the remainder of the body on to the volume V .
There is a powerful theorem from vector calculus that is useful here. It is called
the divergence theorem and it can be used to convert the integral over S in (1.27)
into an integral over the volume enclosed by S,∫

S

σT n̂ d S =
∫
V

∇ · σT dV (1.28)

where ∇ · σT represents the divergence of the stress matrix transpose. Re-
calling that the divergence of a vector gives a scalar, it is similarly true that
the divergence of a matrix (in fact a tensor) gives us a vector. In rectangular
Cartesian coordinates the components of ∇ · σT are

∇ · σT =




∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z

∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z




(1.29)
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Finally, if we assume that the body is in static equilibrium, we must set the
contact forces and body forces equal. This gives∫

V

∇ · σT dV =
∫
V

b dV (1.30)

or ∫
V

(∇ · σT − b) dV = 0 (1.31)

But the volume V was completely general in that it may be any region of the
body. If (1.31) must be zero for any region the only conclusion we can draw is
that the integrand itself must be zero everywhere inside the body. So equilibrium
is expressed by the vector equation∗

∇ · σT − b = 0 (1.32)

In component form we have three equations

∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z
− bx = 0

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z
− by = 0

∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
− bz = 0

(1.33)

These three equations, or equivalently the vector equation (1.32), must hold at
all points within the body. If we were concerned with dynamical problems, the
zeros on the right-hand side of (1.33) would be replaced by the mass density
multiplying the appropriate component of the acceleration of the body. That
extra step will not be necessary in the applications we intend to pursue. Note
too that the negative signs preceding the body force terms in (1.32) and (1.33)
are a result of our convention that compressive stresses are positive. In solid
mechanics positive signs would appear there.

As with deformation and strain, the equilibrium equations change somewhat
in non-rectangular coordinate systems. Appendix A describes how to change
from one coordinate system to another and summarises the component forms
for cylindrical polar coordinate systems.

We are now drawing near to the close of this chapter. We are also draw-
ing nearer the point where simple problems can be formulated and solved. In

∗ If we were to make tensile stress positive, the negative sign in (1.32) would become positive.
This is one of the rare occasions where the usual equations of solid mechanics differ from ours.
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general, the solution of problems in elasticity and plasticity involves finding
15 variables. We need to determine the three components of the displacement
vector u, the six independent components of the strain matrix ε and the six
independent components of the stress matrix σ. If we know u as a function
of position throughout the body we can use the strain–displacement equations
(1.4) to find ε. Conversely, if we know ε, then we can integrate (1.4) to find
u provided the compatibility relations (1.9) hold. We also know that the stress
components must obey the equilibrium equations (1.33), but there are only three
equations for the six independent components of stress. So we do not yet have
enough equations even to attempt to find a solution. The missing link is the
relationship between stress and strain. In the next chapter we will explore that
link in the context of elasticity. In the chapters to follow we consider the same
link in the context of plastic behaviour.

Further reading

The complete reference to EG is:

R.O. Davis and A.P.S. Selvadurai, Elasticity and Geomechanics, Cambridge
University Press, New York, 1996.

Two useful books on the basics of continuum mechanics including elements of
elasticity and plasticity are:

Y.C. Fung, Foundations of Solid Mechanics, Prentice-Hall, New Jersey, 1965.
L.E. Malvern, Introduction to the Mechanics of a Continuous Medium, Prentice-Hall,

New Jersey, 1969.

Original references to works cited in this chapter:

Barré de Saint Venant, Éstablissment élementaire des formules et équations générales
de la théorie de l’élasticité des corps solides, Appendix in: Résumé des leçons des
Ponts et Chaussées sur l’Application de la Mécanique première partie, première
section, De la Résistance des Corps Solides, by C.-L.M.H. Navier, 3rd edn, Paris,
1864.

A.L. Cauchy, Recherches sur l’équilibre et le mouvement intérieur des corps solides
ou fluides, élastiques ou non élastiques, Bull. Soc. Philomath, 2, 300–304
(1823).

O. Mohr, Zivilingenieur, W. Ernst und Sohn, Berlin, 1882.
K. Terzaghi, Erdbaumechanik auf bodenphysikalischer Grundlage, Franz Deuticke,

Vienna, 1925.

Exercises

1.1 Find the strain matrix as a function of x , y and z associated with each
displacement field:
(a) ux = α − βx, uy = uz = 0
(b) ux = ξ y, uy = uz = 0
(c) ux = ax2 − bxy + cy2, uy = uz = 0.
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1.2 Consider the elastic halfspace in Figure 1.13. Under the action of gravity
the components of stress have the form

σxx = αx, σyy = σzz = βx, σxy = σyx = σzy = σyz = σxz = σzx = 0

where α and β are constants. Use Cauchy’s relationship (1.11) to deter-
mine the Cartesian components of the traction vector T as a function of r
and θ on the cylindrical surface that aligns with the z-axis shown in the
diagram.

θ
r

y

x

Cylindrical
   Surface

Figure 1.13.

1.3 Construct the Mohr stress circle for an arbitrary point on the cylindrical
surface in Exercise 1.2. Use the circle to find the components of the traction
vector T that act normal and tangential to the surface.

1.4 Given the general stress matrix shown in equation (1.12), form a new
matrix S = σ − 1

3 tr(σ). Find the invariants of the matrix S using the
form given in (1.18). That is, find S1 = tr(S), S2 = 1

2 [(trS)2 − tr(S2)]
and S3 = det(S).

1.5 What is the smallest quantity of numbers required to specify fully the
state of stress at a point in a continuum? Explain why the total of
12 numbers involved in σ1, σ2, σ3 and n̂1, n̂2, n̂3 are not all needed to
provide a specification of the stress state.
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Elastic and inelastic material behaviour

2.1 Introduction

Geotechnical engineers have made good use of the theory of elasticity for
a number of decades. It became clear near the end of the nineteenth cen-
tury that a variety of problems involving an elastic halfspace could be solved
using techniques developed by the French mathematician Joseph Boussinesq.
Boussinesq solved the problem of a point load resting on the surface of a homo-
geneous isotropic linearly elastic halfspace. He also developed the solution for a
rigid circular footing resting on the halfspace surface. His work inspired others
to investigate related problems with the result that by the middle of the twenti-
eth century a wide range of problems involving both homogeneous and layered
halfspaces with isotropic and anisotropic elastic materials had been solved for a
variety of loading conditions. Solutions continue to appear in the geotechnical
literature as well as in other disciplines. There are also coupled solutions in
which porous materials saturated with pore fluid are modelled incorporating
both elastic deformation and pore fluid flow.

In this chapter we will outline the basic elements of behaviour of elastic ma-
terials. The stress–strain relations for isotropic materials are given in a variety of
forms and relationships between the elastic constants are derived. We will note
the bounds imposed on the elastic constants by thermodynamic requirements
and we discuss some special classes of problems such as plane strain prob-
lems and problems involving incompressible materials. Much of this material
is also presented in EG, often in more detail. Readers familiar with the basic
elements of elasticity, particularly with regard to geomechanics, may wish to
skip portions of this chapter.

The relevance of an elastic solution for any problem in geomechanics will
depend upon two things. First, there is a requirement that the stresses within
the soil mass should be reasonable in the sense that the average stress state is

27
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well below the yield stress. In many problems there may be small regions of
high stress such as near the edge of a rigid footing, but the average stress will
often be less than half the yield value and elasticity can be applied profitably
to estimate the settlement. The second condition for relevance is the need to
select appropriate values for the elastic constants. This point is discussed in
more detail in EG. The choice of appropriate parameter values will depend
upon the quantity and quality of test data available and on the experience and
good judgement of the engineer involved.

Elastic solutions are obviously of limited value when the stress level in a soil
mass becomes too severe. At this point the response of the soil becomes much
more difficult to model. Deformations grow in magnitude and the accompanying
strains may display unexpected attributes. Shearing strains may continue to
grow despite decreasing stress levels. The volume of the soil may expand despite
an overall compressive stress regime. Good-quality test data becomes more
difficult to obtain. If we could look inside the soil at a microscopic scale we
would expect to see individual soil particles undergoing fracture and crushing,
and relatively large-scale rearrangement of the interparticle structure or fabric of
the soil. These are irreversible effects that we classify as an inelastic response
and that we attempt to approximate by recourse to the theories of plasticity.
The second part of this chapter discusses some general aspects of inelastic
behaviour.

2.2 Hooke’s law

The foundation stone of elasticity was fashioned by Robert Hooke in a lecture
to the Royal Society in 1660 when he postulated a linear relationship between
the applied tension and the elongation of a spring. That first step was followed
by a series of developments leading to the fundamental idea that stresses and
strains should be related linearly. For an isotropic elastic material it was found
that two elastic constants were required to relate stresses to strains fully. The
resulting stress–strain relationships can be written in a variety of ways, but one
of the most convenient is the matrix form,

σ = eI + 2Gε (2.1)

Here σ and ε are the stress and strain matrices, e = tr ε is the volumetric strain,
 is a material constant called the Lamé constant∗ and G is also a material
constant called the shear modulus. Since there are six independent components

∗ Often the Lamé constant is represented by the lowercase λ. We will use λ extensively later for
other purposes.
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of both σ and ε, equation (2.1) actually represents six separate equations:

σxx = e + 2Gεxx σxy = 2Gεxy

σyy = e + 2Gεyy σyz = 2Gεyz

σzz = e + 2Gεzz σzx = 2Gεzx

(2.2)

The Lamé constant  and the shear modulus G are the only elastic constants
needed to characterise the stress–strain behaviour of an isotropic linearly elastic
material completely.

While (2.1) may be a convenient way to write Hooke’s law it may not
be the most familiar way. For many people the most familiar elastic con-
stants are Young’s modulus E and Poisson’s ratio ν. They appear if we invert
equations (2.2) to obtain the components of the strain matrix:

εxx = 1

E
[σxx − ν(σyy + σzz)] εxy = 1

2G
σxy

εyy = 1

E
[σyy − ν(σzz + σxx )] εyz = 1

2G
σyz

εzz = 1

E
[σzz − ν(σxx + σyy)] εzx = 1

2G
σzx

(2.3)

These six equations form the most familiar set of expressions for Hooke’s
law, but there is no fundamental difference between (2.2) and (2.3). One gives
stresses in terms of strains and the other gives strains in terms of stresses.

Note that (2.3) contains three constants E, ν and G. Only two of these can
be independent. When we invert (2.2) to arrive at (2.3) we find the following
relations between elastic constants:

E = G(3 + 2G)

 + G

ν = 

2( + G)

(2.4)

Thus knowing  and G implies knowledge of E and ν. We can invert these
relations to obtain

 = νE

(1 + ν)(1 − 2ν)

G = E

2(1 + ν)

(2.5)

It is possible to derive other relationships as well. For example,

ν = E − 2G

2G
(2.6)
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There is one other commonly used elastic constant. It is called the bulk mod-
ulus and is usually represented by K . It relates the mean stress to the volumetric
strain,

p = K e (2.7)

To find how K is related to the other elastic constants we take the trace of (2.1)
and use the definitions of p and e, which gives

K =  + 2

3
G (2.8)

It is possible to derive further relationships between these five elastic constants.
All of the 30 possibilities are tabulated in EG.

In some applications it may be convenient to treat the six independent com-
ponents of stress and strain as components of six-dimensional vector fields. We
can write


σxx

σyy

σzz

σxy

σyz

σzx




=




 + 2G   0 0 0
  + 2G  0 0 0
   + 2G 0 0 0
0 0 0 2G 0 0
0 0 0 0 2G 0
0 0 0 0 0 2G







εxx

εyy

εzz

εxy

εyz

εzx




(2.9)

The square matrix containing the elastic constants is often called the elasticity
matrix. Later we will identify it by Me.

Yet another way to write Hooke’s law involves introducing the deviatoric
stress and strain matrices. These are representations of stress and strain that
characterise shearing rather than isotropic response. They are defined as follows:

σd = σ − pI

εd = ε − 1

3
eI

(2.10)

Here I is the identity matrix. Note that both equations have the same form.
In each case one-third of the trace of the matrix is subtracted from each of
the diagonal matrix components. The resulting matrices, sometimes called the
stress and strain deviator matrices, represent that part of the stress or strain state
that deals with shearing. Note that both σd and εd are traceless. If we use (2.1)
in (2.10) together with the definitions for mean stress and volumetric strain we
find that σd and εd are related by

σd = 2Gεd (2.11)
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Six equations are represented by (2.11), but only five are independent since
tr σd ≡ 0. We can use (2.11) together with (2.7) to obtain six independent
equations and thus have another way to write Hooke’s law.

2.3 Values for elastic constants

Whenever we are willing to model a soil as an isotropic elastic material, val-
ues for two of the elastic constants are required. It makes no difference which
two since, if we know the values for two constants, we can use the relation-
ships between constants to determine the remaining three. There are theoretical
restrictions on the values of the constants that result from the principles of
thermodynamics. To understand these restrictions we first need to introduce the
idea of an elastic stored energy function, We. The stored energy is exactly what
its name implies. It represents the amount of work per unit volume done on the
material by the applied stresses as a function of position in the body. The work
is stored in the body and can be represented as

We = 1

2
tr(σε) (2.12)

In the context of elasticity this energy will be recoverable in the sense that, during
unloading, the body itself can do exactly the same amount of work against
the applied forces as was done by those forces when the body was initially
loaded. Basically (2.12) represents the area under the stress–strain curve for the
material, although it is a bit more general in the sense that we are considering
all the components of stress and strain.

The thermodynamic restrictions on the elastic constants follow from the
requirement that the stored energy function for an elastic material should be
positive definite. Positive definite means that We ≥ 0 at all times, and We = 0
only when the stresses and strains are equal to zero. If we accept the premise
of positive definiteness, then it can be shown∗ that the following bounds must
apply to the elastic constants:

E > 0, G > 0, K > 0,  + 2

3
G > 0, −1 < ν ≤ 0.50 (2.13)

These bounds seem innocuous but are of some importance. Particularly interest-
ing is the restriction on Poisson’s ratio, especially the upper limit. All common
engineering materials have Poisson ratio values that are positive, so the lower
limit is only of academic interest. Note that the upper limit may be less than
or equal unlike all of the other bounds. Let us consider what happens when
Poisson’s ratio takes on a value of 0.50.

∗ See Chapter 2 in EG for a derivation of these results.
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σxx σxx

Figure 2.1. Prismatic bar in simple tension.

Recall the definition of ν. It represents the negative of the ratio of the lateral
strain to the longitudinal strain experienced by an elastic bar subjected to simple
tension such as the one shown in Figure 2.1. Suppose the axis of the bar is aligned
with the x-axis and a uniform tension σxx is applied at the ends of the bar. The
axial strain is given by εxx = σxx/E , where E represents Young’s modulus for
the bar. As the bar is stretched it also grows more slender and the lateral strains
are given by

εyy = εzz = −νεxx (2.14)

These are all familiar concepts. We go through them here because we want to
find what the volumetric strain in the bar is. Recalling (1.8) we see that the
volumetric strain is given by

e = εxx + εyy + εzz = (1 − 2ν)εxx = (1 − 2ν)
σxx

E
(2.15)

Evidently, if ν takes the value of the upper limit in (2.13), there will be no
volumetric strain. In that case we would say that the material is incompressible.

Incompressible materials form an interesting subgroup of all elastic materials.
Of course no material is entirely incompressible, in the sense that no volume
change occurs regardless of what stresses are applied, but many materials are
nearly incompressible. Rubber is a good example. It is compressible but its
shear modulus is far less than its bulk modulus, which means that changes of
shape will dominate the deformation of rubber in comparison with changes of
volume. Poisson’s ratio for rubber is very nearly 0.50 and for many purposes
we can assume it to be exactly 0.50. Thus, if we consider a rubber band we can
safely assume that its volume remains unchanged regardless of how far we may
wish to stretch it.

Note that for incompressible materials only one elastic constant is needed
since Poisson’s ratio is known. The stress–strain relationships may be written
more simply and the relationships between elastic constants are also simplified.
For incompressible materials we have

E = 3G, K =  = ∞ (2.16)

These simplifications often have dramatic effects when the time comes to begin
solving actual problems. Because of this a large volume of research devoted to
problems in incompressible elasticity has developed over many years.
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There is one situation in which soils may behave as incompressible materials.
That is the case of fully saturated soils deforming in undrained conditions. Of
course, neither the soil particles themselves nor the pore water is incompressible,
but, if no drainage is permitted and the pores are filled with water, then the shear
modulus of the soil will be far smaller than the bulk modulus and Poisson’s ratio
will effectively be equal to 0.50. The requirement for undrained conditions is
important and cannot be overlooked, but in the case of many clay soils drainage
may occur so slowly that years are required before any significant volume
change occurs. In that case it may be very useful to assume that the soil is
undrained and let ν = 0.50.

The range of shear modulus values encountered in natural soils is quite large.
Very soft soils may have shear modulii as small as 10 MPa. At the other extreme,
soft rock modulii may be of the order of 2000 MPa. If one assumes a typical
value for Poisson’s ratio of 0.30, the corresponding range of values for Young’s
modulus is roughly 25–5000 MPa. Typically the density of most soils will lie
somewhere in the range of 1.5 t/m3 for very soft, loose soils to 2.5 t/m3 for soft
rocks. For elastic materials the velocity of shear waves is given by

√
G/ρ, so

we would expect the speed of shear waves to range between 50 and 1000 m/s.
The velocity of compression waves or P-waves would be of the order of two to
three times higher than the shear wave velocities. With such a broad range of
possible values for soil modulii, it becomes clear that the choice of appropri-
ate values for particular problems becomes extremely important. Techniques
for estimating specific values for elastic constants are discussed in Chapter 2
of EG.

2.4 Solution of problems in elasticity

If values for two elastic constants are available we are in a position, at least
theoretically, to solve problems. Some problems may prove too difficult to
solve, but a surprising number of interesting problems have yielded solutions
and no doubt more will do so in the future. There are also a great number of
approximate solutions, in the sense that not all the requirements for an exact
solution are met precisely, but the solutions, nonetheless, have useful attributes.

The complete solution of any problem involving a linearly elastic body will re-
quire knowledge of six components of stress, six components of strain and three
components of displacement throughout the body. The strain–displacement re-
lations (six equations), the equilibrium equations (three equations) and Hooke’s
law (six equations) must all be satisfied simultaneously. In addition, the stress
and displacement components may be required to satisfy boundary conditions.
Boundary conditions make the solution specific to the particular problem. We
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can categorise different types of boundary conditions according to whether
stresses or displacements or both are involved. Traction boundaries are those
portions of the boundary of the body for which all three components of trac-
tion are fully specified. Displacement boundaries are those portions of the
boundary of the body where all three components of displacement are speci-
fied. Mixed boundaries are boundaries where some components of traction and
some components of displacement are specified. Taken together, the three types
of boundaries must comprise the complete boundary of the body.

An example of a traction boundary is the surface of a beam that supports
prescribed loads. A surface that is free of stress such as the lower surface of a
beam is also a traction boundary since zero tractions are prescribed there. An
example of a displacement boundary is the built-in end of a cantilever beam. On
that surface zero displacements are specified. A rigid smooth punch indenting
an elastic plate gives an example of a mixed boundary. The part of the plate
in contact with the punch may be subject to a specified displacement in the
direction normal to the surface, and a zero traction condition (provided the face
of the punch is smooth) in the tangential direction.

2.5 Plane elasticity

An important subset of problems in elasticity falls under the heading of plane
stress and plane strain problems. Together they are jointly referred to as plane
elasticity. In most geotechnical applications only plane strain conditions will
be of interest, and we will focus primarily on plane strain here. Plane stress
conditions are described briefly, but the equations are left as an exercise at the
end of this chapter.

Both plane stress and plane strain conditions refer to situations where we may
be justified in assuming that certain components of the stress or strain matrix
are identically zero. Plane stress conditions correspond to problems where all
stresses associated with one coordinate direction are assumed to vanish. If the
coordinate system is arranged so that the particular direction of zero stress is
the z-direction, then the stress matrix will look like this

σ =

σxx σxy 0

σyx σyy 0
0 0 0


 (2.17)

This situation may arise where a relatively thin elastic plate is subjected to edge
loading with the faces of the plate (arranged normal to the z-direction) being
free from stress. A typical situation is illustrated in Figure 2.2.
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z

Thin elastic plate

Figure 2.2. Example of a plane stress problem.

x

y

z

Figure 2.3. Example of a plane strain problem.

In the figure the only loads supported by the plate lie in the (x, y)-plane. If the
plate is not too thick we are reasonably well justified in assuming there will be
no stresses associated with the z-direction and the stress matrix in (2.17) should
closely approximate the stress field in the plate. Moreover, we may also assume
that the non-zero components of stress will not be functions of z.

In contrast, plane strain conditions refer to situations where we assume that
all components of strain associated with one coordinate direction are identically
zero. Choosing the z-direction to be the appropriate direction, the strain matrix
for plane strain conditions may be written as

ε =

 εxx εxy 0

εyx εyy 0
0 0 0


 (2.18)

This condition might arise if we were to consider a body of considerable length
in the z-direction with loadings that are not functions of the z-direction. An
example is a long-strip footing resting on an elastic halfspace, such as that
shown in Figure 2.3.

In the figure the footing extends in both the positive and negative z-directions
for a distance that is large compared with the footing width. If we consider
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conditions near the centre of the footing we are reasonably justified in assuming
that there will be no z-component of displacement and that all quantities are
independent of the z-direction. The resulting strain field will be that given in
(2.18). Using Hooke’s law the non-zero components of strain may be written
as

εxx = 1

2G
[σxx − ν(σxx + σyy)], εyy = 1

2G
[σyy − ν(σxx + σyy)], εxy = σxy

2G
(2.19)

In addition, note that σzz is not zero.

σzz = e = ν(σxx + σyy) (2.20)

Physically σzz is the stress required to maintain the condition εzz = 0. Also the
compatibility conditions (1.9) reduce to a single equation

∂2εxx

∂y2
+ ∂2εyy

∂x2
= 2

∂2εxy

∂x∂y
(2.21)

and there are only two equilibrium equations (see (1.33)).

∂σxx

∂x
+ ∂σyx

∂y
− bx = 0

∂σxy

∂x
+ ∂σyy

∂y
− by = 0

(2.22)

Together (2.19), (2.21) and (2.22) give six equations for the three unknown
components of strain εxx , εyy, εxy , and the three unknown stresses σxx , σyy, σxy .

Solutions to many plane strain problems may be found in the elasticity lit-
erature. One of the simplest is the case of an elastic halfspace loaded only by
gravity. Consider the halfspace in Figure 2.3 (without the footing). The body
force components for this situation become

bx = 0, by = ρg (2.23)

Since bx = 0, we can assume that there will be no dependence on x for any
of the problem variables. Then the second equation of (2.22) gives the familiar
result

σyy(y) =
y∫

0

by dy =
y∫

0

ρg dy (2.24)

where we have set the constant of integration equal to zero because of the zero-
traction boundary condition at y = 0. The first equation of (2.22) now shows that
σxy is independent of the depth y, and the zero-traction boundary then requires
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that σxy be zero everywhere in the halfspace. It follows from Hooke’s law that
εxy = 0 everywhere as well. If there is no x dependence, then the displace-
ment ux can at most be a function of y, showing that εxx = ∂ux/∂x must also
be zero. Using this in (2.19) gives

σxx = ν

1 − ν
σyy (2.25)

and

εyy = 1

2G

[
σyy − ν

(
σyy + ν

1 − ν
σyy

)]
= σyy

2G

(
1 − 2ν

1 − ν

)
(2.26)

Finally, note that (2.20) gives

σzz = ν

(
ν

1 − ν
σyy + σyy

)
= ν

1 − ν
σyy = σxx (2.27)

This result is expected since the problem is invariant to rotation of the coordi-
nates about the y-axis and therefore σxx and σzz must be the same.

A question arises here regarding total and effective stress. How should we
interpret the stresses in equations (2.24)–(2.27)? Are they strictly total stresses,
or may we say that the same equations apply to effective stresses? It happens
that we can apply the equations to effective stresses provided the soil is saturated
and we are careful. First, in (2.24) we replace the density ρ with the submerged
or buoyant density ρb defined by

ρb = ρ − ρw (2.28)

where ρw is the mass density of the pore fluid. We have made a tacit assump-
tion that the soil is fully saturated; that is, the ground water table lies at the
ground surface. Other circumstances are slightly more complicated but no real
difficulties arise if they are considered. Next consider (2.25). How is Poisson’s
ratio affected by the presence of the pore fluid? We have discussed this topic
earlier in the context of incompressible materials. If no drainage is permitted,
the appropriate value for ν is 0.50. This would apply to both the total and the
effective stress in undrained situations. If there is drainage, then ν takes on
some value smaller than 0.50 and this would be the appropriate value for both
the total and the effective stress. Finally, consider the strain εyy given by (2.26).
The shear modulus G is independent of the pore fluid, so, provided drainage is
permitted, the strain given by that equation is also correct.∗

∗ Students of geomechanics will be aware that if drainage happens slowly, for example in the case
of a clay soil, then the strain in (2.26) will also develop slowly. The theory of one-dimensional
consolidation would be applicable in that case.



38 Elastic and inelastic material behaviour

In a natural soil deposit with horizontal surface and zero strain in the hori-
zontal plane, the ratio of the horizontal effective stress to the vertical effective
stress is often referred to as the coefficient of lateral earth pressure at rest. It is
usually identified by K0. If we use the coordinate frame in Figure 2.3,

K0 = σ ′
xx

σ ′
yy

(2.29)

Sometimes field tests are used to measure approximately the value of K0. We
see from (2.25) that, if the soil behaves as an elastic material, the value of
K0 should be ν/(1 − ν). The restriction that ν should be less than or equal
to 0.50 shows that K0 should be no greater than 1.0. In fact, values of K0

significantly greater than 1.0 have often been observed. Observations of K0 > 1
are an indication that a soil has failed to respond elastically at some point in its
history. Inelastic behaviour of this form as well as other forms is quite common.
The remainder of this chapter will be used to discuss inelastic response and to
put in place a general framework of ideas that will be useful for the development
and application of plasticity theory given in subsequent chapters.

2.6 Indications of inelastic behaviour

There are many categories of inelastic behaviour that may be exhibited by a
variety of materials. Brittle materials such as glass and ceramics may fracture,
and ductile materials such as mild steel will flow. Fatigue is a common problem
in many applications including pavement engineering. All of these things can
happen in soils and rocks given that appropriate circumstances exist. If we focus
on soils, we expect that inelastic behaviour will result when the particle structure
or fabric is disrupted. This may occur because the particles are rearranged, or
it may result from individual particles fracturing or crushing. Intuitively we
would anticipate a combination of fracturing, crushing and rearrangement to
occur simultaneously in most circumstances. For the remainder of this chapter
we will consider some common ways in which inelastic behaviour may be
generated. The discussion is qualitative in the sense that very few equations are
used. Our purpose is to set the stage for the development of plasticity ideas that
follow.

To begin, think about the soil deposit mentioned earlier for which the value
of K0 is greater than 1.0. Suppose the soil is a silt so that the particles are rela-
tively small. If we were to look back in time to the moment when the soil came
into being it could be that the particles were initially sediment at the bottom
of a lake or sea, or they may have been deposited by the wind. Whatever the
circumstances, it is likely that the particle structure was initially quite loose in
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the sense that relatively large pore spaces could be found between nearly all
particles. As time passed more soil may have accumulated above our deposit
and the vertical stress component would grow according to (2.24). There would
be a corresponding growth of the horizontal stress (both total stress and effective
stress) and, at this early stage in the life of the soil, an elastic, or at least nearly
elastic, response would be expected. The particles themselves would deform
and if there is rearrangement of particles it would happen on a very minor or
limited scale. Equation (2.25) would be appropriate to relate the effective stress
components. As the overburden accumulates both σ ′

xx and σ ′
yy grow, but σ ′

yy

grows faster since ν/(1 − ν) is less than 1.0. If the soil surface is horizontal it is
likely that all horizontal surfaces will be principal surfaces. All vertical surfaces
will also be principal surfaces since there is invariance under rotation about the
y-axis. So both σ ′

xx and σ ′
yy are principal stresses. The difference (σ ′

yy − σ ′
xx ) is

the diameter of the Mohr circle and is also twice the greatest shear stress in our
soil deposit. As more overburden accumulates the size of the Mohr stress circle
is evidently growing and so are the shear stresses on non-principal surfaces,
but the strength of the soil is also increasing owing to the increasing confining
stress and failure due to excessive shear stress will not occur.

If we could look inside the deposit at this stage we would see an assemblage
of particles still in a relatively loose configuration, but now supporting the
weight of soil above. Individual particles may support different portions of the
load depending on their particular situation. Some particles may be quite heavily
loaded while others are not. There may be chains of heavily loaded particles and
between these chains there may be groups of particles that are isolated from
the overall loading regime. On average the stresses are described by (2.24)
and (2.25), but on a microscopic scale a far more complex and heterogeneous
process is evolving. At some point there may be sufficient overburden so that
the particle structure can no longer respond elastically. Perhaps one particle in
one heavily loaded chain fractures. The new smaller particles that result now
rearrange themselves into some new configuration. The load supported by the
broken particle must be redistributed to surrounding particles. There are many
lightly loaded particles at this stage and it may be relatively easy for those
particles to take up the load shed by the fractured particle, but there has been
an irreversible, inelastic event.

Further build-up of overburden will lead to more and more events like that just
described. With each event, more and more particles become fragmented and
fractured, and greater and greater amounts of particle rearrangement occur. Each
fracture and rearrangement is an irreversible event. A thermodynamicist would
point out that the entropy of the soil is growing. The soil is now becoming more
densely packed and the relative amounts of volume taken up by particles and
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by pore space have changed. Fragmenting particles produce smaller offspring
that are more suited to filling the gaps between the larger particles that remain.
The remaining pores are much smaller. The chains of loaded particles are not
so distinct and the load is more uniformly spread among all particles. The soil
would now be described as dense or tightly packed. All the deformations that
have occurred because of particle fracture and rearrangement are referred to as
inelastic deformation.

We can digress for a moment and ask whether, at this point, after innumerable
fractures and rearrangements, the value of K0 will be larger than 1.0. The answer
is no. The vertical normal effective stress will still be greater than the horizontal
stress. So how do larger values of K0 come about? The answer lies in unload-
ing. Perhaps at some point in the history of our soil conditions change and the
overburden is no longer accumulating. Instead, erosional processes may begin
to occur and previously deposited overburden is now removed. This results in
a decrease in the vertical effective stress σ ′

yy . Does the horizontal stress also
decrease? The answer is yes, but, crucially, it will not decrease as rapidly. The
boundary conditions for the two stress components are different. The vertical
stress simply responds to the removal of overburden by decreasing an appro-
priate amount. The horizontal stress will sense the decrease in vertical stress,
but its response is governed by the fact there is no horizontal displacement in
the soil. So the removal of overburden affects σ ′

yy directly, but only affects σ ′
xx

indirectly. The horizontal stress is, to some extent, locked-in by the require-
ment for zero horizontal displacement. If sufficient overburden is removed, the
vertical stress may decrease to a value that is smaller than the horizontal stress
and, consequently, K0 will be greater than 1.0. The entire process of overbur-
den accumulation (loading) and erosion (unloading) is shown schematically in
Figure 2.4.

σ yy

σ xx

Loading
Unloading

Figure 2.4. Increasing and decreasing stress caused by accumulation and subsequent
erosion of overburden.
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There are many physical situations in which ‘locked-in’ stresses may arise.
A common example occurs in shrink fitting a gear or washer on to a circular
shaft. The shaft has a certain outside diameter and the gear or washer has a hole
of smaller diameter. By heating the gear uniformly, it is possible to expand the
size of the hole significantly. The shaft is then easily inserted into the expanded
hole. Upon cooling, the mass around the hole shrinks back to its original size
and frictional forces create a highly effective joint. The amount of locked-in
stress can be calculated from the known dimensions of the gear and shaft.

The locked-in stress fixing a shrink-fitted gear to its shaft results from heating,
while the locked-in horizontal stress in an unloading soil deposit results from
particle breakage and rearrangement. The former is, at least theoretically, re-
versible, but the latter clearly is not. Literally any particle rearrangement within
a soil mass cannot be reversed by any natural process and an irreversible re-
sponse results whenever particle fracture and rearrangement occur. Irreversible
processes are by definition inelastic. The locked-in horizontal stress in our soil
mass is an artefact of the inelastic response, but the inelastic process itself is
particle fracture and rearrangement. Broadly speaking, there are two categories
of loading that will generate inelastic behaviour in soil. One category is related
to the increase of normal stresses and the other to the increase of shear stresses.
Of course, shear and normal stresses are closely interrelated but, in the quali-
tative analysis we pursue here, it is enough to think of the two types of stress
independently. The situation in which a natural soil deposit is subjected to an
increasing overburden stress falls under the heading of inelastic effects due to
normal stress increase. In contrast, slope failures are an example of excessive
shear stresses. There are many other situations in which both inelastic normal
stress and inelastic shear stress effects occur. Soon we will consider two par-
ticular laboratory tests in which the two categories of response are emphasised.
Before describing those tests however, it is useful to discuss shear stress effects
in more detail.

The classic stability problems of geomechanics involve foundations, retain-
ing walls and slopes. All three problems arise due to the development of zones
or bands of intense shearing deformation. These intense shear strains occur
because of large shear stresses. It is useful here to think about how a shearing
failure might develop at both macroscopic and microscopic scales.

We begin by assuming that at some point within a soil mass we can identify
a surface for which the inelastic response due to high shear stress is imminent.
We are naturally interested in the normal stress acting on that surface as well as
the shear stress because of the frictional nature of the interparticle contacts. If
the combined stress state reaches a critical point, the soil particle structure will
be disrupted in two important ways. First, at macro-scales, the formation of a
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Figure 2.5. Failure of an embankment due to excessive shear stress.

band of shearing will divide the soil mass into two segments that may displace
relative to each other. Second, at micro-scales, there will be fragmentation and
rearrangement of particles within the shear band.

Consider the typical problem sketched in Figure 2.5. A load of some form has
caused failure to occur in an embankment. We will assume that the embankment
is composed of compacted sand. The failure region is a planar shear band. The
mass of soil above the shear band is sliding downhill in relation to the stationary
mass of soil below. A simple large-scale description of the situation tells us
that the average shear stress acting on the shear surface has exceeded the soil
strength. Following Coulomb, the soil strength is composed of two elements:
cohesion and friction. Since we are dealing with sand, the cohesion will be
zero and the frictional strength is therefore given by the product of the average
effective normal stress acting on the surface multiplied by the coefficient of
friction for the soil. In geomechanics we represent the coefficient of friction
by the tangent of an angle ϕ called the angle of internal friction. All of these
elements are familiar to students of geomechanics.

Now consider what may happen on a micro-scale. The shear band will have
a thickness h that is of the order of a few particle diameters in size. The defor-
mation is said to have localised within this band. If we could observe carefully
inside the band as the applied load is increased toward failure, we would expect
to see a random arrangement of particles with an extremely complex system of
interparticle contact forces that, on a macro-scale, result in the average values
of shear and normal stress required for equilibrium. Typically, the interparticle
contact surfaces are oriented in a random way with a few contacts parallel to the
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direction of slip, but with most oriented acutely to it. In Figure 2.5 the particles
are depicted as smooth ellipsoids, but in fact we are aware of a vast range of
possible particle shapes, both smooth and rough.

It is immediately apparent that, for large shearing deformation to occur within
the shear band, some particles must either fracture conveniently on surfaces par-
allel to the direction of slip or else move out of the way so that other particles
may slide past. Some fracturing will occur as the average shear stress grows,
but it will most probably involve the breaking off of asperities from the particle
surfaces rather than a major fracture along the slip direction. The greatest part
of the shearing deformation will occur because some particles will be forced
to move perpendicular to the slip surface, thereby permitting other particles to
move past. As a result the soil mass above the shear surface moves upward,
normal to the surface, as well as slipping tangentially downhill. The prop-
erty of deformation normal to the shearing surface is called dilatancy. It is a
characteristic associated with all granular materials, especially densely packed
materials. If the sand in our embankment were very loosely packed we might
not observe dilation, but that would be an unlikely occurrence in a constructed
embankment.

Assume the embankment in Figure 2.5 is about to fail. The soil mass above
the shear surface will begin to move and its displacement will have components
both parallel and normal to the shear surface. The direction of motion will
lie at an angle ψ , called the angle of dilatancy, above the shear surface as
shown in Figure 2.5. In general, the angle of dilatancy will be smaller than the
angle of internal friction. If we recall that the soil shear strength is given by
the product of the angle of internal friction and the normal effective stress on
the slip surface, we can now see that the friction angle actually represents two
sources of strength. One is the frictional resistance caused by particles grinding
past one another and the second is interlocking. Interlocking of particles causes
dilation and may contribute significantly to the overall soil strength.

To summarise, we have described two different aspects of inelastic behaviour.
The first involved natural compression of soil due to accumulating overburden
and the second resulted from an excessive ratio of shear stress to normal stress. In
the former we observed crushing and fragmentation of the soil particles leading
to fewer large particles, more smaller particles and more dense particle packing.
In the latter we find some particle fracturing but more rearrangement, inducing
an increase in soil volume within the shearing zone that we call dilatancy. Both
of these aspects of soil behaviour can be accommodated in modern theories of
soil plasticity as will be seen in Chapter 7.

To bring this chapter to a close we will now discuss the laboratory tests
mentioned earlier. One test is associated with inelastic compression due to
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increasing normal stress. It is the oedometer test. The second test is associated
with development of inelastic shearing deformation due to increasing shear
stress. It is called the triaxial test. Both are commonly used tests in nearly all
geomechanics laboratories.

2.7 The oedometer test

All of the processes involved in loading and unloading a natural soil deposit can
be simulated in the laboratory. An oedometer test subjects a cylindrical sample
of soil to conditions similar to the deposit of silt described in the preceding
section. Basically, the oedometer consists of a very stiff steel ring enclosing the
soil sample as depicted in Figure 2.6. The sample is loaded vertically through
the loading cap by the applied load. The rigid ring prohibits any horizontal
deformation just as occurs in the ground in our discussion above.

If we are dealing with a saturated sample, drainage may be arranged at the
upper and lower surfaces of the soil. The applied load is increased in increments
and then decreased again to simulate the processes of overburden accumulation
and removal that occurred in the natural soil deposit. In most oedometer tests
we would not attempt to measure the horizontal stress applied to the sample
by the rigid ring, but it would be possible to do so if we wished and we could
determine K0 directly.

Results from oedometer tests are usually presented in terms of the vertical
stress and the void ratio of the soil. In most geomechanics texts the void ratio is
denoted by e, but we have used e earlier to represent volumetric strain. Therefore
we will employ ẽ for the void ratio. The definition of ẽ is

ẽ = volume of voids

volume of solid particles
(2.30)

where the two volumes are measured in the same total soil volume, which is

Applied load

Loading
cap

Rigid
ring

Sample

Figure 2.6. Oedometer test apparatus.
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Figure 2.7. Typical response found in an oedometer test.

assumed to be of a representative size. If we let ẽ0 denote the initial void ratio
at the beginning of the test, then it is easy to see that the void ratio and the
volumetric strain are related by

e = − ẽ − ẽ0

1 + ẽ0
(2.31)

where the negative sign ensures that the compressive volumetric strain is pos-
itive. If we know the void ratio we can find the volumetric strain and vice
versa.

Typical data from an oedometer test are illustrated in Figure 2.7. The graph
shows how the void ratio changes as the applied load increases. The load is
represented by the logarithm of the vertical effective stress. It is usually assumed
that a uniform vertical stress is applied to the sample, although this may not
be exactly true. A more correct assessment of the problem would suggest that
we should use a mixed boundary condition on all the sample surfaces. The
normal component of displacement would be specified together with a frictional
condition on the tangential component of traction. While this would be possible
theoretically, the additional complication is assumed to be unwarranted. The
uniform stress approximation will be sufficiently accurate in an average sense.
There are three segments of more or less linear response∗ in Figure 2.7. In the
early stages of loading the graph is linear and this portion may be interpreted as
primarily an elastic response (region A). In this region the soil particle structure
is basically unchanged from its original state and little if any fragmentation and
rearrangement have occurred. The void ratio is decreasing, but this is primarily

∗ Of course the logarithmic scale means that void ratio and effective stress are not linearly related,
and this tells us that any assumption we might make concerning the use of the linear theory of
elasticity may be slightly flawed. A non-linear elastic relation of the form de/dp = κ/p, where
κ is constant, is sometimes used to replace equation (2.7) and thereby more accurately represent
this part of the soil response.
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because of elastic deformation of the particles themselves. The first important
particle fracture corresponds to the point at which the graph becomes non-linear
(region B). The graph begins to steepen smoothly at this point as more fractures
and particle rearrangement occur. The void ratio decreases more quickly as
these irreversible processes take place. A second region of linear response then
appears (region C). In this region the soil structure continues to evolve in the
sense that fracture and fragmentation lead to further particle rearrangement. The
distribution of particle sizes is changing as more and more particles are broken.
There are theoretical arguments that suggest why a linear response may occur
in this region and they will be discussed in Chapter 7. Finally, the applied load
is reduced and unloading commences. Once again we find an approximately
linear response, which we now identify as elastic rebound of the compressed
soil skeleton (region D). If the applied load is reduced to zero the void ratio
is permanently reduced and some degree of volumetric strain is permanently
locked into the particle structure. During the unloading stage we would expect
to find that the horizontal effective stress would become greater than the vertical
effective stress due to the locked-in stress effect.

We can clearly see the region of inelastic response in Figure 2.7. It begins
when the first particle fractures occur and the loading curve begins to bend
downward and it ends when unloading commences. One of the main challenges
geomechanics poses to the theory of plasticity is how to model this type of
inelastic behaviour. An interesting point about the oedometer test response or
the response of natural soil deposits described earlier, is that while there are
significant shear stresses developed in the soil during loading, the inelastic
behaviour we observe is not directly related to shearing. In fact, we could pro-
duce a similar inelastic response in a test where the soil is subjected to a purely
isotropic stress. The classical theories of plasticity relate solely to inelastic
response caused by shear. Some important changes are required to develop a
theory that encompasses behaviour similar to that shown in Figure 2.7.

2.8 The triaxial test

Measurement of soil shear strength in the laboratory is often performed using
the triaxial compression test. A cylindrical sample of soil is placed in a pressure
chamber called a triaxial cell and subjected to an isotropic compressive stress.
A plunger passing through the top part of the pressure cell applies an additional
axial load on the sample. The basic elements of the test equipment are illustrated
in Figure 2.8. The pressure cell is usually filled with water and the sample is
encased in a rubber membrane to isolate it from this ‘cell fluid’. When the
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Figure 2.8. Triaxial test apparatus.
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Figure 2.9. Stress state in a triaxial test.

water is pressurised, a uniform isotropic stress called the cell pressure acts on
all surfaces of the sample. We assume that horizontal and vertical surfaces are
principal surfaces and that the axial stress in the sample is given by the sum
of the cell pressure plus the axial plunger load divided by the sample cross-
sectional area. Since the cell pressure is a principal stress we represent it by
σ3. The axial stress is denoted by σ1. Note that all vertical surfaces support the
same stress, hence the intermediate principal stress σ2 is equal to σ3.

The stress state in the sample is assumed to be homogeneous and has the
form illustrated in Figure 2.9. We use the symbol q, called the stress deviator,
to represent the principal stress difference (σ1 − σ3). Note that q is equal to the
diameter of the Mohr stress circle and is a general measure of the shear stress
supported by the sample. In performing the test the cell pressure is usually
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Figure 2.10. Typical response found in a triaxial test.

increased to a specified value and then held constant while the stress deviator
is increased until the soil fails. Failure is a result of shear on a planar surface
or surfaces that makes an angle of (45◦ + ϕ/2) with the horizontal. Students of
geotechnical engineering will be familiar with this basic test.

The behaviour of the sample as the axial strain is increased is the most
interesting feature of a triaxial compression test. Two aspects of the soil response
are usually considered: the stress deviator versus axial strain response and the
volumetric strain versus axial strain response. Figure 2.10 illustrates typical
results for a compacted or dense sand sample. Note how our measure of shear
stress, the stress deviator q, reaches a peak and then decreases, finally reaching
an ultimate state. At the same time the volumetric strain exhibits a small amount
of compression, but then changes to negative values consistent with dilation of
the sample.

The stress–strain response shown in Figure 2.10 is interpreted as follows.
For small values of q the sample responds elastically and the stress–strain
curve is essentially linear. A further increase in axial strain leads first to a
stress peak and then to a decreasing stress level and ultimately to a constant
value of q . Tests on samples with different degrees of compaction show that
the magnitude of the peak q value increases as the sample becomes denser.
Because of this the stress peak is attributed to the effects of interlocking – the
greater the interlocking, the higher the peak stress value is. The ultimate stress
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level represents the strength of the soil after all interlocking mechanisms have
been broken down and large amounts of deformation have occurred. Dilatancy
accompanies the breakdown of interlocking. Initially the volumetric strains
are positive, indicating compression. The onset of shear localisation leads to a
reversal in the trend of the volumetric strain. Shortly after this the volumetric
strain becomes negative and the volume of the soil actually increases. This is
highly inelastic behaviour. Among other things, the value of Poisson’s ratio
would need to be greater than 0.50 in order to accommodate a volume increase
under these conditions, even though that would violate the restrictions imposed
on the elastic response discussed above.

In Figure 2.10, after the peak stress occurs, the portion of the stress–strain
curve where q is decreasing is referred to as strain softening. The sample
seems to be spontaneously losing strength once the effects of interlocking are
overcome. This type of response poses significant challenges for the theory of
plasticity, especially from a computational standpoint. Questions also arise as
to which level of strength, peak or ultimate, is appropriate for use in design.
Conservative engineers will generally adopt the ultimate strength for applica-
tions, being aware of course that the peak strength is a reserve element in the
overall safety of a project. Serious problems can arise, however, if the peak
strength is ever exceeded since the abrupt loss of strength that follows is highly
unstable and very large deformations may ensue.

The main point we take away from this general discussion of inelastic effects
is that all inelastic responses are associated with particle fracture and rearrange-
ment. Furthermore, there exist two categories of failure, one associated with
normal compressive stress and one associated with shear stress. The importance
of interlocking and dilatancy in the development of shear strength has also been
emphasised. A very wide range of inelastic behaviour is possible in any soil.
As we will see later in this book it is possible to represent nearly all of these
possibilities mathematically, at least in a conceptual way. In the next chapter
we begin to investigate mathematical models for the onset of plastic response.

Further reading

The early works cited near the beginning of this chapter may be found in:

J. Boussinesq, ‘Équilibre d’élasticité d’un solide isotrope sans pesanteur, supportant
différents poids’, C. Rendus Acad. Sci. Paris, 86, 1260–1263 (1878).

R. Hooke, The Posthumous Works, Containing his Cutlerian Lectures, and other
Discourses, Read at the Meetings of the Illustrious Royal Society; London,
Samuel Smith and Benjamin Walford for Richard Waller, London, 1705.
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R.W. Little, Elasticity, Prentice Hall, New Jersey, 1965.
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Useful discussions on the shear strength of soils may be found in many geo-
technical text books including:
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T.W. Lambe and R.V. Whitman, Soil Mechanics, John Wiley and Sons, New York, 553

pp., 1979.
R.F. Scott, Principles of Soil Mechanics, Addison-Wesley, Reading, MA, 550 pp.,

1963.

Exercises

2.1 Use equations (2.2) and (2.3) to prove the relationships given in (2.4).
2.2 Invert equations (2.4) to obtain (2.5).
2.3 For the triaxial compression test the stress matrix has this form

σ =

σ3 + q 0 0

0 σ3 0
0 0 σ3




Derive the corresponding stress deviator matrix. The invariants of the
stress deviator are sometimes represented by J1, J2 and J3. Using the
definitions of stress invariants from equations (1.19), show that

J1 = 0, J2 = −1

3
q2, J3 = 2

9
q3

2.4 Consider a traction vector T acting on a surface with unit normal vec-
tor n̂. The angle between the two vectors is often referred to as the
angle of obliquity. Show that the maximum value for the angle of obliq-
uity for any surface in a triaxial compression test sample is given by
sin−1[(σ1 − σ3)/(σ1 + σ3)].

2.5 A deep deposit of homogeneous dry sand has bulk density ρ = 2.0 t/m3.
Assume that the deposit has a horizontal surface, is elastic, and that
Poisson’s ratio has a value of 0.25. Calculate the shear and normal stresses
at a depth of 5.0 m for surfaces with unit normal vectors oriented at angles
of 30◦, 45◦ and 60◦ from the horizontal.
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2.6 For plane stress problems such as that illustrated in Figure 2.2, the stress
matrix has the form shown in equation (2.17). Assuming there is no z
dependence for any of the stress components, derive the following rela-
tionships for the extensional strains:

εxx = 1

E
(σxx − νσyy), εyy = 1

E
(σyy − νσxx ), εzz = ν

1 − ν
(εxx + εyy)



3
Yield

3.1 Introduction

The term yield refers to the onset of inelastic behaviour such as described in the
preceding chapter. In this chapter we will try to make a precise description of
yielding. In particular, we will try to establish a set of mathematical conditions
for yielding that will be referred to as the yield criterion.

There have been many different yield criteria suggested by different re-
searchers and engineers. Coulomb set down the first useful yield criterion in
1773. It forms one of the cornerstones of our understanding of the way soils
behave and it will be considered in detail later in this chapter. First, however, we
will investigate some of the yield criteria suggested for ductile metals. Metals
are a bit simpler than geomaterials, and many of the basic ideas can be developed
in a simpler context.

A yield criterion can be visualised as a mathematical function. We will rep-
resent it by f. The arguments of f might be almost anything to do with the state
of the body at the onset of plastic behaviour, but the most obvious candidates
for arguments would be the components of stress or strain or both. Modern
developments in plasticity accept that the most appropriate arguments are the
individual components of the stress matrix. Realising that there are only six
independent stress components, we can write our prototype yield criterion as
follows:

f (σxx , σyy, σzz, σxy, σyx , σzx ) = k (3.1)

where k represents a constant. It may be zero, but in many cases it will be
convenient to have a non-zero constant. As for the left-hand side of (3.1) we
will think of this as simply some function of the stress components which is, as
yet, undetermined. Yielding is signalled when this function becomes equal to
the constant k. Also, there may be functional arguments other than stress that

52
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we might wish to add later, but stress will be the central criterion for yielding
in most modern plasticity models.

Next, we are aware from our study of Mohr’s circle that it may not be neces-
sary to know all the components of stress. We can recreate the stress compo-
nents in any coordinate frame using the principal stresses, σ1, σ2, σ3, provided
we know the respective orientations of the principal directions. This would
suggest that the six stress components in (3.1) could be replaced by the three
principal stresses, plus some information concerning the orientation of the prin-
cipal directions. At this point, the developments that follow will benefit from the
introduction of an important material characteristic that removes all dependence
on orientation of the principal directions. The material characteristic is isotropy.
For an isotropic material, there can be no dependence of material response on
a specified direction. Thus, for isotropic bodies, (3.1) can be rewritten, without
any loss of generality, in terms of just principal stresses:

f (σ1, σ2, σ3) = k (3.2)

Here k is still a constant, although its form may differ from that in (3.1).
Alternatives to the principal stresses are the principal invariants I1, I2, I3.

Equation (1.19) gave the relations between the invariants and the principal
stresses. Obviously we could recast (3.2) as

f (I1, I2, I3) = k (3.3)

In some circumstances this form for the yield criterion may be more convenient
than (3.2), but in most cases we will find (3.2) to be the more useful description.

Much of what follows in this chapter will be directed towards visualising
various yield criteria. In this effort, the form (3.2) will be most useful. Because
of this it will be convenient to digress for a moment and introduce a new three-
dimensional space with coordinates proportional to the values of the principal
stresses themselves.

3.2 Principal stress space

If we know the values of the principal stresses at some position within a de-
forming body, we can plot the values in a Cartesian space with axes having
dimensions of stress. Figure 3.1 shows such a space. We call it the principal
stress space. A point in this space then represents the state of stress in the body.
It is called the stress point.

As the stress state in the body changes, the stress point will change its position
in principal stress space. We might intuitively expect that there will be regions
within principal stress space corresponding to elastic response, and other regions
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for plastic response. In fact, the yield criterion f will enable us to describe
exactly stress states for which the material will exhibit either elastic or plastic
response.

Referring back to (3.2), we see that in general f = k defines a geometric
surface in principal stress space. The terms yield surface and yield locus are
both used to describe the surface f = k. Plastic response will be confined to the
surface. Also, so long as we do not add any more arguments to the function f ,
the surface will be fixed in space. Later in our development, another argument
will be added alongside the principal stresses in (3.2) and its aim will be to
permit the surface to move in certain ways.

In principal stress space, a line of special significance is that making equal
angles with the three principal stress axes. We call this line the space diagonal.
It is illustrated in Figure 3.2. The angle between the space diagonal and any of
the coordinate axes is denoted by θ0. It is easy to see that

cos θ0 = 1√
3

(3.4)

Note that whenever the stress point lies on the space diagonal, the values
of all three principal stresses are the same and we have a state of isotropic
stress.
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Figure 3.3. Schematic view of the π-plane.
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Figure 3.4. Looking down the space diagonal.

Next, it will be helpful to construct a planar surface perpendicular to the space
diagonal. This surface is usually called the π-plane.∗ A sketch of the π-plane,
placed at an arbitrary point along the space diagonal, is shown in Figure 3.3.
Only some irregular segment of the plane is shown but, in fact, it extends in all
directions perpendicular to the space diagonal. If we now look down along the
space diagonal towards the origin of principal stress space, we obtain a view
such as that shown in Figure 3.4. The three principal stress axes are shown, but
we realise that these are simply images of the axes projected on to the π-plane.
The stress point can also be seen on this sketch.

When choosing to describe the position of a point in space we can select
from a number of orthogonal coordinate systems. We usually choose a system
that provides the best advantage for the purpose we have in mind. With certain
coordinate systems the description may be neater and more compact. For exam-
ple, the equation of a sphere of radius a in rectangular Cartesian coordinates is
x2 + y2 + z2 = a2, whereas, in spherical polar coordinates, it is simply R = a.
Keeping this in mind, it will be convenient for us to construct a local coordi-
nate system with axes along and perpendicular to the space diagonal. Even

∗ There have been other names associated with the π-plane. These include Pi-plane, octahedral
plane, deviatoric plane and Haigh–Westergaard plane.
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specifying one axis along the space diagonal we can still choose from an
infinite number of orientations for the other two axes. A convenient choice will
be to align one of these with the projection of σ1 on the π-plane. We then define
three orthogonal unit vectors denoted by n̂D, n̂E, n̂F. Two of these lie in the
π-plane and are shown in Figure 3.4. The third, n̂D , is the unit vector coinciding
with the space diagonal. These vectors have the following component descrip-
tions in principal stress space:

n̂D = 1√
3


1

1
1


 , n̂E = 1√

2


 0

−1
1


 , n̂F = 1√

6


 2

−1
−1


 (3.5)

Note that each is a unit vector and observe that they are mutually orthogonal.
Now let σ = [σ1 σ2 σ3] denote the stress vector joining the origin and the
stress point in principal stress space. Then the components of σ in the D, E and
F directions are given by the inner products of σ with the three unit vectors:

σD = 1√
3

(σ1 + σ2 + σ3) =
√

3p

σE = 1√
2

(−σ2 + σ3) (3.6)

σF = 1√
6

(2σ1 − σ2 − σ3)

Note that the component σD , along the space diagonal, is proportional to
the mean stress p (= I1/3). The components of σ are illustrated schematically
in Figure 3.5. Note that they are mutually orthogonal.

In the π-plane the stress components σE and σF appear as shown in Figure 3.6.
Another interesting quantity is the radial distance from the space diagonal to

1 σ 

2 σ

3 σ

Space 
diagonal 

•

Stress point 

D σ

E σ 

F σ

Figure 3.5. Locating the stress point in principal stress space.
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Figure 3.6. Alternative methods for locating the stress point in principal stress space.

the stress point. We can find it easily using the Pythagorean theorem,

(
σ 2

E + σ 2
F

)1/2 =
√

2

3

(
σ 2

1 + σ 2
2 + σ 2

3 − σ1σ2 − σ2σ3 − σ3σ1
)1/2

(3.7a)

=
√

2

3
q (3.7b)

In the second equation above, q is called the deviatoric stress. It can be readily
shown that

q = (
σ 2

1 + σ 2
2 + σ 2

3 − σ1σ2 − σ2σ3 − σ3σ1
)1/2

= 1√
2

[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]1/2

= (
I 2
1 − 3I2

)1/2
(3.8)

where I1 and I2 are, respectively, the first and second principal stress invariants.
Note also that in a triaxial test, where σ2 and σ3 are equal, q reduces to (σ1 −σ3),
which is identical to the stress deviator introduced in Chapter 2.

A final quantity of interest, also shown in Figure 3.6, is the angle between
the horizontal (E) direction and the radial dimension to the stress point. We see
that

tan θ = σF

σE
= 2σ1 − σ2 − σ3√

3 (σ3 − σ2)
(3.9)

The angle θ is called the Lode angle after the German engineer W. Lode who
first used it in 1926.

To summarise, we see that, in principal stress space, the stress point may
be described in any of three ways: by the principal stresses σ1, σ2, σ3, by the
stress components σD, σE , σF , or by the quantities p, q, θ that virtually create
a separate polar coordinate system. In some cases one description may be
preferable to another, but all three describe exactly the same state of stress in
the body.
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Figure 3.7. Symmetries in principal stress space.

Finally, we can remark that there are certain symmetries that must hold for
any yield surface in the π-plane. To see this, note that if the principal stresses
(σ1, σ2, σ3) result in plastic behaviour, then so also must (σ1, σ3, σ2) because
of isotropy. Referring to Figure 3.7, it is clear that the yield surface must be
symmetric with respect to the line L L ′. Similar arguments lead to symmetries
about lines M M ′ and N N ′ as well. These symmetries divide the π-plane into
six 60◦ segments that must possess similar properties.

3.3 Yield surfaces for metals

The first yield criterion for metal was suggested by the French engineer
H. Tresca in 1864. His experiments suggested that plastic behaviour would
commence when the maximum shear stress reached a critical value. Recalling
Mohr’s circle, we see that the maximum shear stress will always be half the dif-
ference between the major and minor principal stresses. One can easily discover
the critical stress by performing a simple tension test on a bar of the metal. If
we denote the tensile stress at failure (i.e. the onset of plastic behaviour) by σT ,
then the maximum shear stress is exactly half σT . Therefore if we consider the
case where σ1 ≥ σ2 ≥ σ3, the yield function f in (3.2) becomes (σ1 − σ3)/2
and the constant k is σT /2. The yield criterion can be written as

σ1 − σ3 = σT (3.10)

Note that the surface defined by (3.10) does not depend on the mean stress p.
The function f depends only on the diameter of the Mohr circle. This implies
that the yield surface image in the π-plane will be independent of the position
on the space diagonal. We can investigate the yield surface by considering the
values of σE and σF that correspond with (3.10). If we eliminate σ2 from the
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Figure 3.8. The Tresca yield surface.

second two equations of (3.6) we find

−σE +
√

3 σF =
√

2(σ1 − σ3) =
√

2 σT (3.11)

which shows the yield surface is a straight line in the π-plane. In fact, because
of symmetry, the line can apply only over one of the 60◦ segments shown in
Figure 3.7. To map the entire surface, one must consider the other possibilities,
i.e. σ1 ≥ σ3 ≥ σ2, σ2 ≥ σ1 ≥ σ3, and so on. The complete yield surface has
the shape of a regular hexagon. Its intersection with the π-plane is shown in
Figure 3.8.

It is possible to rewrite Tresca’s yield criterion in terms of p, q, θ or the stress
invariants I1, I2, I3, but the equations would be much more complex than the
simple form given in (3.11). The more important issue here is the visualisation
of the yield surface. In principal stress space we see an infinitely long prism.
Its cross-section is a hexagon and its central axis is the space diagonal. The
volume enclosed, by definition, represents the set of all stress states for which
the material will be elastic. If the stress point touches the surface, then yielding
will occur.

The second yield criterion of general interest for metals was suggested by
R. von Mises in 1913. He suggested that yield will occur when the value of
the deviatoric stress q reaches a critical value. We write the von Mises yield
condition as

q = k (3.12)

Recalling equation (3.7b) we see that yield will occur when, in the π-plane, the
radial distance from the origin to the stress point reaches the value

√
2/3 k. As

with Tresca’s criterion, we can determine the value of k from a simple tension
test. If we set σ1 = σT , the tensile yield stress, and we let σ2 = σ3 = 0, then
we find that q is exactly σT and therefore so is k. An alternative explanation for
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Figure 3.9. The von Mises yield surface.

Mises’ criterion was supplied by the German engineer H. Hencky. In 1924 he
pointed out that (3.12) is equivalent to requiring that the elastic stored energy
owing to distortion (shearing) must equal a critical value. The intersection of
the von Mises surface with the π-plane is a circle passing through the vertices
of the Tresca hexagon (Figure 3.9). The complete surface is an infinitely long
cylinder whose central axis coincides with the space diagonal.

When a ductile metal yields we see, on a microscopic level, displacements
occurring between the atoms that make up the crystal lattice. These are called
dislocations. A dislocation can move through the lattice, displacing one atom
after another producing a small, irrecoverable deformation. Very large numbers
of dislocations may occur as the applied stress reaches the yield criterion, and
they will be manifest on a macroscopic level as a plastic deformation. This is
not exactly the situation one envisions in a soil as it approaches failure, but some
similarities may exist. On a macroscopic level both a ductile metal and a soft clay
may appear to flow when the stresses become severe. Both metals and soils often
exhibit localisation of deformation within relatively narrow regions or bands
when failure is imminent. On a microscopic level, dislocations in the atomic
lattice of a metal bear at least a vague similarity to the fracture and rearrangement
of particles in a yielding soil. Workers in geotechnical engineering have often
attempted to adapt aspects of metal plasticity theories for use in soil mechanics.
The reverse, however, is also true since the very first practical yield criterion
was derived specifically for soil. It was the work of the great French engineer
Charles Augustus Coulomb.

3.4 The Coulomb yield criterion

Coulomb wrote his first scientific paper in 1773. In it he considered a number
of problems involving the strength of building materials prevalent in his day,
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Figure 3.10. The Coulomb failure criterion.

namely wood, stone, masonry and soil. His interest in soil stemmed from the
design of retaining walls. As a military engineer he had been involved in the
construction of several large earth-retaining structures. He began by observing
that all the materials derived strength from two sources: cohesion and friction.
His observations of real soils suggested that failure will usually be associated
with a surface of rupture within the soil mass. Restricting attention to this
surface he wrote his failure criterion as

τ = c + σ tan φ (3.13)

where τ and σ represent the shearing stress and normal stress on the physical
plane through which material failure occurs. The constant c is called the cohe-
sion. It has dimensions of stress. The quantity tan φ is similar to a coefficient
of friction. The angle φ is referred to as the angle of internal friction. Coulomb
did not write the criterion exactly as we have done here, but his words clearly
expressed the meaning we associate with the equation today.

We can recast (3.13) in the form of (3.2) by referring to Mohr’s circle. The
graph of (3.13) is a straight line on the Mohr diagram as shown in Figure 3.10.

If failure is to occur for a combination of principal stresses σ1 ≥ σ2 ≥ σ3,
the critical Mohr stress circle, derived from σ1 and σ3 must be a tangent to this
line. Therefore, the values of τ and σ can be related to the principal stresses σ1

and σ3 by considering the geometry of the dashed triangle

τ = 1

2
(σ1 − σ3) cos φ

(3.14)
σ = 1

2
(σ1 + σ3) − 1

2
(σ1 − σ3) sin φ

Using these relations in (3.13) we find

σ1(1 − sin φ) − σ3(1 + sin φ) = 2 c cos φ (3.15)

Relating this expression to (3.2) we see the yield function f on the left-hand
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side. On the right-hand side is the constant k. Note that f does not depend upon
the intermediate principal stress σ2.

To discover the form of the Coulomb surface in the π-plane, we can begin
by inverting equations (3.6). This gives

σ1 = 1√
3
σD +

√
2

3
σF

σ2 = 1√
3
σD − 1√

2
σE − 1√

6
σF (3.16)

σ3 = 1√
3
σD + 1√

2
σE − 1√

6
σF

Substituting the first and last of these equations into (3.15) gives

−
√

3 σE (1 + sin φ) + σF (3 − sin φ) = 2
√

6 c cos φ + 2
√

2 σD sin φ (3.17)

We have moved σD to the right-hand side of this equation since it will be constant
in the π-plane. Equation (3.17) shows that σE and σF are linearly related, and
therefore the intersection of the yield surface with the π-plane will be a straight
line. Of course the straight line will only apply over one of the 60◦ segments,
exactly the same as for the Tresca yield surface. Here, however, there are two
important differences with respect to the Tresca surface. The first is that the
relative slopes of the surface in the various 60◦ segments are different. We will
see this more clearly in a moment. The second and more important difference is
this: the size of the surface depends upon σD and hence upon the mean stress p.
Graphing the yield surface for all six of the 60◦ segments results in the irregular
hexagonal shape shown in Figure 3.11. For the purposes of constructing this
figure we have taken φ to be 30◦.

Each of the vertices of the hexagon has a particular physical meaning. All
vertices occur on the lines of symmetry where two of the principal stresses are
equal. The uppermost vertex corresponds to the condition where σ1 > σ2 = σ3.

3σ2σ

1σ

Figure 3.11. Cross-section through the Coulomb yield surface.
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The lowermost vertex is directly opposite and it corresponds to σ1 < σ2 = σ3.
Each of the other vertices is obtained by permuting the indices in these two
expressions. We can relate each vertex physically to a type of triaxial test in
the laboratory. The major vertices such as the uppermost one represent con-
ventional compression triaxial tests. The minor vertices, such as the lowermost
one, represent triaxial extension tests. The triaxial extension test is performed
in exactly the same way as a compression test, but, after application of the cell
pressure, the axial stress is reduced rather than increased. The principal stresses
then have the form σ1 < σ2 = σ3.

The resemblance between the Coulomb and Tresca surfaces is more than a
passing one. Note that if we set φ = 0 in (3.13), Coulomb’s criterion is es-
sentially the same as Tresca’s, namely that failure occurs when the greatest
shear stress reaches a critical value. If we set φ = 0 in (3.17), we obtain (3.11)
provided we set 2c = σT . The difference between the yield surface shapes in
the π-plane stems solely from φ. But this is not the most important differ-
ence. That distinction belongs to the dependence of Coulomb’s criterion on
the mean stress p. Note how σD (and hence p) enters the right-hand side of
(3.17). Because of this, the size of the yield surface grows as the mean stress
increases. Whereas Tresca’s surface was an infinitely long uniform hexago-
nal prism, Coulomb’s surface has an expanding pyramid shape as shown in
Figure 3.12.

We can see a less complicated picture if we consider the intersection of the
yield surface with the (σD, σF )-plane. This is shown in Figure 3.13. The yield
surface is now just the two straight lines shown in the figure. The upper line
corresponds to (3.17) with σE set to zero. The lower line corresponds to the
lowermost vertex of the Coulomb hexagon. To find its equation we consider the

σ3

σ2

σ1

Space
diagonal  

Figure 3.12. Perspective view of the Coulomb yield surface.
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Figure 3.13. Long section through the Coulomb yield surface.

case where σ1 < σ2 = σ3. For this situation, (3.15) is replaced by

σ3(1 − sin φ) − σ1(1 + sin φ) = 2 c cos φ

Then using (3.16) to replace σ1 and σ3 we find
√

3 σE (1 − sin φ) − σF (3 + sin φ) = 2
√

6 c cos φ + 2
√

2 σD sin φ (3.18)

and the equation of the lower line is obtained by setting σE = 0.
In this figure, note how the magnitudes of the slopes of the failure lines differ.

The extension test leads naturally to a weaker condition than does the compres-
sion test. Also, note how the cohesion controls the extent of the negative values
for σD . There are obvious parallels between this diagram and the more common
Mohr diagram such as that in Figure 3.10, but the two diagrams are, in fact,
complementary. Figure 3.13 is a slice through the general three-dimensional
yield surface shown schematically in Figure 3.12.

We must also note here that nothing has been said concerning effective or
intergranular stress associated with particulate materials such as soils. In fact, all
of the normal stresses in these equations may be effective stresses. Specifically,
we assume that the stress σ in (3.13), as well as all of the principal stresses
σ1, σ2, σ3, and the stress component σD measured on the space diagonal, are
all effective stresses. The remaining stresses, τ, σE , σF , are shear stresses and
by definition are unrelated to pore fluid stresses.

At this point one might ask whether the Coulomb hexagonal yield surface is
in fact realistic. Only a small number of real soils have been sufficiently well
tested to give an answer to this question. The problem lies in creating test con-
ditions in which all three principal stresses can be varied independently. The
conventional triaxial test, despite its name, does not permit this. A much more
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specialised test configuration is needed, the so-called cubical true triaxial test.
As its name suggests, the test employs a cubical soil sample. Normal stresses
are applied to each face and these are the principal stresses. They may be varied
independently as the sample is loaded to the point of failure. One interesting
thing to do with such a device is to carry out a sequence of tests for which, at
the point of failure, the principal stresses are all different, but the mean stress
p remains the same. In this way we may plot actual points corresponding to
failure on the π-plane. For the small number of soils that have been tested, it
appears the Coulomb hexagon is probably a reasonably good approximation
for the true locus of yielding in the π-plane. The data suggest that the true sur-
face is similar to but somewhat smoother than the theoretical hexagon. This is
perhaps not surprising since the sharp vertices of Coulomb’s surface would be
very demanding for nature to reproduce. Those sharp vertices are also demand-
ing from a computational viewpoint. Because of this, some researchers have
suggested slight modifications to Coulomb’s criterion that produce smoother
surfaces.

3.5 Modifications to Coulomb’s criterion

There are three modified forms of the Coulomb criterion that we will consider.
The first was proposed in 1952 by two of the most prominent researchers from
the field of both metal and soil plasticity: D.C. Drucker and W. Prager. They
suggested that the von Mises yield criterion could be modified easily by intro-
ducing a dependence on the mean stress p,

q − ξp = k (3.19)

Here the additional term ξp will change the von Mises yield surface from an
infinitely long cylinder to a cone. We can select the values of the constants ξ

and k in such a way that the cone will agree with the Coulomb surface at the
major vertices. First, recall that√

2

3
q =

√
σ 2

E + σ 2
F ,

√
3 p = σD (3.20)

Then for the case where σ1 > σ2 = σ3, we have σE = 0 and√
3

2
σF − ξ√

3
σD = k (3.21)

Comparing this with (3.17) (after setting σE = 0) we conclude

k = 6c cos φ

3 − sin φ
, ξ = 6 sin φ

3 − sin φ
(3.22)
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Figure 3.14. The Drucker–Prager and Coulomb yield surfaces.

The graph of Drucker and Prager’s yield surface in the π-plane is a circle that
touches the Coulomb hexagon as shown in Figure 3.14.

Thinking again about real soil response, tests show that the Drucker–Prager
surface is not as accurate a representation as the Coulomb hexagon. Even the
relatively common triaxial extension test gives results that lie far closer to the
minor vertex of the hexagon than to the circle. Nevertheless, the Drucker–Prager
criterion possesses the significant virtue of simplicity, and because of this it is
an important addition to the repertoire of the soil plastician.

Other versions of the Drucker–Prager surface have been put forward. For
example, a smaller cone which intersects the Coulomb hexagon at the minor
vertices may be constructed by replacing (3.22) by

k = 6c cos φ

3 + sin φ
, ξ = 6 sin φ

3 + sin φ

The second modified form of Coulomb’s surface was developed in 1975 by
P.V. Lade and J.M. Duncan. Their yield criterion was proposed expressly for
cohesionless soils. It can be written in the form

σ1σ2σ3 = κp3 (3.23)

where κ is a constant. On the left-hand side of this equation we see the product
of all three principal stresses, which we know to be the third principal stress
invariant. In the form shown above, the criterion looks deceptively simple. If
we recast it using σD, σE and σF , it appears a bit more formidable.

3σD
(
σ 2

E + σ 2
F

)+
√

2 σF
(
3σ 2

E + σ 2
F

) = 2(1 − κ)σ 3
D (3.24)

This form is more useful for visualising the yield surface. First, we need to
select an appropriate value for the constant κ . This is usually done by requiring
(3.23) and (3.24) to agree with the Coulomb hexagon at its major vertices. Then
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taking σ1 > σ2 = σ3, we can set both σE = 0 and c = 0 in (3.17) to obtain

σF = 2
√

2 σD sin φ

3 − sin φ
(3.25)

Note that we have set c = 0 in this equation since the Lade–Duncan criterion
applies to cohesionless soils. Using this, together with σE = 0 in (3.24) we find

κ = 1 − 12 sin2 φ

(3 − sin φ)2
+ 16 sin3 φ

(3 − sin φ)3
(3.26)

If φ = 30◦ for example, we find κ = 0.648. Next, we wish to graph the shape
of the yield surface in the π-plane. To do so, we can solve (3.24) for σE

σE = ±
[

(1 − κ)σ 3
D + √

2 σ 3
F − 3σDσ 2

F

3σD + 3
√

2 σF

]1/2

(3.27)

which shows immediately that the Lade–Duncan surface will be symmetric
about the σF axis in the π-plane. We now hold σD constant and graph σE for a
range of values of σF . This gives a graph such as that shown in the right half of
Figure 3.15.

Also shown in Figure 3.15 is the third modification of the Coulomb criterion.
This was derived by H. Matsuoka and T. Nakai in 1974. Their yield equation
can be written as

σ1σ2σ3 = ξ p(σ1σ2 + σ2σ3 + σ3σ1) (3.28)

where ξ is a constant. This equation is also restricted to cohesionless soils.
Remarkably, it agrees with the Coulomb hexagon at both major and minor
vertices, provided the appropriate value for ξ is used. If we recast (3.28) in
terms of σD, σE , σF , we find

2σ 3
F − 6σ 2

EσF + 2
√

2 (1 − 3ξ )σ 3
D − 3

√
2 (1 − ξ )σD

(
σ 2

E + σ 2
F

) = 0 (3.29)
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Lade and DuncanMatsuoka
   and Nakai
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Figure 3.15. Lade–Duncan and Matsuoka–Nakai yield surfaces compared with the
Coulomb yield surface.
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Using this together with (3.17) we find the expression for ξ necessary to force
the yield locus to agree with the Coulomb hexagon,

ξ = 3(1 − sin φ − sin2 φ + sin3 φ)

9 − 9 sin φ − sin2 φ + sin3 φ
(3.30)

The graph of the yield locus in the π-plane can be constructed in the same
way as the Lade–Duncan surface was. Both the Lade–Duncan surface and the
Matsuoka–Nakai surface provide good agreement with the available cubical
triaxial test data.

At this point, one might be excused for thinking the last word on yield surfaces
for soil has been written, but that would be a mistake. There remains a question
to which none of these criteria can provide adequate answers. The question
is: what happens if we simply increase the mean stress without applying any
shearing? The answer is discussed in the next section.

3.6 The Cambridge models

Recall the void ratio versus the logarithm of effective stress response from an
oedometer test discussed in Chapter 2. We realise the void ratio is directly
related to the volumetric strain, e, and we can, if we wish, replace the applied
stress σxx by the mean stress p. Thus the usual curve of the void ratio versus
the logarithm of the effective stress can be regarded as being analogous to
the e–log p response, or vice versa. We are aware that typical undisturbed soil
samples produce loading curves that display a distinctive shape similar to that in
Figure 3.16. We see two (more or less) straight-line segments joined by a smooth
bend or ‘knee’. The level of stress at the knee is called the preconsolidation
pressure. It is interpreted as being the greatest vertical effective stress the soil

plog

Reloading (elastic)

Virgin compression
(plastic)

Unloading

e

Preconsolidation pressure

Figure 3.16. Typical one-dimensional compression response for an undisturbed soil
sample.
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has experienced in its past history. The upper straight portion is interpreted as
reloading, since presumably the sample was unloaded when it was removed
from the ground. The reloading continues until the preconsolidation pressure is
reached. At that point the soil skeleton enters a new loading regime. At no time in
its past history has the matrix of particles been required to support the intensity
of stress that now exists. We refer to this as virgin or normal compression. The
e–log p response continues as a new straight line but with a steeper slope. If the
soil is then unloaded, the unloading response is found to parallel the original
loading response.

Clearly this cycle of loading and unloading has produced permanent defor-
mation of the soil skeleton. That alone would suggest plastic behaviour; but, in
addition, we observe that reloading again will follow the unloading curve until
the latest peak pressure is reached, whereupon the response continues down the
virgin compression curve. Thus the straight-line segment with a flatter slope
appears to represent an elastic response, while the steeper virgin compression
curve represents plastic yielding. The somewhat vaguely defined preconsolida-
tion pressure represents the yield stress.

If we are to represent these effects, it appears that the yield surface must
somehow close on the space diagonal. Sometimes this is termed a ‘capped’
yield surface. For smaller values of p, the surface can expand, but if p ap-
proaches the preconsolidation pressure the surface must contract and eventu-
ally close on itself as illustrated in Figure 3.17. The notion of a completely
closed yield surface is a radical departure from the basic ideas of metal plas-
ticity, and a significant change to the ‘Coulomb-type’ yield surfaces discussed
above. There are also obvious questions concerning what happens to the surface
when yielding does occur. If the stress point simply follows the space diago-
nal until it reaches the closed surface, how can we arrange to let the surface
grow under the influence of further increase in p? The answer to that ques-
tion is a phenomenon called hardening; it will be deferred until Chapter 7.

1σ

2σ

3σ

Space
diagonal

Capped yield  
surface

Figure 3.17. A closed or capped yield surface in principal stress space.
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For the time being we only want to consider two special cases of closed
surfaces.

The first researchers to propose the concept of a closed yield surface were
from the Cambridge University soil mechanics group. The ideas they formulated
have given rise to a host of new soil plasticity models; too many to discuss in a
basic text such as this. We will confine our attention to two of the earliest yield
criteria named Cam Clay and Modified Cam Clay.

The first complete plasticity theory for soil incorporating a closed yield sur-
face was devised by K.H. Roscoe together with several co-workers. It was
called the Cam Clay model (named after the river Cam, which flows behind the
Cambridge Engineering Department laboratories). Their yield criterion can be
written in terms of the invariants q and p as follows:

q + Mp

(
ln

p

pc
− 1

)
= 0 (3.31)

Here both M and pc are material parameters, while q and p are the deviatoric
and the mean stress, respectively. There are certain similarities between this
equation and the Drucker–Prager yield surface in (3.19). In the π-plane the
Cam Clay surface will be circular just as the Drucker–Prager surface was. The
major difference lies in the term in parentheses. This term causes the surface to
close on the space diagonal. If we plot (3.31) we find the situation depicted in
Figure 3.18.

We can visualise the full yield surface as being the curved line in Figure 3.18
revolved about the mean stress axis as shown in Figure 3.19. In principal stress
space we see a pointed, bullet-shaped surface aligned with the space diagonal.
The parameter pc is called the critical state pressure. It will gain more sig-
nificance in Chapter 7, but for the time being it is simply the ordinate of the
maximum deviatoric stress. We see from (3.31) that when p = pc, the devia-
toric stress is given by q = Mp = Mpc. If we wish this surface to agree with
the major vertices of the Coulomb hexagon when p = pc, then we make
M = 6 sin φ/(3 − sin φ), the same as the constant ξ in (3.22).

p

q

pc

pc x exp(1)

Figure 3.18. Cam Clay yield surface in (q, p)-space.
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σ3

σ2

σ1

Space
diagonal  

Figure 3.19. Perspective view of the Cam Clay surface in principal stress space.

p

q

cp

pc × exp (1)

cp2

Figure 3.20. Modified Cam Clay yield surface.

The pointed vertex at the tip of the Cam Clay surface was viewed by some
researchers as being a weakness of the initial Cambridge model. The Modified
Cam Clay model eliminated the point and introduced an elliptical surface with
the form

q2 = M2 p(2pc − p) (3.32)

where M and pc play the same roles as in (3.31). The shape of the yield surface
is now as shown in Figure 3.20. The original Cam Clay surface is also shown
as a dashed line. The two surfaces agree exactly when p = pc, but the modified
surface closes on the mean stress axis at a value of 2pc rather than at 2.718pc

for the original model.
Both Cam Clay and Modified Cam Clay have the property of permitting

plastic behaviour in response to an isotropic stress increase; the motivation for
closing the surface on the mean stress axis mentioned at the beginning of this
section. Later we shall see that they possess additional virtues. They offer the
ability to predict more rational estimates for strains than do any of the other
yield surfaces discussed in this chapter.
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3.7 Two-dimensional yield loci

Sometimes it is useful to consider just two stress components in visualising
the yield locus. This will often be the case in problems dealing with plane
stress or plane strain. For example, if we wished to consider plane strain where
the extensional strain associated with σ2 is zero, then it may be convenient
to plot the yield surface as a function of σ1 and σ3. Our objective here is to
investigate the resulting two-dimensional yield surfaces that correspond to this
condition.

We can begin by considering the Tresca criterion. If we assume σ1 ≥ σ2 ≥ σ3

then (3.10) results. But there are five other possibilities, one example is σ2 ≥
σ1 ≥ σ3. Altogether the six possible arrangements of the principal stresses give
the six sides of the Tresca hexagon shown in Figure 3.8. Let us suppose that all
the three principal stresses are initially equal to zero. Then consider the range
of possible values for σ1 and σ3 that will satisfy the Tresca yield criterion.

With σ2 = 0, the six possible combinations for the principal stresses become

σ1 ≥ 0 ≥ σ3, 0 ≥ σ3 ≥ σ1, σ3 ≥ σ1 ≥ 0

σ3 ≥ 0 ≥ σ1, 0 ≥ σ1 ≥ σ3, σ1 ≥ σ3 ≥ 0

}
(3.33)

In each case Tresca’s criterion gives an expression of the form

σm − σn = σT (3.34)

where m and n take distinct values from 1, 2 and 3. Thus we find six straight lines
to graph in the (σ1, σ3)-plane. The resulting yield locus is shown in Figure 3.21.
For example, the uppermost horizontal line corresponds to m = 1 and n = 2
in (3.34).

Figure 3.21 gives us a picture of the yield locus when all three principal
stresses are zero. If we hold σ2 = 0, then a line can map the (σ1, σ3) stress
point trajectory on the plane of the figure. In fact, σ2 may not remain equal to

σ3

σT

σ1

σT

Figure 3.21. Two-dimensional Tresca yield surface.
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σ3

σ1

Figure 3.22. Tresca and von Mises yield surfaces in two dimensions.

zero. For example, in plane strain elasticity, Hooke’s law immediately shows
that σ2 = ν(σ1 + σ3). Therefore only stress paths with σ1 = −σ3 will ensure
σ2 = 0. Nevertheless, even if σ2 does change, the only effect on Figure 3.21
would be to shift the origin. Yield will occur whenever the two-dimensional
stress point touches the yield locus.

The von Mises criterion was given by (3.12). If we set σ2 = 0 in (3.8) we
find

q = (σ 2
1 + σ 2

3 − σ1σ3
)1/2

If we use this in (3.12), and replace k by σT , the resulting graph of σ1 versus σ3 is
shown in Figure 3.22. The Tresca condition is also shown. As we might expect
from our experience with the π-plane, the von Mises condition passes through
the ‘corners’ of the Tresca polygon.

Physically, we can think of Figures 3.21 and 3.22 as being the intersection of
the three-dimensional yield surfaces with the plane surface defined by σ2 = 0.
In the case of Tresca, the three-dimensional surface is a hexagonal prism. Its
intersection with the σ2 = 0 surface gives the polygon shown in Figure 3.21.
Similarly, the von Mises cylinder gives the ellipse shown in Figure 3.22.

Now we can move on to the Coulomb yield surface. We expect to find a
similar result here as for the Tresca criterion. Setting σ2 = 0 and considering
each of the six possible combinations of principal stresses shown in (3.33) we
find the two-dimensional yield locus shown in Figure 3.23. Each straight-line
segment corresponds to an equation of the form

σm(1 − sin φ) − σn(1 + sin φ) = 2c cos φ (3.35)

where once again m and n take on distinct values between 1 and 3. As an
example, the uppermost horizontal line in Figure 3.23 corresponds to m = 1
and n = 2. For this figure we have taken φ to be 30◦. Use of a different value
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σ3

σ1

1

cos φ2
−sin φ
c

1+sin φ

cos φ2− c

Figure 3.23. Two-dimensional Coulomb yield surface.

σ1

σ3

σ1 = σ3

  6c cos φ 

  2c cos φ 

3−sin φ

1−sin φ

Figure 3.24. Two-dimensional Drucker–Prager and Coulomb yield surfaces.

of φ would alter the shape of the figure. If we were to set φ equal to zero, the
Tresca polygon would re-emerge.

Finally, we can investigate the two-dimensional form of the Drucker–Prager
condition (3.19). Recalling that this condition was represented by a cone-shaped
surface in three dimensions, we expect to find a conic section in the σ2 = 0
plane. Moreover, looking at Figure 3.14, we would anticipate that the conic
section will agree with the Coulomb polygon at three vertices. Setting σ2 = 0
in both q and p, and using the result in (3.19) together with (3.22) we find

(
σ 2

1 + σ 2
3 − σ1σ3

)1/2 − 2 sin φ

3 − sin φ
(σ1 + σ3) = 6c cos φ

3 − sin φ
(3.36)

The graph of this equation is shown in Figure 3.24. The corresponding Coulomb
yield locus is also shown. The value of φ is assumed to be 30◦.
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The surprising observation in Figure 3.24 is the degree by which the Drucker–
Prager failure condition deviates from the Coulomb polygon in the upper right-
hand quadrant. This quadrant corresponds to the two conditions where σ1 ≥
σ3 ≥ 0 and σ3 ≥ σ1 ≥ 0. For each case one of σ1 or σ3 is the intermediate
principal stress while the other is the major principal stress. We can easily
investigate the situation where σ1 and σ3 are equal. The Coulomb condition
gives

σ1 = σ3 = 2c cos φ

1 − sin φ
(3.37)

This follows directly from the Coulomb yield criterion when σ2 = 0 is the
minor principal stress. The corresponding expression for the Drucker–Prager
condition is

σ1 = σ3 = 6c cos φ

3 − 5 sin φ
(3.38)

This follows from (3.19) together with (3.36) and σ1 = σ3. Clearly (3.38)
gives a significantly greater range for the yield stress for these conditions than
does (3.37). For φ = 30◦, the ratio of the Drucker–Prager yield stress to that
for Coulomb is exactly 3. Alternative forms of the Drucker–Prager criterion,
which do not pass through the major vertices of the Coulomb hexagon, will
naturally give a better result in the two-dimensional case.

It is possible to graph the Lade–Duncan and Matsuoka–Nakai criteria for
two-dimensional stress conditions, but this will be left as an exercise for the
reader. As one might expect, both criteria will agree more closely with the
Coulomb polygon than does the Drucker–Prager condition.

3.8 Example – plane strain

Even though two-dimensional yield representations are quite useful for visual-
isation of stress conditions, there are some potential difficulties involved. The
difficulties arise because of the dependence of the Coulomb yield criterion on
the mean stress (cf. (3.17)). In many problems the mean stress will change and
this will cause the position and the size of the two-dimensional yield locus to
change as well.

We can illustrate the difficulties that may occur by considering a simple
example. Suppose we have a block of cohesionless sand loaded in plane strain
conditions as shown in Figure 3.25. In the figure the coordinate directions are
principal directions, and the z-direction is the direction of zero extensional
strain. The stress matrix is diagonal and the three normal stresses are principal
stresses. We will assume that the block is initially unstressed, then the stresses
σxx and σyy are increased, equally, to a value of p0. We also assume isotropic
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x

y

σxx

σyy

Figure 3.25. Example problem – a block of sand in plane strain with applied normal
tractions.

elastic behaviour for the sand during the application of p0. Thus the three
components of stress are

σxx = σyy = p0, σzz = 2ν p0 (3.39)

where ν is Poisson’s ratio and we note that 0 ≤ ν ≤ 1
2 . Also note that σzz =

ν (σxx + σyy) for plane strain conditions. We will begin by finding the two-
dimensional form of the Coulomb yield locus for this condition.

It should be carefully noted that the two-dimensional yield locus we seek
will not necessarily be the yield locus at later stages of the problem. Altering
any stress component may alter the mean stress and hence alter the size and
position of the yield locus. For the stress state given in (3.39), we can locate
the two-dimensional yield locus as follows. Since we want the yield locus in
the (σxx , σyy)-plane, we hold σzz constant. Then the greatest possible values of
σxx and σyy can be obtained from the Coulomb criterion with σzz as the minor
principal stress. Since the material is cohesionless, we have c = 0, and the
Coulomb criterion (3.15) gives

max σxx = max σyy = Nσzz = 2 ν N p0 (3.40)

where

N = 1 + sin φ

1 − sin φ
(3.41)

The smallest possible values for σxx and σyy are found by taking σzz to be the
major principal stress. This gives

min σxx = min σyy = 1

N
σzz = 2ν

N
p0 (3.42)

These minimum and maximum values for σxx and σyy define the horizontal
and vertical straight-line segments of the two-dimensional yield surface; they
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σxxmax
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σxxmin

σyymax
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2   N p0

N

2   p0

Figure 3.26. Two-dimensional Coulomb yield surface.

are shown in Figure 3.26. The remaining two sloping sides of the yield locus
correspond to the condition where σzz is the intermediate principal stress. If σxx

is the minor principal stress, we can set it equal to its minimum value and solve
for σyy from the yield criterion,

σyy = Nσxx = N

(
2ν p0

N

)
= 2ν p0 (3.43)

This value, 2ν p0, is the value of σzz and it identifies the four remaining vertices
of the yield locus shown in Figure 3.27.

We can think physically of the yield locus in Figure 3.27 as a slice through
the three-dimensional Coulomb hexagon of Figure 3.12. It is the intersec-
tion of the three-dimensional locus with the plane σzz = 2ν p0. The initial
stress point σxx = σyy = p0 for the initial conditions (3.39) is also shown in
Figure 3.27. The main point we wish to make is this; the yield locus shown in
Figure 3.27 will change for almost any change in the stresses σxx and σyy . This
occurs because of the plane strain condition σzz = ν(σxx + σyy). The only way
one can alter σxx and σyy without changing σzz is to require σxx = −σyy .

Suppose we hold σyy constant while reducing σxx ; that is, let

σxx = p0 − p∗, σyy = p0 = constant (3.44)

The stress trajectory on the two-dimensional yield locus is a horizontal line
moving away from the initial stress point as shown in Figure 3.27. As σxx

decreases, so will σzz . We have σzz = 2ν p0 − νp∗, and this will cause the
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σxx

σyy

2   p0

2   p0

Initial stress
 point

Figure 3.27. Stress point trajectory for example problem.

yield locus to shrink. At some point the value of p∗ will be sufficient so that
σxx will equal σzz . That condition occurs when

p∗ = p0

(
1 − 2ν

1 − ν

)
(3.45)

Up to this point, σzz has been the minor principal stress. If σxx is now further
reduced, it will take the role of the minor principal stress and σzz will be the
intermediate principal stress. We can then reduce σxx further until the Coulomb
yield criterion is satisfied when σxx = σyy/N = p0/N . The corresponding
values for p∗ and for σzz are

p∗ = p0

(
1 − 1

N

)
, σzz = νp0

(
1 − 1

N

)
(3.46)

This sequence of stress change is shown in Figure 3.28 for the case where ν = 1
3

and N = 3. The stress points are marked as 1, 2 and 3, respectively, for the
initial state, the point where σxx = σzz , and the point where yield occurs. The
corresponding yield loci are also shown. Note the extent to which the yield
locus shrinks as σxx decreases.

The situation illustrated in Figure 3.28 is only one possibility. Different values
for the parameters ν and N may result in different outcomes. For example, the
yield locus may shrink more rapidly (due to smaller ν or smaller N ) and it may
fall upon the horizontal stress trajectory before point 2 is reached. The criterion
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Figure 3.28. Successive Coulomb yield surfaces for example problem.

for this condition can be shown to be

N

(
ν

1 − ν

)
< 1 (3.47)

For instance, if ν = 1
3 , any value of N smaller than 2 will result in this alternative

scenario for yielding.
Finally, we can generalise our problem to take cohesive soils into account.

If c is not zero, the yield criterion can be written as (3.15) with the major and
minor principal stresses interpreted appropriatly. We can then rearrange (3.15)
to become

σ1 + c

tan φ
= N

(
σ3 + c

tan φ

)
(3.48)

It is evident from this equation that we need only add the constant c/tan φ to
all stresses in order to account for cohesion. That is, we can define a new stress
matrix

σ∗ = σ + (c cot φ)I (3.49)

Then the stresses σ∗ will obey a cohesionless yield criterion.

Further Reading

Original references for the various yield surfaces in the order introduced
above, with the exception of the Cambridge models, may be found in:

H. Tresca, Sur l’ecoulement des corps solids soumis à de fortes pression, Comptes
Rendus Acad. Sci. Paris, 59, 754 (1864).
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R. von Mises, Mechanik der festen Koerper im plastisch-deformablen Zustand, Nachr.
d. K. Ges. d. Wiss Göttingen, Math.-Phys. Kl., 582–592 (1913).

H. Hencky, Zur Theorie plastisches Deformationes und des hierdurch in Material
hervorgerufenen Nachspannungen, Zeit. Angew. Math. Mech., 4, 323–334
(1924).

C.A. Coulomb, Essai sur une application des règles des maximis et minimis à quelques
problemes de statique relatifs à l’architecture, Mem. Acad. Roy. Pres. divers Sav.,
5, 7 (1776).

D.C. Drucker and W. Prager, Soil mechanics and plastic analysis or limit design,
Quart. Appl. Maths., 10, 157 (1952).

P.V. Lade and J.M. Duncan, Elastoplastic stress strain theory for cohesionless soil,
J. Geotech. Eng. Div. ASCE, 101, 1037 (1975).

T. Matsuoka and K. Nakai, Stress-deformation and strength characteristics of soil
under three different principal stresses, Proc. Japan. Soc. Civil Engineers, 232, 59
(1974).

A detailed discussion of Coulomb’s contribution to geomechanics together with
an English translation of his memoir may be found in:

J. Heyman, Coulomb’s Memoir on Statics – an Essay in the History of Civil
Engineering, Cambridge University Press, Cambridge, 1972.

The Cambridge plasticity models were developed in the sequence of papers
listed below:

K.H. Roscoe, A.N. Schofield and C.P. Wroth, On yielding of soils, Geotechnique, 8,
28 (1958).

K.H. Roscoe and H.B. Poorooshasb, A theoretical and experimental study of strains in
triaxial tests on normally consolidated clays, Geotechnique, 13, 12 (1963).

K.H. Roscoe, A.N. Schofield and A. Thurairajah, Yielding of clays in states wetter
than critical, Geotechnique, 13, 211 (1963).

K.H. Roscoe and J.B. Burland, On the generalised stress–strain behaviour of ‘wet’
clay, in Engineering Plasticity (ed. J. Heyman and F.A. Leckie), Cambridge
University Press, Cambridge, 1968.

The Cam Clay model was described more completely in:

A.N. Schofield and C.P. Wroth, Critical State Soil Mechanics, McGraw-Hill, New
York, 1968.

Exercises

3.1 An undisturbed sample of silty sand taken from an ancient embankment
was tested in a conventional drained triaxial compression test. The effec-
tive confining stress for the test was 70 kPa. The angle of internal friction
for the sample was found to be 32◦.
(a) Calculate the axial stress in the test specimen at failure.
(b) Next, a special triaxial extension test is performed on a similar sample

of the same soil. In this test the mean stress p is held constant – equal



Exercises 81

to the mean stress at failure in the initial compression test. Estimate
the value of the axial stress at failure for this extension test.

(c) For this soil, sketch the likely shape for the cross-section of the three-
dimensional yield surface in the π-plane. Identify the failure points
for the compression and extension tests.

(d) For this soil, sketch the likely shape of the complete three-dimensional
yield surface in principal stress space.

(e) Suppose another sample of the same soil is tested in a drained, cubical
true triaxial device where all three principal stresses can be altered
independently. Given that two of the principal effective stresses are
held constant at 70 and 50 kPa, respectively, estimate two possible
values for the third principal effective stress at failure.

3.2 A sample of dry cohesionless sand is placed in a cubical, true triaxial
device. The sample is first subjected to a hydrostatic stress p = 100 kPa.
Next, the principal stresses are controlled in such a way that

σ1 = p + s, σ2 = p − αs, σ3 = p − (1 − α)s

where α is a constant between 0 and 0.5, and s can be increased conti-
nuously until the sample fails. The angle of internal friction for the sand
is 30◦ and it may be assumed the Coulomb yield condition applies.
(a) Show that the value of s at failure will always be 200 kPa/(4 − 3α).
(b) For values of α ranging from 0.0 to 0.50 in increments of 0.10, calcu-

late the corresponding values at failure for s, σ1, σ2 and σ3.
(c) For each of the values of α in (b), calculate σE and σF .
(d) For each of the values of α, plot the stress point in the π-plane. Note

that the points lie on a straight line.
3.3 A sample of clay is tested in a special test device. In the test, all the

normal stress components are zero (σxx = σyy = σzz = 0). The shear
stress components are controlled in such a way that

σxy = 0, σxz = S, σyz = T

and S and T may be adjusted as the test progresses.
(a) Write out the stress matrix σ in terms of S and T .
(b) Solve the eigenvalue problem to find the values of the three principal

stresses in terms of S and T .
Suppose particular values of S and T result in failure of the clay.
(c) Find the values of mean stress, p, and deviatoric stress, q , in terms of

S and T .
(d) Find the corresponding values of the coordinates σD , σE and σF for

the stress point in principal stress space.
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(e) Plot the locus of all possible stress points for this test in the π-plane.
(f) Given that the cohesion c and angle of friction φ for the clay are

25 kPa and 10◦, respectively, find the set of all possible values for S
and T .

3.4 Create two graphs similar to Figure 3.24 showing the Lade–Duncan and
Matsuoka–Nakai yield loci for the condition σ2 = constant. Take the angle
of internal friction to be 30◦. Use any convenient positive value for the
constant σ2.

3.5 Rework the plane strain example problem at the end of this chapter for
the situation where ν = 1

4 and φ = 15◦. What is the value of p∗/p0 for
which yield occurs?

3.6 Show that the Lode angle θ can also be expressed in the form

θ = 1

3
sin−1

(
−3

√
3 I3

2 I 3/2
2

)



4
Plastic flow

4.1 Introduction

In Chapter 3 we formulated conditions describing when yielding may or may
not occur. In this chapter we begin to explore what may happen if the stress
point arrives at the yield surface. We intuitively expect that yielding will be
accompanied by some form of increased deformation, over and above the elastic
deformation that has gone on while the stress point has been inside the yield
surface. We expect plastic behaviour to be softer than elastic behaviour, with
the result that strains will accumulate more quickly. The term plastic flow is
used to describe the deformation following yield.

One of the main differences between plastic response and elastic response
is that plastic flow will be irreversible. While the material is elastic we can
increase the stress with a consequent increase in strain, and then completely
recover those strains by simply returning the stress state to its initial value. If
yield occurs this will not be possible. Plastic deformation will not be recoverable
from simple unloading. If we do reduce the stress to its initial value we will
recover whatever elastic strain that has occurred in getting to the yield state,
but the plastic strain will be locked within the body.

In order to describe plastic flow we might attempt to derive a constitutive
relationship linking plastic strain to the current stress state. But this will im-
mediately lead to difficulties owing precisely to the irreversibility mentioned
above. There can clearly be no unique one-to-one relationship between plastic
strain and stress since there may be an unknown amount of plastic deformation
already locked within the body at the start of any loading episode. As a result
we choose to seek a relationship between stress and plastic strain rate. By
looking at the rate of change of plastic strain rather than the total amount we
avoid the problem of irreversibility. Of course, if the plastic strain rate is known

83
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throughout some loading process, then a simple integration will give the total
amount of plastic strain that has accumulated during that process.

Obviously, it may be convenient to differentiate between plastic and elastic
strain. We do this by using superscripts. The superscript e denotes elastic strain
while p denotes plastic strain. The total strain is the sum of the elastic and
plastic parts. For example,

εxx = εe
xx + ε p

xx (4.1)

and similar expressions would hold for the other strain components. This decom-
position of strain is central to nearly all theories of plastic material behaviour.

In summary, our goal in this chapter is to make some progress towards es-
tablishing a description for plastic flow based on the rate of change of plastic
strain. We will denote the plastic strain rates using a raised dot, indicating a time
derivative, for example, ε̇ p

xx . Many textbooks prefer the notation δε
p
xx , called the

plastic strain increment. This quantity is basically the same as ε̇
p
xx , but it does

not involve time directly. Of course, we can view time simply as a parameter,
and δε

p
xx then represents the amount of plastic strain occurring within some

given parameter increment. The use of one nomenclature or the other makes no
difference to the end result, but is primarily a matter of personal preference.

Despite the obvious fact that plastic strains may possibly become quite large,
we will continue to use the small-strain definitions introduced in Chapter 1.
This is done partly because of the simplicity inherent in the small-deformation
theory and partly because, in many applications, it is the conditions at the onset
of plastic behaviour that are of most interest, rather than the precise description
of strain magnitude.

4.2 Normality

Our ultimate aim will be to formulate a functional relationship between the
components of the plastic strain rate and the components of stress. It is reason-
able to assume that the components of the plastic strain rate can be arranged into
a square matrix exactly as for the elastic strains. We will denote this matrix by
ε̇ p. We expect ε̇ p to be symmetric and to have the principal values ε̇

p
1 , ε̇

p
2 , ε̇

p
3 .

An important assumption concerning plastic strains relates to Saint-Venant’s
hypothesis. This assumes that the principal directions of both the stress matrix
σ and the plastic strain rate matrix ε̇ p are aligned. If the material is isotropic,
and if ε̇ p depends only on σ, then Saint-Venant’s hypothesis is no longer an
assumption but is required by the rules of linear algebra. In many cases we may
be happy to assume that our material is isotropic, but it may be that ε̇ p possesses
a functional dependence on more than just the components of the stress matrix.
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For example, we might reasonably wish to consider a material for which ε̇ p is
a function of both σ and σ̇. In that case Saint-Venant’s hypothesis might not
be appropriate. Regardless of these considerations we will take Saint-Venant’s
hypothesis as an important assumption for the developments in this chapter.

A consequence of Saint-Venant’s hypothesis is that we can relate stresses and
plastic strain rates spatially by plotting them on the same graph. For example, in
the π-plane we can plot both the principal stresses and the principal components
of the plastic strain rate matrix on the same graph. The axes for σ1 and ε̇

p
1 fall

on the same line, and a similar result applies for the intermediate and minor
principal values of both matrices. Of course, the scales of the respective axes
are different and we are not directly comparing stresses with strain rates, but
the ability to plot both together will be useful in visualising some parts of our
development.

We now want to begin thinking about what happens when the stress point
reaches the yield surface. Some important details can be described using a
simple example. Consider a block of some material resting on a horizontal
plane surface as sketched in Figure 4.1. Let the block have mass M and let the
static coefficient of friction between the block and plane be µ. Suppose we now
apply, in a quasi-static fashion, horizontal forces Fx and Fy to the faces of the
block as shown in the figure. The resultant force acting on the block will be

F =
√

F2
x + F2

y

The criterion for slip between the block and the plane is

F = Mgµ

or

F2
x + F2

y = (Mgµ)2 (4.2)

y

x

yF

xF

Block with mass M

Rigid frictional plane

Figure 4.1. Block sliding on a rigid frictional surface.
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Fx , υx

v

Force point
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Yield surface
υx

υy

Fy , υy

Figure 4.2. Circular ‘yield surface’ for block sliding on frictional surface. Note how the
velocity vector is normal to the circle at the force point.

This expression is clearly analogous to a yield criterion. The forces Fx and Fy

are analogues of the principal stresses. If they satisfy (4.2), slip will occur. The
‘yield surface’ is a circle with radius Mgµ. Evidently the block can be viewed
as a simple model of yielding. Plastic flow is represented by slip.

Let vx and vy be the rates of slip or ‘plastic’ deformation in the x- and
y-directions. We expect that the direction of slip will be aligned with the direc-
tion of the resultant force; that is

vy

vx
= Fy

Fx
(4.3)

where we assume that Fx is non-zero. Now suppose we plot the ‘yield surface’
(4.2) as shown in Figure 4.2. Then for any combination of forces Fx and Fy such
that the ‘force point’ (Fx , Fy) lies on the yield surface, we can also plot the slip
rate vector v with components vx and vy as shown. In the figure we have plotted
v as if it originates at the force point. This is done solely for convenience. In
fact, the vector v could have been plotted from any origin. We choose to plot it
at the force point because that emphasises the fact that its direction is normal
to the yield surface.

If the forces Fx and Fy are reduced so that the force point moves back inside
the circle, then slip ceases. The ‘plastic’ deformations that have occurred are
locked irreversibly into the block. If later the forces are increased and the force
point once again touches the yield circle at some other point, slip begins again
and the vector v will now be normal to the circle at the new point. This idea of
‘normality’ of the slip vector to the yield surface seems intuitively obvious, but
is quite important.

Next, we can define the rate of ‘plastic’ work Ẇ p. This is the rate at which
the forces Fx and Fy do work whenever the block slips. Assuming that Fx and
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Figure 4.3. The prescribed velocity vector must be normal to the circle in order to
maximise the rate of plastic work.

Fy are sufficiently large so that the force point touches the circle we have

Ẇ p = Fxvx + Fyvy (4.4)

Note that Ẇ p is the inner product of the slip rate vector v with the vector F, the
components of which are Fx and Fy .

Now consider a new experiment. Suppose we cause the block to slip in a
certain direction; that is, we prescribe the slip rate components vx and vy . Then
ask the question: what values of Fx and Fy were required to accomplish this
slip? Obviously the answer is found by locating the force point on the circle
circumference where the prescribed slip vector is normal to the circle. That
particular force point defines the appropriate forces Fx and Fy . It is useful to
look at things in this way since we can now see that the required values of Fx

and Fy are those that maximise Ẇ p. Recall that Ẇ p is the inner product v · F.
We can visualise the inner product as being the length of the projection of F on
to the direction of v. Thus, if v were placed at any point on the circumference
of the yield circle, Ẇ p = v · F would be as shown in Figure 4.3. Obviously, the
required forces Fx and Fy will maximise Ẇ p only when v lies normal to the
circle.∗

The idea of maximising Ẇ p is a convenient criterion for selecting the plastic
strain rates when we return to the general problem. Before we do that however,
we can generalise this simple example of sliding to something slightly more

∗ Note that Ẇ p = ‖v‖‖F‖ cos �, where � is the angle between the two vectors. The maximum
value of cos � for � ∈ (0, π/2) occurs when � ≡ 0, that is when the vectors are aligned. Also
note that if � ∈ (0, π ), then negative work is done for � ∈ (π/2, π ), which is a violation of the
laws of thermodynamics. This aspect of normality was exploited by D.C. Drucker in a celebrated
paper discussing the requirements of normality for non-negative work during plastic deformation;
see Appendices E and F.



88 Plastic flow

interesting. Suppose the friction coefficient in the x-direction is different from
that in the y-direction. We might accomplish this by scoring parallel lines in
the y-direction on the base of the block. That would presumably increase the
roughness in the x-direction, as well as in directions intermediate between x
and y. Let µx represent the coefficient of friction in the x-direction and µy the
same quantity for the y-direction.

What would be the result of this change on the yield surface? We might guess
(and probably be accurate in so doing) that the circle would become an ellipse.
The yield condition would become

F2
x

µ2
x

+ F2
y

µ2
y

= (Mg)2 (4.5)

Note that if µx and µy are the same, we recover the original condition (4.2).
The new yield surface is sketched in Figure 4.4.

Now what happens if the force point touches the ellipse? Slip will occur, but
in what direction? We can investigate this question by consulting the plastic
work rate. Equation (4.4) still represents Ẇ p. We wish to maximise Ẇ p subject
to the constraint that Fx and Fy satisfy the yield condition (4.5). A convenient
way to accomplish this is to introduce a Lagrange multiplier into (4.4). We
rewrite (4.4) as

Ẇ ∗
p = Fxvx + Fyvy − λ

[
F2

x

µ2
x

+ F2
y

µ2
y

− (Mg)2

]
(4.6)

where λ is the Lagrange multiplier named after the eminent French mathe-
matician, J.-L. Lagrange. It is undetermined, but since, at yield, the quantity it
multiplies is identically zero, we see that Ẇ ∗

p is the same as Ẇ p. The stationary

Fx , υx

Mgµx

Mgµy

Fy , υy

Figure 4.4. Elliptical ‘yield surface’ for varying friction in different directions.
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Fx , υx

v

F

Fy , υy

Figure 4.5. Normality of the velocity vector maximises the rate of plastic work.

values of Ẇ p are found by setting the partial derivatives of Ẇ ∗
p equal to zero,

∂Ẇ ∗
p

∂ Fx
= vx − 2λ

Fx

µ2
x

= 0 and
∂Ẇ ∗

p

∂ Fy
= vy − 2λ

Fy

µ2
y

= 0 (4.7)

So we conclude that the components of the slip velocity must obey

vx = 2λ
Fx

µ2
x

and vy = 2λ
Fy

µ2
y

(4.8)

We still do not know what the value of λ is, but the direction of slip is known.
We can identify the direction by this ratio

vy

vx
= Fy/µ

2
y

Fx/µ2
x

(4.9)

and this direction is normal to the yield ellipse at the force point as shown in
Figure 4.5.

We now see that maximising Ẇ p has led to the conclusion that the compo-
nents of the slip velocity must be proportional to the components of the gradient
of the yield surface. If we recall that the normal vector to any surface has com-
ponents proportional to the gradient vector for that surface,∗ then it is clear that
normality implies a maximum plastic work rate, and vice versa.

We can now return to the continuum problem where our material is charac-
terised by a particular yield surface f (σ1, σ2, σ3). Plastic flow will occur if the
stress point touches the yield surface anywhere. In this case the plastic work
rate is given by

Ẇ p = tr(σε̇ p) (4.10)

∗ Suppose ϕ(x, y, z) = c, where c = constant, defines a surface in a three-dimensional Euclidean
space. Then the differential of ϕ gives dϕ = ∂ϕ

∂x dx + ∂ϕ
∂y dy + ∂ϕ

∂z dz = 0. We can write this

as the inner product of two vectors: ( ∂ϕ
∂x î + ∂ϕ

∂y ĵ + ∂ϕ
∂z k̂) · (dx î + dy ĵ + dz k̂ ) = 0. The

first of these vectors is the gradient ∇ϕ and the second vector is tangential to the surface. Since
the inner product is zero, we see that ∇ϕ must be perpendicular to the surface.
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If our coordinate system aligns with the principal directions then this becomes

Ẇ p = σ1ε̇
p
1 + σ2ε̇

p
2 + σ3ε̇

p
3 (4.11)

As one might expect from our discussion concerning the sliding block, the plas-
tic work rate will be maximised when the direction of the vector [ε̇ p

1 , ε̇
p
2 , ε̇

p
3 ] is

normal to the yield surface f (σ1, σ2, σ3), so long as we assume that the yield sur-
face shape is convex. Most modern plasticity theories are based on this normality
condition and non-convex yield surfaces are not permitted. The normality con-
dition is not only a convenience, it makes possible the existence of a number
of important theorems. Nevertheless, there is no fundamental reason why nor-
mality must hold. We will base much of the development here on the normality
condition, but acknowledge that it is an assumption and not a physical law.

4.3 Associated flow rules

An easy way to introduce the normality condition is to define a flow rule of the
form

ε̇ p = λ
∂ f

∂σ
(4.12)

Here f denotes the yield condition as a general function of the components of
the stress matrix σ. The partial derivative ∂ f /∂σ implies the derivative with
respect to any stress component from which an expression for the corresponding
component of the plastic strain rate matrix ε̇ p is obtained. The magnitudes of
the components of the strain rate will be undetermined to within λ, which can
be regarded as being similar to the Lagrange multiplier used in (4.6). The only
constraint we place on λ is that it must be positive.∗ Equation (4.12) ensures
that ε̇ p will be normal to the yield surface f . If our coordinate system aligns
with the principal directions of σ, then (4.12) can be written as

ε̇
p
k = λ

∂ f

∂σk
, k = 1, 2, 3 (4.13)

where ε̇
p
k are the principal plastic strain rates and σk denote the corresponding

principal stresses.
Equations (4.12) and (4.13) are called associated flow rules. The adjective

refers to the fact the plastic strains are associated directly with the yield surface.
It is possible to introduce non-associated flow rules where f in either of the
equations is replaced by some other function, say g. Non-associated flow rules

∗ In some works λ appears with a raised dot, λ̇, to emphasise the fact that the dimensions of (4.12)
must be homogeneous. We merely note that our λ has dimensions of 1/time.
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Elastic response

Strain 

Stress
Perfectly plastic flow

Yield stress

Figure 4.6. Stress–strain response for a perfectly plastic material.

will generally negate many of the advantages of the normality condition, but
they may be desirable for certain types of materials or more advanced theories.
We will consider non-associated flow rules later in this chapter.

Note that, because of the undetermined nature of λ, equations (4.12) and
(4.13) do not specify directly the magnitude of the plastic strain rates. This is a
deliberate move. In many cases the magnitude of the plastic strain rate will not
be known unless more information can be supplied. In a general sense we can
consider two cases.

Case 1. Perfect plasticity
We say that a material is ‘perfectly plastic’ if, on yielding, the plastic strains
can grow without bound given that no further change in stress occurs and no
outside constraints are present. The stress–strain response in simple tension
for a perfectly plastic material is illustrated in Figure 4.6. We see linear elas-
tic behaviour until the stress reaches its yield value. After yielding there is
no further change in stress as plastic strains continue to accumulate. The flat
response characterises perfect plasticity. The functional relationship between
plastic strain and stress is multiple-valued, and knowledge of the stress does
not imply that we know the magnitude of the strain. If the strain is specified,
then the stress is known, but not vice versa.

Case 2. Work hardening plasticity
In contrast to perfect plasticity, ‘work hardening’ implies the yield surface may
change in some way once initial yielding has occurred. Usually the way the
yield surface changes is related to the amount of plastic strain or to the amount
of plastic work that has accumulated. This introduces an extra parameter into
the description of the yield surface as was mentioned in Chapter 3. The response
of a work hardening material in simple tension might look something like that
shown in Figure 4.7. Here the stress and strain may have a one-to-one functional
relationship both before and after yield.
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Figure 4.7. Stress–strain response for a work hardening plastic material.

In case 2 it will generally be possible to say how large the plastic strains are
at any time after yield has occurred, but the same cannot be said for case 1.
Often, for a perfectly plastic material, we will not be able to calculate the
amount of plastic straining (although in some problems geometric constraints
may permit us to do so). Nevertheless perfect plasticity may be profitably used
since it permits us to take advantage of certain powerful theorems. There is a
place for both perfect plasticity and work hardening plasticity in the repertoire
of any geotechnical engineer. We will spend the remainder of the book dealing
with one or the other. We begin with a relatively simple example using perfect
plasticity.

4.4 Example – plane strain

Recall the plane strain problem of the idealised cohesionless elastic–plastic
soil described in Chapter 3 (Figure 3.25). We investigated the possible yield
states for this problem in detail. Suppose we reconsider the situation where
σxx is reduced while σyy is held constant as shown in (3.44). The plane strain
assumption implies εzz will be zero throughout the deformation. What will
happen to the other two principal strains εxx and εyy given the material is
perfectly plastic with an associated flow rule?

If we take the initial stress state (3.39) as our reference configuration, then
the elastic strains associated with the horizontal stress trajectory shown in
Figure 3.27 follow immediately from Hooke’s law:

εe
xx = p0

E

[
1 − ν − 2ν2 − (1 − ν2)

p∗
p0

]

εe
yy = p0

E

[
1 − ν − 2ν2 + ν (1 + ν)

p∗
p0

] (4.14)
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p
xxxx εσ ,
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yyyy εσ ,
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yield
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Figure 4.8. Normality of plastic strain rate vector – Coulomb yield surface.

The elastic response continues until the yield locus is reached. The value of
p∗ at yield was given in (3.46) as

p∗
p0

= 1 − 1

N
(4.15)

where N was the abbreviation

N = 1 + sin φ

1 − sin φ
(4.16)

At this point the elastic strains are specified by (4.14) with p∗/p0 being given
by (4.15). The situation is sketched in Figure 4.8 where the stress points marked
1 and 2 correspond to the initial and yield conditions. The yield locus shown in
this figure is the same as the locus shown in Figure 3.28 for ν = 1

3 and N = 3.
If the normality condition applies, the plastic strain rate vector will be aligned

as shown in Figure 4.8. Using the associated flow rule (4.13) with the yield
function specified by

f = σyy − Nσxx (4.17)

we find

ε̇
p
xx = λ

∂ f

∂σxx
= −λ N

ε̇
p
yy = λ

∂ f

∂σyy
= λ

(4.18)

where λ is our unspecified (positive) multiplier. Its dimensions are a pure rate:
(time)−1, but its value is unknown for a perfectly plastic material.
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An interesting point arises here. Since ε̇zz = 0, the volumetric plastic strain
rate is obtained by adding the two rates in (4.18)

ė p = λ (1 − N ) (4.19)

This will be a negative quantity for all values of φ greater than zero. We con-
clude that the plastic flow is dilational. This will always be the case with the
Coulomb yield criterion, regardless of the loading conditions, because of its
mean stress dependence. The same comment applies to the Drucker–Prager,
Lade–Duncan and Matsuoka–Nakai criteria as well. The normality condition
implies a negative plastic volumetric strain rate whenever the shape of the yield
surface expands with increasing mean stress.

4.5 Non-associated flow

If one compares the rate of dilation suggested by (4.19) with data from real soil
tests, it is found that (4.19) predicts values for ė p often far in excess of values
that are realistic. For many soils, shearing is accompanied by compaction rather
than dilation. For other soils no volumetric strain is evident during shearing.
Even for dilating soils, the rate of dilation is usually not as large as given by
(4.19). We can look for a solution to this problem in two places. First, we
recognise that the pressure dependence of the Coulomb criterion is partly re-
sponsible. For compacting soils we would wish the yield surface to grow smaller
with increasing mean stress rather than the opposite. For soils that exhibit no
volumetric strain we would want the yield surface to neither grow nor shrink.
For dilating soils we require an expanding yield surface. While this may ap-
pear to be an impossible wish-list, in fact all three types of behaviour can be
accommodated with the Cam Clay and Modified Cam Clay yield surfaces. The
resulting theory of critical state soil mechanics will be discussed in Chapter 7.
The second way to attempt to solve the problem of excessive dilation is to
abandon the normality condition. We consider this possibility now.

Non-associated flow rules are mathematically similar to (4.12) and (4.13)
with the essential difference being that the yield function f is replaced with
another function, g = g(σ) for example. The function g is referred to as the
plastic potential function. In one sense we can look on (4.12) and (4.13) as
being special cases of the more general flow rule

ε̇ p = λ
∂g

∂σ
(4.20)

with g = f . Non-associated flow occurs when g is different from f . Then the
flow rule (4.20) gives plastic strain rates that will not be normal to the yield
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surface. There are disadvantages to dropping the normality condition, especially
with regard to application of certain important theorems, but the problems of
excessive plastic dilation can be rectified.

As an example, suppose we return to the plane strain problem of Figure 3.25.
We can simply let g be this function (compare with (4.17))

g = σyy − Mσxx (4.21)

where

M = 1 + sin ψ

1 − sin ψ
(4.22)

Here ψ is the angle of dilatancy for the material. Now, instead of (4.18) we
have

ε̇
p
xx = λ

∂g

∂σxx
= −λ M

ε̇
p
yy = λ

∂g

∂σyy
= λ

(4.23)

Again, since ε̇zz is zero, the plastic volumetric strain rate becomes

ė p = λ (1 − M) (4.24)

Clearly, we can adjust the value of ψ to provide whatever plastic volumetric
strain rate we require.

4.6 A loading criterion

We are aware now that the elastic response will prevail so long as the stress
point lies inside the yield surface, and a plastic response occurs whenever the
stress point lies on the yield surface. This is sufficient to discriminate between
elastic and plastic behaviour when we are concerned only with stress. When
we deal with flow and strain however, we need to think in terms of rates of
change; therefore we need to investigate whether the stress point will remain
on the yield surface during the next increment of flow, or whether it may move
back into the elastic region inside the yield surface. The result will give us a
simple criterion for whether the plastic response will continue or not.

Recall that the yield surface is described by f (σ) = k. We can think of σ

here as being a vector the components of which are the three principal stresses.
If we take the time derivative of f we find

ḟ = ∂ f

∂σ
σ̇ = ∂ f

∂σ1
σ̇1 + ∂ f

∂σ2
σ̇2 + ∂ f

∂σ3
σ̇3 (4.25)
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The only way we can continue to have a plastic response is if ḟ = 0. The
other possibilities are ḟ < 0, which implies that the stress point is moving back
inside the yield surface and elastic behaviour will resume, and ḟ > 0, which is
impossible since the stress point cannot move outside the yield surface (although
this can be relaxed for work-hardening materials, but that comes later). We can
conclude then that the criterion for continued plastic loading is

ḟ = ∂ f

∂σ
σ̇ = 0 (4.26)

This is sometimes called the consistency condition.
The criterion can be illustrated with a simple example. For a Coulomb ma-

terial ḟ is given by

ḟ = σ̇1(1 − sin φ) − σ̇3(1 + sin φ) (4.27)

which follows from (3.15). Let σ10 and σ30 be the present values of major and
minor principal stress, and suppose the stress point lies on the yield surface so
that

f = σ10 (1 − sin φ) − σ30 (1 + sin φ) = 2c cos φ (4.28)

Also suppose the rate of change of σ3 is given, for example, by σ̇3 = α. Then
for continued plastic loading, our criterion (4.26), together with (4.27), gives

σ̇1 = σ̇3

(
1 + sin φ

1 − sin φ

)
= α

(
1 + sin φ

1 − sin φ

)
= αN (4.29)

After a time interval �t we will have

σ1 = σ10 + σ̇1�t = σ10 + αN�t

σ3 = σ30 + σ̇3�t = σ30 + α�t
(4.30)

These define a new stress point at time t + �t . To see whether this stress point
remains on the yield surface we combine the stresses to form

σ1(1 − sin φ) − σ3(1 + sin φ)

= (σ10 + αN�t)(1 − sin φ) − (σ30 + α�t)(1 + sin φ)

= σ10 (1 − sin φ) − σ30 (1 + sin φ) + α�t[N (1 − sin φ) − (1 + sin φ)]

= 2c cos φ + 0

So the new stress point also lies on the yield surface. If the equality sign in
(4.26) were replaced by a less than sign, we would find the new stress point
would not lie on the yield surface but would lie inside it.
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Equation (4.26) gives a convenient tool, both for indicating under what con-
ditions loading will continue, and as a constraint for problems in which loading
is assured. This second point will be useful in the next section.

4.7 A complete stress–strain relationship

Recall that for perfectly plastic materials the plastic strain rates all depend upon
the undetermined multiplier λ. In this section we will contrive a way to identify
the value of λ in terms of the rates of change of stress and strain, provided
continued plastic loading is occurring. We will eventually be able to relate
directly the rate of change of stress to the rate of change of total strain. This
will be done for a non-associated flow rule, but we realise that by simply setting
the plastic potential function g equal to the yield function f , we will have the
result for an associated flow rule as well.

To begin write down the basic decomposition of strain rate into elastic and
plastic parts:

ε̇ = ε̇e + ε̇ p (4.31)

Here we can think of ε̇ as a column vector, the components of which are the
three principal strain rates. The vectors ε̇e and ε̇ p have components equal to the
elastic and plastic parts of each principal strain rate.

The elastic strain rate vector is related to the vector the components of which
are the principal stress rates. We can write

σ̇ = Meε̇e (4.32)

where Me is the elasticity matrix defined by

Me =

 + 2G  

  + 2G 

   + 2G


 (4.33)

where  = νE/(1 + ν)(1 − 2ν) is the Lamé constant. We can use the non-
associated flow rule (4.20) in (4.31) to find

ε̇ = ε̇e + λ
∂g

∂σ
(4.34)

Now multiply both sides of this equation, first by the elasticity matrix and then
by the row vector (∂ f /∂σ)T

(
∂ f

∂σ

)T

Meε̇ =
(

∂ f

∂σ

)T

Meε̇e + λ

(
∂ f

∂σ

)T

Me ∂g

∂σ
(4.35)
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If the loading criterion (4.26) is valid, then, considering (4.32), the first term on
the right-hand side of this equation is zero. We can solve the remaining equation
for λ to give

λ = (∂ f /∂σ)T Meε̇

(∂ f /∂σ)T Me∂g/∂σ
(4.36)

Now return to (4.34) and use the inverted form of (4.32) to find

ε̇ = [Me]−1σ̇ + λ
∂g

∂σ
(4.37)

Replace λ in this expression with the right-hand side of (4.36) and then solve
for σ̇. After some manipulation of the matrix products we find

σ̇ = Meε̇ −
Me ∂g

∂σ

(
∂ f

∂σ

)T

(
∂ f

∂σ

)T

Me ∂g

∂σ

Meε̇ = Mpε̇ (4.38)

Following the second equality, Mp represents the collection of terms multi-
plying ε̇.

Mp =


I −

Me ∂g

∂σ

(
∂ f

∂σ

)T

(
∂ f

∂σ

)T

Me ∂g

∂σ


Me (4.39)

where I is the identity matrix.
Equation (4.38) completely specifies the rate of change of stress given the

rate of change of total strain for a material obeying a non-associated flow rule,
provided continued plastic loading occurs. Note how the gradients of both the
yield function and the plastic potential function have been used. Note too that
the quantity (∂ f /∂σ)T Me∂g/∂σ in the denominator of the fraction in (4.39)
is a scalar. The numerator is not a scalar but is a square matrix. We require of
course that plastic loading should continue in order for (4.38) to apply. If the
loading criterion is not satisfied, then an elastic response will ensue and (4.32)
will apply.

We can illustrate the use of (4.38) by considering a simple plane strain exam-
ple shown in Figure 3.25. If the material obeys a non-associated flow rule then
a plastic potential g given by (4.21) is appropriate. The Coulomb yield function
is given by (4.17). Thus the two vectors ∂ f /∂σ and ∂g/∂σ are given by

∂ f

∂σ
=
[−N

1

]
,

∂g

∂σ
=
[−M

1

]
(4.40)
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These vectors are two-dimensional because we need not consider the inter-
mediate principal stress σzz , and the strain εzz is zero. (In fact, things are not
quite this simple since we may have zero total strain but non-zero elastic and
plastic strain, but we will assume this does not occur.)

The elasticity matrix is

Me =
[
 + 2G 

  + 2G

]
(4.41)

Using (4.40) and (4.41) in (4.39) we find that the plasticity matrix, after some
manipulation, is

Mp = 2G

(1 − ν) (1 + M N ) − ν (M + N )

[
1 M
N M N

]
(4.42)

The elastic relation  = 2Gν/(1 − 2ν) has been used in (4.42) to eliminate the
Lamé constant. We can make an interesting observation here. The determinant
of Mp is zero. This might initially seem surprising, but in fact it is expected
for the physical reason that, for a perfectly plastic material, the strains cannot
be determined solely from knowledge of the stresses. If det Mp were non-zero,
we could invert (4.38) and solve for the strain rate vector, an impossibility for
perfect plasticity. We can, of course, use (4.42) in (4.38) to find the stress rates
if the strain rates are specified.

Even if the stresses are specified, it may still be possible under special con-
ditions to find the corresponding strains during plastic flow, but that can take
place only when additional information is present. The next example shows
how this may happen.

4.8 The pressuremeter problem

The pressuremeter is a device used for in situ testing of geotechnical materials.
Basically it consists of a cylindrical inflatable balloon, inserted in a borehole.
If the pressure inside the balloon is increased, the boundary of the borehole
is forced to expand outward. It is relatively easy to measure both the balloon
pressure and the change in radius of the bore. The question that arises is, how
can these measurements be used to infer the properties of the soil surrounding
the borehole? The problem has been analysed by many researchers for a variety
of conditions and a large specialised branch of the geotechnical literature has
grown up around the pressuremeter. Our aim here is not to summarise the
various lines of research but instead to attempt to solve the general problem
using the knowledge of perfect plasticity we now possess.
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Figure 4.9. The pressuremeter problem – cylindrical cavity in an infinite body.

Usually the pressuremeter is idealised as a plane strain, cavity expansion
problem. This means that we consider an infinite body containing an infinitely
long cylindrical cavity of radius a as shown in Figure 4.9. We will assume
that the body consists of a perfectly plastic cohesionless Coulomb material
that obeys a non-associated flow rule. That is, the yield surface is specified
by the Coulomb hexagonal surface and the flow rule is given by (4.20). The
geometry of the cavity suggests we use cylindrical polar coordinates with the
z-axis aligned with the centre of the cavity. The radial and azimuthal directions
are specified by r and θ as shown in Figure 4.9. Let the cavity radius be a and
suppose that the pressuremeter fills the cavity so that a uniform pressure p may
be applied to the cavity wall. The condition of plane strain is implied by zero
extensional strain in the z-direction.

In reality, the pressuremeter problem can be modelled in a number of ways
depending on the choice of initial conditions. One possibility would be to
assume that the cavity boundary is initially free from stress, such as if the
borehole were completely empty before the device was inserted. This is an
unlikely condition in the case of a cohesionless granular material since failure
and plastic flow would no doubt occur and the bore itself would collapse. A
second possible condition would be to assume that the borehole walls initially
suffer no displacement such as might occur with a self-boring pressuremeter.
This condition may be more realistic, but both displacements and stresses may
have changed in the vicinity of the bore during the actual boring process. The
initial condition we will use is that used by most investigators, namely that the
initial state of stress in the infinite space is isotropic with all normal stresses
being equal to a constant P0 including the applied stress on the cavity boundary.
This may not be a realistic initial state for the soil surrounding the bore, but it is
probably not so far from reality either. Thus we will approach the pressuremeter
in a mathematical sense as a simple plane strain cavity expansion problem
starting from a simple isotropic initial stress state.
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Because of symmetry we would expect to find only one non-zero displace-
ment: the radial displacement ur . The non-zero stresses will be the radial stress
σrr , the hoop stress σθθ and the axial stress σzz . These will be principal stresses
and initially they are all equal to the initial stress P0. We will assume that
the cavity pressure is initially P0 but increases to a value P . Our plane strain
assumption implies that εzz = 0.

The equations governing the problem are as follows. Since the problem is
radially symmetric it follows that there is only one non-trivial equation of
equilibrium. Referring to equilibrium of stress in the radial direction we have

dσrr

dr
+ σrr − σθθ

r
= 0 (4.43)

The boundary condition at the cavity wall is

σrr (a) = P (4.44)

while for large r we have

σrr (∞) = σθθ (∞) = P0 (4.45)

Taking the initial state as our reference state, the strain–displacement relations
are given by

εrr = dur

dr
, εθθ = ur

r
(4.46)

while Hooke’s law gives

σrr = e + 2Gεrr + P0
(4.47)

σθθ = e + 2Gεθθ + P0

where  = ν E/(1 + ν)(1 − 2ν) represents the Lamé constant. The yield func-
tion for a cohesionless Coulomb material gives

f = σrr − Nσθθ = 0 (4.48)

The plastic potential function for non-associated flow may be written as

g = σrr − Mσθθ (4.49)

where M is given by (4.22). Finally, the stress rate–strain rate equation for
plastic response is [

σ̇θθ

σ̇rr

]
= 2G

ζ

[
1 M
N M N

] [
ε̇θθ

ε̇rr

]
(4.50)

which follows from (4.42), with

ζ = (1 − ν)(1 + M N ) − ν(M + N ) (4.51)
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Note that the plane strain form for the matrix Mp given above works equally
well in this problem as in the simpler case considered earlier.

The nine equations, (4.43)–(4.51), may seem daunting at first glance, but they
are typical of the description of any well-posed plasticity problem. In fact, had
we not had the plane strain assumption, the result might have looked even more
complex. The first four equations, (4.43)–(4.46), are universal to the problem.
They apply regardless of whether we have elastic or plastic response. Equation
(4.47) describes the material when elastic response is appropriate. The remain-
ing four equations, (4.48)–(4.51), describe plastic response. For an associated
flow rule we could have eliminated one equation, (4.49), but the effect would
be minor on the overall complexity of the system of equations.

We will solve the problem in a sequence of steps. First, we will determine the
elastic response prior to any yielding around the cavity. This is followed by a
determination of conditions for yield to first occur, and then a description of how
the yield zone grows around the cavity as the applied pressure increases. Next,
we can determine the stresses in the yielding soil. Finally, we will investigate
the displacement in the plastic zone and relate it to the applied pressure.

To solve for the elastic response, we can combine the equilibrium equation
(4.43) with Hooke’s law (4.47) and the strain displacement relations (4.46) to
obtain this second-order ordinary differential equation for the displacement ur

d2ur

dr2
+ 1

r

dur

dr
− ur

r2
= 0 (4.52)

Note that both elastic constants  and G have dropped out of this equation.
The solution to (4.53) is well known.

ur = C1 r + C2

r
(4.53)

where C1 and C2 are constants of integration. The boundary condition (4.45)
cannot be satisfied unless C1 = 0, hence ur = C2/r is the most general possible
solution. We can use this solution in the strain–displacement relations and use
the resulting strains in Hooke’s law. This provides an expression for the stress
σrr that may be used in the boundary condition (4.44) to find the value of the
constant C2. The resulting elastic solution is given by

ur = − (P − P0)a2

2Gr
, εrr = (P − P0)a2

2Gr2
= −εθθ ,

(4.54)

σrr = (P − P0)a2

r2
+ P0, σθθ = − (P − P0)a2

r2
+ P0
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Figure 4.10. Plastic region surrounding a cavity in the pressuremeter problem.

The displacement of the cavity wall is∗

ur (a) = − (P − P0)a

2G
(4.55)

Evidently ur (a) and P are linearly related. Since ur (a) and P can both be
measured, and a is known, we can use (4.55) together with pressuremeter
measurements to estimate the shear modulus G.

Yield will occur whenever (4.48) is satisfied. It is clear from (4.54) that this
will first occur at the cavity wall, r = a. Setting r equal to a in (4.54) and using
the yield condition (4.48) we find that initial yielding occurs when the applied
pressure is given by

P = P0

(
2N

N + 1

)
= P0(1 + sin φ) (4.56)

What happens next? It is reasonable to assume that a plastic zone forms around
the cavity as sketched in Figure 4.10. Let the radius of the zone be b. Then for
r > b we will have an elastic response, while for a < r < b the stresses must
obey (4.48). Suppose we let σb = σrr (b), the radial stress at the elastic–plastic
boundary. Then in the region r > b we have an identical problem to our original
elastic problem, but with a replaced by b and P replaced by σb. Our solution
(4.54) applies with the changes noted. Moreover, at r = b, yielding has just
occurred, showing that σb = P0(1 + sin φ) as we found in (4.56). Therefore in
the elastic region the displacement, strains and stresses are

ur = − P0 sin φ b2

2Gr
, εrr = P0 sin φ b2

2Gr2
= −εθθ ,

(4.57)

σrr = P0 sin φ b2

r2
+ P0, σθθ = − P0 sin φb2

r2
+ P0

∗ Negative signs associated with displacements in (4.54) and (4.55) as well as some equations that
follow all result from the sign convention adopted in Chapter 1.
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Next, we must investigate what is happening inside the plastic region. We
know that the equilibrium equation (4.43) must apply, and that the yield con-
dition (4.48) must as well. We can solve (4.48) for σθθ and use the result in
(4.43) to obtain the following expression describing equilibrium in the plastic
zone:

dσrr

dr
+ σrr

r

(
N − 1

N

)
= 0 (4.58)

We can separate variables and integrate this equation directly. Then, using (4.57)
evaluated at r = b, we obtain the following expressions for σrr and σθθ :

σrr = P0(1 + sin φ)

(
b

r

)(N−1)/N

(4.59)

σθθ = P0(1 − sin φ)

(
b

r

)(N−1)/N

These stresses apply throughout the plastic zone a ≤ r < b. At the cavity wall
(4.59) gives the applied cavity pressure

P = P0(1 + sin φ)

(
b

a

)(N−1)/N

(4.60)

The only task remaining now is to determine the displacement within the
plastic zone. We can accomplish this as follows. First, note that (4.50) contains
only one independent equation since the determinant of the coefficient matrix is
zero. Using the equation for σ̇rr together with the strain–displacement relations
(4.46) we find

M
du̇r

dr
+ u̇r

r
= ζ

N

σ̇rr

2G
(4.61)

Noting that b is a variable, we can take the time derivative of (4.59),

σ̇rr = P0(1 + sin φ)

(
N − 1

N

)(
b

r

)(N−1)/N ( ḃ

b

)
(4.62)

Use this on the right-hand side of (4.61) to obtain

M
du̇r

dr
+ u̇r

r
− ζ P0

G

sin φ

N

(
b

r

)(N−1)/N ( ḃ

b

)
= 0 (4.63)

Integrating (4.63) and using the boundary condition ur (b) = −P0b sin φ/2G
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from (4.57) we obtain

ur = − P0b sin φ

2G

{
1 + B N

N − 1

[
1 −

( r

b

)1/N
]

− AM

M + 1

[
1 −

(
b

r

)1/M
]}

(4.64)

where

B = 2ζ

M + N
, A = 1 + B (4.65)

At this point the reader may be excused for thinking that things are becoming
a little complex. There are, however, some interesting points we can note. First
of all, we obtained the stresses in the plastic region (4.59) without any reference
to the deformations. The stresses were determined solely from the equilibrium
equations together with the yield condition. The surprising conclusion is this:
in the plastic region the stresses and strains are uncoupled. This is the result of
our assumption of perfect plasticity. The second important observation we can
make is that, despite the material being perfectly plastic, we were able to solve
for the displacement in the plastic region. (We could, of course, solve for the
strains as well, but they would be of little interest.) This may seem to refute our
earlier statements that the plastic strain rates are indeterminate for a perfectly
plastic material. The reason we were able to find the plastic displacements is a
result of the fact that the plastic zone is surrounded or contained by the elastic
zone, and we have a well-defined boundary condition at b.

One final point. We can determine the displacement at the cavity wall from
(4.64) by setting r = a. Note that both the resulting equation for ur (a) and the
applied pressure P in (4.60) are functions of b/a. Therefore we can combine
the two results to determine ur (a) as a function of applied pressure. The re-
sulting pressure–displacement relationship is plotted in dimensionless form in
Figure 4.11 for ψ = 5◦ and several values of φ.

This example problem illustrates the difficulties involved with detailed solu-
tion of problems in perfect plasticity. Had we not wanted the displacement in the
plastic zone, things would have been considerably simpler and we could have
stopped following (4.59). Fortunately, for many practical problems, the plastic
deformations will not be of so much interest and simply finding the stresses for
plastic response may be sufficient.

A final comment regarding the pressuremeter problem is that in certain cir-
cumstances the plastic zone may expand to an indefinitely large value and the
cavity itself will expand without a further increase in pressure. This is referred
to as collapse. There are many problems in geotechnical engineering where
similar ideas apply and collapse is indicated by a failure of the soil to support
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Figure 4.11. Non-dimensional response for a pressuremeter in an elastic–perfectly
plastic Coulomb material.

the applied loads. The shallow foundation problem is a typical example, the
collapse load being the ultimate foundation load the soil will support. The
determination of collapse loads is an important aspect of geomechanics. We
consider it in the next chapter.

Further reading

Saint-Venant originally proposed the hypothesis regarding coincidence of
principal directions of stress and plastic strain in

B. de Saint-Venant, Mémoire sur l’établissement des équations différentielles des
mouvements intérieurs opérés dans les corps solides ductiles au delà des limites
où l’élasticitié pourrait les ramener à leur premier état, Comptes Rendus Acad.
Sci. Paris, 70, 473 (1870).

The ideas of normality and the associated flow rule are described in a wide
variety of textbooks on metal plasticity. Three widely read books are

R. Hill, The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950.
C.R. Calladine, Engineering Plasticity, Pergamon Press, Oxford, 1969.
C.S. Desai and H.J. Siriwardane, Constitutive Laws for Engineering Materials,

Prentice-Hall, Englewood Cliffs, NJ, 1984.

The pressuremeter was invented in 1957 by Ménard.
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L. Ménard, ‘Mésures in-situ des propriétés physique des sols,’ Annales des Ponts et
Chaussées, 127, 357–377 (1957).

A number of investigators attempted to solve the pressuremeter problem for a
perfectly plastic Coulomb material. The complete solution, without additional
assumptions concerning displacement in the plastic zone, was not discovered
until 1986. See:

R.E. Gibson and W.F. Anderson, ‘In situ measurement of soil properties with the
pressuremeter’, Civil Engineering and Public Works Review, 56, 615–618, 1961.

J.P. Carter, J.R. Booker and S.K. Yeung, ‘Cavity expansion in cohesive frictional
soils’, Geotechnique, 36, 349–358, 1986.

Exercises

4.1 A direct shear test is performed on a sample of dry cohesionless silt with
angle of internal friction equal to 20◦. It may be assumed that the silt
behaves as a Coulomb material and exhibits perfect plasticity. The test
apparatus allows shearing deformation to be localised in an initially 1 mm
thick band through the centre of the sample as shown in Figure 4.12.
A normal stress equal to 100 kPa is placed on the sample and then the
shearing stress is increased until yield occurs. The value of Poisson’s ratio
for the silt is 0.4. Assume plane strain conditions apply perpendicular to
the plane of the drawing.
(a) Show that the value of the shear stress at yield is 36.4 kPa.
(b) Show that the principal stresses at yield are σ1 = 152 kPa, σ2 =

90.6 kPa and σ3 = 74.5 kPa.
(c) Find the orientations of the major and minor principal stresses.
(d) Assuming the silt obeys an associated flow rule, determine the relative

magnitudes of the principal plastic strain rates associated with the
major and minor principal directions.

xx = 100 kPaσ

xyσ

x
y

Shear band

Figure 4.12.
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(e) Sketch the two-dimensional yield surface for the situation described
and sketch the plastic strain rate vector.

(f) Use the plastic strain rate vector from (d) to determine the direction
of motion of the upper half of the sample relative to the lower half.

4.2 Formulate the plasticity matrix Mp defined in equation (4.39) for the case
of a perfectly plastic von Mises material (i.e. f = q = stress deviator)
with an associated flow rule. Show that Mp may be written in the form

Mp = 


1 1 1

1 1 1
1 1 1


+ G

3


 ζ23 + 2 ζ12 − 1 ζ13 − 1

ζ12 − 1 ζ13 + 2 ζ23 − 1
ζ13 − 1 ζ23 − 1 ζ12 + 2




where ζmn = 3(σm − σn)2/σ 2
T and σT is the yield stress in simple tension.

4.3 Use the associated flow rule to obtain expressions for the principal plastic
strain rates, ε̇ p

1 , ε̇
p
2 and ε̇

p
3 , for plastic flow of a von Mises material obeying

equation (3.12). Combine the strain rates to show that the plastic volumet-
ric strain must always be zero. Show that the Lode angle (equation (3.9))
is related to the plastic strain rates by tan θ = √

3 ε̇
p
1 /(ε̇ p

3 − ε̇
p
2 ).

4.4 When the associated flow rule is applied to the Tresca yield surface (or, for
that matter, any yield surface that is not smooth) ambiguities arise when
the stress point lies at a vertex or corner such as the situation shown in
Figure 4.13. The strain rate vector may take on any attitude between the
limiting values shown. Discuss this ambiguity in light of the stress state
that applies at the vertex. In your opinion, what is the most appropriate
attitude for the strain rate vector? What implications arise when the stress
point moves slightly away from the vertex?

σ3σ2

σ1

The plastic strain rate 
vector may lie anywhere
between the limiting values
normal to the two faces
of the yield surface

Figure 4.13.
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Collapse load theorems

5.1 Introduction

One of the most powerful aspects of the theory of plasticity lies in its ability to
easily predict approximate values for the collapse load in a very wide range of
applications. This comes about through two theorems called the upper bound
theorem and the lower bound theorem. As their names imply, the theorems
provide bounds, or limiting values, for the collapse load. Often any usage of the
theorems is referred to as limit analysis.

The business of predicting collapse loads is totally concerned with finding
the loads∗ that will bring the structure or body to an imminent state of collapse.
We are not concerned with what happens before or after in the sense of trying
to analyse elastic strains or plastic flow. Also, we must not confuse the collapse
load with the yield load. In some instances they will be the same and yield will
immediately lead to collapse, but in other cases yield may happen well before
collapse. As an example, yield precedes collapse by a significant margin in the
shallow foundation problem where localised yielding may happen immediately
near the edges of a rigid footing, well in advance of the collapse load. There are
restrictions on the applicability of both theorems. A key factor in the develop-
ment of limit theorems rests with the normality relationship between the yield
surface and its associated plastic strain rate vector. For either rigid–perfectly
plastic or elastic–perfectly plastic materials, the limit theorems can be proved
rigorously (see Appendix H). In general, these conventional limit theorems do
not apply to materials that obey non-associated flow rules. For such materials
restricted forms of the limit theorems can be proposed. With work hardening
materials, the absence of a limiting yield surface precludes the definition of a
collapse load and implies the inapplicability of the conventional limit theorems.

∗ Here ‘loads’ is used in a general sense. We may be interested in boundary tractions or body forces
in the form of gravity loads, or both, depending upon the particular problem being considered.

109
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The most common problems in geotechnical engineering that fall under the
heading of limit analysis are the determination of the thrust on a retaining wall
and the bearing capacity of a shallow footing. Other typical problems include
estimation of the capacity of shallow anchors, arching and the analysis of the
stability of cuts, embankments and tunnels. In nearly all of these applications the
simplest idealisation for collapse load analysis will be the plane strain assump-
tion. While the theorems themselves apply in any general three-dimensional
configuration, there are practical matters involved in their application that are
usually greatly simplified if plane strain conditions apply. Because of this we
will confine the developments in this chapter to a state of plane strain.

In essence, the theorems work well for perfectly plastic materials because
perfect plasticity implies an uncoupling of forces and deformations. Refer-
ring back to the pressuremeter problem in Chapter 4, note that the stresses for
the post-yield state could be obtained directly by combining the equilibrium
equations with the yield condition. There was no need to consider strains or
deformations in order to determine the stresses. This is in complete contrast
with elastic behaviour where all of the field equations (strain–displacement,
equilibrium and Hooke’s law) are required to obtain the correct solution. The
difference is emphasised by noting that to find the elastic response we were re-
quired to solve a second-order differential equation (4.52), while the post-yield
stresses were obtained from a simpler first-order equation (4.61).

5.2 The theorems

Most of the development of collapse load theory took place in the 1950s.
Professor Daniel C. Drucker together with co-workers established the theorems
and elaborated their applications in a series of papers, first for metal plasticity
and then for soil mechanics. The essence of both theorems can be encapsu-
lated in a single sentence as follows. An elastic–perfectly plastic body will,
on the one hand, do the best it can to distribute stress in order to avoid col-
lapse, but, on the other hand, will experience collapse if any kinematically
admissable collapse mode exists. This so-called ‘anthropomorphic’ explana-
tion implies a sense of intelligent behaviour to the inanimate body that clearly
cannot exist. However, it may help in applications of the theorems to view the
material as if it could rationally adapt itself to whatever loads it is asked to
support.

Proofs of both theorems as well as certain auxiliary theorems may be found in
the appendices. We will state the theorems here and then proceed to investigate
their application.
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The lower bound theorem. Collapse will not occur if any state of stress can
be found that satisfies the equations of equilibrium and the traction boundary
conditions and is everywhere ‘below yield’.

Note that this is a very general statement. The phrase any state of stress
may cover a vast range of possibilities, including stress fields that may, from
a physical standpoint, be completely implausible. The theorem tells us that
if we can find a stress field such that equilibrium and the traction boundary
conditions are satisfied, and if the stresses nowhere exceed yield values, then the
body cannot collapse. Therefore the boundary tractions are safe. They provide a
lower bound for the tractions that will produce collapse. In the anthropomorphic
sense, we are assured that the body will possess the necessary intelligence to
find a physically permissible stress field that can support the applied loads,
provided any equilibrium stress field exists. Any stress field that satisfies the
criteria of the lower bound theorem is referred to as a statically admissible stress
field.

The upper bound theorem. Collapse must occur if, for any compatible plastic
deformation, the rate of working of the external forces on the body equals or
exceeds the rate of internal energy dissipation.

This is also a very general statement, again because of the word any. The words
‘compatible plastic deformation’ imply any deformation that satisfies all dis-
placement boundary conditions and is possible kinematically. That is, ‘no gaps,
overlaps or separations’ should occur. No reference to equilibrium is made.
Naturally, there will be a great number of possible deformation mechanisms
and it will be our task to investigate those that are sufficiently simple to provide
useful results. The result we seek is a simple energy balance. The boundary
tractions and body forces will do a certain amount of work during the deforma-
tion. If their rate of working is greater than or equals the rate at which energy is
dissipated within the body, then collapse is assured. This may be a very valu-
able result. For example, in the field of metal forming, knowledge of the upper
bound load tells us that no more than the upper bound force will be required
to cause the forming process to occur. Any deformation field that satisfies the
criteria of the upper bound theorem is referred to as a kinematically admissible
deformation.

Often engineering intuition is useful in application of the theorems. An ex-
perienced practitioner can often foresee either a stress field or a compatible
deformation that will provide a good result, while a less experienced person
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may not. There are useful guides to the process and we will consider some
below. Often the most useful tools are stress and deformation fields that are
discontinuous.

Application of the lower bound theorem usually proceeds like this. First, we
hypothesize a statically admissible stress field. Often it will be a discontinuous
field in the sense that we have a patchwork of regions of constant stress that
together cover the whole soil mass. There will always be one or more particular
value of stress that is not fully specified by the conditions of equilibrium. We
then try to adjust these undetermined stresses so that the load on the soil is max-
imised but the yield condition remains unsatisfied everywhere. The resulting
load becomes our lower bound estimate for the actual collapse load.

The upper bound theorem is slightly different. We must hypothesize a dis-
placement field, and usually this will be a discontinuous patchwork of regions,
each with a constant velocity. We adjust the directions of the velocity vectors
of the various regions so as to ensure that there are no gaps or overlaps any-
where in the soil mass. We must then calculate two rates: the rate of working of
all the external forces, including gravity forces, and the rate of energy dissipa-
tion owing to slip along the surfaces of discontinuity that separate the various
regions. The rate of energy dissipation will depend upon our choice of displace-
ment field, but it will be independent of the applied load on the soil. If we set
these two rates to be equal, the resulting equation can be solved for the applied
load or loads on the soil. These loads will be the upper bound estimate for the
true collapse load.

In applications of geotechnical interest we will usually try to obtain both
upper and lower bounds on the collapse load. Hopefully the two results will
not be greatly different and the true collapse load is then closely bracketed. In
some cases the two bounds are the same and hence both give the exact collapse
load, but these cases are rare in practice, and occur only because the problems
involved are simple and have been studied extensively. The best approach to
learning how to use the theorems is by working through some simple examples.
We will begin to do that now.

5.3 Discontinuities of stress and deformation

One should bear in mind that the two theorems allow wide latitude in the
selection of the stress (lower bound) or deformation (upper bound) fields we
may invoke. With regard to stresses, we need only satisfy the equations of
equilibrium inside the body and match the applied tractions at the boundary.
This allows us to consider stress fields that would not be physically reasonable
under normal circumstances. For example, consider the problem illustrated in
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Figure 5.1. Discontinuous stresses in a halfspace with surface step-load.

Figure 5.1. The body is a homogeneous halfspace. On the boundary z = 0,
tractions are fully specified. A normal applied stress p0 is found for x ≥ 0 and
zero tractions apply for x < 0. Clearly, plane strain conditions apply. No body
forces are present.

The proposed stress field inside the halfspace consists of two homogeneous
stress states. Both are principal stress states with zero shear stress on surfaces
perpendicular to the coordinate axes. For x ≥ 0 constant stresses σ (1)

xx and σ (1)
zz

apply everywhere. Similarly, for x < 0, the constant stresses are σ (0)
xx and σ (0)

zz .
The boundary conditions immediately tell us that σ (1)

zz = p0 and σ (0)
zz = 0.

Equilibrium will be satisfied provided σ (1)
xx = σ (0)

xx . Evidently these simple con-
ditions are sufficient for the lower bound theorem provided the stresses are ‘be-
low yield’. For a Tresca material this would imply that both |σ (0)

zz − σ (0)
xx | < σT

and |σ (1)
zz − σ (1)

xx | < σT where σT is the yield stress in simple tension. Obviously
for other materials other conditions would apply.

Note that the proposed stress field is not continuous on the surface x = 0. The
horizontal stress components σ (0)

xx and σ (1)
xx are continuous, but a jump occurs

in the vertical stress components σ (0)
zz and σ (1)

zz . From the standpoint of physical
realism, our solution would be extremely implausible; yet this is a statically
admissible stress field.

The Mohr circles for one possible stress system are illustrated in Figure 5.2.
Since the given stresses are principal stresses, we can immediately construct the
circles as shown. For a Tresca material, the stresses will satisfy all the criteria
laid down by the lower bound theorem provided the diameters of both Mohr
circles are smaller than σT . If that is the case then collapse will not occur under
the applied stress p0.

If we look at Figure 5.2 for a moment, it is clear that the value of p0 shown
is only one possible estimate for the lower bound. The horizontal stresses σ (0)

xx

and σ (1)
xx are not specified aside from the requirement that they must be equal.

Thus we can adjust σ (0)
xx and σ (1)

xx in whatever way we wish, so long as the
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Figure 5.2. Mohr diagram for the stress field shown in Figure 5.1.
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Figure 5.3. Typical collapse mechanism – slip surface with thickness h.

yield condition is not exceeded. The best lower bound estimate will be the
largest possible value for p0 and this will occur when both Mohr circles have
their maximum permissible diameters; that is, when both circles have diam-
eter σT . In that case we will have σ (0)

zz = 0, σ (1)
xx = σ (0)

xx = σT and σ (1)
zz = p0 =

2×σT . Thus our best lower bound is 2σT . This process of optimising our lower
bound estimate by taking the stress state to the most trying condition, the yield
condition, will be a feature whenever the lower bound theorem is used.

Discontinuous deformation fields will be useful when applying the upper
bound theorem. By discontinuous deformation we have in mind a situation
where rigid blocks of material are separated by thin deforming layers. An exam-
ple is the wall foundation resting near the edge of an embankment illustrated in
Figure 5.3. We assume the foundation is long and plane strain conditions apply.
The upper bound theorem requires a kinematically feasible deformation.
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One possible deformation is slip on the planar surface AA′. The material above
and below the slip surface is assumed to be rigid and all deformation is concen-
trated along the surface. We can think of the surface as a band of thickness h
as illustrated in the enlarged segment. Within this band the material is perfectly
plastic and the associated flow rule applies.

The upper bound theorem states that we must compare the rate of working of
the external loads with the internal energy dissipation. For the situation shown
both the wall load and gravity will do work if the block of soil slips. The internal
dissipation will all take place within the slip band. It is interesting to investigate
what this internal dissipation might be for the case of a Coulomb material.

By localising all slip on a single surface we have simplified the problem
enormously. The Coulomb yield condition applies directly to the slip surface,

τ = c + σ tan φ (5.1)

where τ is the shear stress and σ is the effective normal stress on the surface. If
we recall that the associated flow rule tells us that the plastic strain rates must
be normal to the yield surface, then the simple picture shown in Figure 5.4
emerges.

The plastic strain rate vector will have two components: the plastic shear
strain rate ε̇

p
t acting tangential to the slip surface, and the plastic extensional

strain rate ε̇
p
n normal to the slip surface. Note that while ε̇

p
t points in the same

direction as the shear stress τ , the component ε̇ p
n points in the opposite direction

to the normal stress σ . This is a manifestation of the dilatancy always associated
with the Coulomb yield condition. The rate of energy dissipation per unit volume
within the slip band is then

dissipation rate = τ ε̇
p
t + σ ε̇ p

n (5.2)

Now suppose that we identify the velocity components of the sliding block
by vt and vn . To be more precise, let these be the velocity components of the
upper block of soil relative to the lower block. In Figure 5.3 the lower block

φ
σ

τ

Plastic strain 
rate vector 

εt

εn

p

p

φ

Figure 5.4. Coulomb yield criterion with a normal plastic strain rate vector.



116 Collapse load theorems

is stationary but in other problems both blocks might be in motion and use
of the relative velocity will be essential. Since the shear band is thin we can
approximate the plastic strain rates by

ε̇
p
t = vt/h, ε̇ p

n = vn/h (5.3)

Next, let D represent the rate of dissipation per unit area of the shear surface.
Since we have a plane strain problem we can consider a unit thickness of the
embankment and therefore D will, in fact, be the rate of dissipation per unit
length of the shear surface. D is obtained by multiplying the dissipation per
unit volume in (5.2) by the area h × 1. If we then use (5.3) we find this simple
result,

D = τvt + σvn (5.4)

We can further simplify this by noting from the geometry of Figure 5.4 that
ε̇

p
n = −ε̇

p
t tan φ and hence vn = −vt tan ϕ. Using this result in (5.4) gives

D = vt (τ − σ tan φ) (5.5)

Finally, we use (5.1) to find

D = vt c = cv cos φ (5.6)

This surprisingly simple result encapsulates the dissipation on any planar
shear surface. Note that the shear band thickness h cancels from the equations
and, assuming that shearing happens within a relatively thin region, the rate of
dissipation will be equal to D multiplied by the length of the shear surface. We
will use the notation D to indicate the product of D with the length of the slip
surface. Provided we use relative velocities, the argument will work equally
well when two blocks of soil separated by the slip surface are simultaneously in
motion. Things would break down if the blocks were to separate physically; not
only would the condition of kinematic admissibility be violated but the result
would be an unusual outcome in geotechnical engineering.

We are now in a position to investigate some particular problems of interest
to the geotechnical engineer. We begin with a particularly simple example.

5.4 A vertical cut

Consider the problem illustrated in Figure 5.5. A soil with density ρ, cohesion
c and angle of internal friction φ has been excavated to form a vertical cut.
The engineer desires to know the maximum stable height of excavation. Even
though loads have not been mentioned explicitly, this is a collapse load problem.
The forces are supplied by gravity and we know intuitively that if the height
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Figure 5.5. Example – vertical cut in a homogeneous clay.

H Region 1

x

Region 2Region 3

0

gzρ

gzρ

)( Hz
z

g −ρ
? 

? 

Figure 5.6. Discontinuous stress field for the vertical cut – lower bound analysis.

H is too great the vertical face will collapse. We assume the length with the cut
measured perpendicular to the plane of the figure is large in comparison with the
height, and hence we assume that plane strain conditions are appropriate. We
can examine the problem using both lower bound and upper bound methods.

First, consider the lower bound theorem. We will need to devise a system of
stresses to satisfy the boundary conditions, all of which consist of zero tractions
on exposed surfaces. The stresses must also satisfy the equilibrium equations
with the vertical body force bz being equal to the gravity force ρg. The simplest
system of stresses that will qualify is outlined in Figure 5.6. The stress field
is divided into three regions, numbered 1, 2 and 3, separated by dashed lines.
Discontinuities in some stress components occur on these lines. In region 1 the
stresses are

σxx = 0, σzz = ρgz (5.7)

Since the coordinate origin is located at the top of the cut, these stresses will
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Figure 5.7. Mohr diagram for Figure 5.6.

clearly satisfy the traction-free boundaries as well as equilibrium. In region 2 the
z-component of stress must be continuous across the dashed line and hence will
be given by σzz = ρgz. The x-component of stress can be left undetermined
for the present. Finally, in region 3 the stress σxx must remain continuous
crossing the dashed line from region 2 and, in order to satisfy the zero traction
boundary condition on the surface z = H , we require σzz = ρg(z − H ). All
the requirements for the lower bound theorem are now satisfied, except for one,
that the stresses are nowhere greater than yield.

Finally, we need to consider the Coulomb yield condition. We could use the
version given in (3.35) with, for region 1, σm and σn replaced by σzz = ρgz and
σxx = 0, respectively. Alternatively we can sketch the stress state for region 1 in
Figure 5.7. The Mohr circle for region 1 will achieve its greatest diameter when
z = H . The greatest possible height H will correspond to the Mohr circle that
just touches the yield envelope as shown in the figure. Thus the critical height
is given by

ρgHL = 2 c cos φ

1 − sin φ
(5.8)

where HL represents the critical height determined from the lower bound
theorem.

At this point one might ask about the undetermined horizontal stress σxx

in regions 2 and 3. Can we simply disregard this stress? The answer is no. A
central requirement of the lower bound theorem is that we find a stress field that
satisfies equilibrium throughout the entire body that nowhere exceeds yield. In
order for the lower bound theorem to work here we must demonstrate that a
stress σxx can be found that will satisfy these conditions. This can be done by
setting σxx = ρg(z − H ) in both regions 2 and 3. This will create an isotropic
stress field in region 3 and the Mohr circle for region 2 will be no bigger than
that shown in Figure 5.7. For all depths greater than H the stresses in region 2
will be safe from yielding.
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Figure 5.8. Collapse mechanism for vertical cut – upper bound analysis.

The result in (5.8) can be written in several different ways. A common way is
to replace cos φ by

√
1 − sin2 φ = √

(1 − sin φ)(1 + sin φ). Then we can write
the lower bound critical height as

HL = 2c

ρg

√
N (5.9)

where N was defined in (4.16).
Now we turn our attention to the upper bound theorem. We will require a

compatible collapse mechanism. The most obvious candidate is the planar slip
surface shown in Figure 5.8. Leaving the angle β undetermined for the moment,
we set out an expression of energy balance between external forces and internal
dissipation. For this problem the only external force is the action of gravity
on the wedge of soil lying above the slip surface. The weight of soil in the
failure wedge is 1

2ρgH 2 tan β. Suppose we let the velocity of the wedge be v.
Because the associated flow rule requires dilatancy, the direction of v will be
inclined at an angle φ to the slip surface. Thus the vertical component of v will
be v cos(φ + β) as shown in the figure. If we now let R represent the rate of
working of the external forces we see that

R = v

2
ρgH 2 tan β cos(φ + β) (5.10)

Internal dissipation occurs on the slip surface at a rate D as shown in (5.6).
The tangential component of the wedge velocity will be vt = v cos φ. The
length of the slip surface is H/ cos β and the total dissipation rate D will be D
multiplied by this length. If the rate of working of the external forces equals or
exceeds this total dissipation rate, then we are assured of collapse. To find our
upper bound we set the power and dissipation rate equal to have

v

2
ρgH 2 tan β cos(φ + β) = cv cos φ

H

cos β
(5.11)
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Solving for H gives

H = 2c

ρg

cos φ

sin β cos(φ + β)
(5.12)

Note that the velocity v has vanished. Both the power of the external forces and
the internal dissipation rate are directly proportional to v and in comparing the
two rates the velocity of the deformation will always cancel. In these problems
the velocity serves only as a virtual quantity.

Equation (5.12) gives one upper bound for H . We must now find the small-
est upper bound by minimising H with respect to the angle β. Setting the
β-derivative of the right-hand side of (5.12) equal to zero we find this transcen-
dental equation for the critical value of β

tan(φ + βc) = cot βc (5.13)

An aspect of the upper bound theorem is the occasional need to solve tran-
scendental equations such as (5.13). In this case symmetry of the tangent and
cotangent about π/4 immediately shows that

βc = π

4
− φ

2
(5.14)

Using this value in (5.12) gives a result for the upper bound collapse height HU ,

HU = 4c

ρg

√
N = 2HL (5.15)

Clearly the upper and lower bounds for H are not close. It might be tempting at
this point to guess that the true answer is somewhere, perhaps halfway, between
HU and HL , but that would be risky in any analysis. As it happens the exact
collapse height for this problem, if we assume the soil cannot support tension,
is precisely equal to HL . The reason HU is twice the exact value is due to our
choice of collapse mechanism in Figure 5.8. If we assume that the soil will not
support tensile stress, then a vertical tension crack will develop behind the cut
face and, rather than the failure wedge in Figure 5.8, a thin slab of soil will
collapse leaving a new, near vertical face. If the soil will support tension, then
HU will be closer to the true collapse load, but it is still not exact.

5.5 Shallow foundation – lower bound

Now we can turn our attention to the slightly more difficult problem of the
shallow strip footing illustrated in Figure 5.9. This is in many ways a classic
plane strain problem in both metal plasticity and geomechanics. The sketch
in Figure 5.9 shows a long footing of width B buried in a Coulomb soil at



5.5 Shallow foundation – lower bound 121

P

D

B

Figure 5.9. A typical shallow strip footing.
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Figure 5.10. Idealised loading for a shallow strip footing.

a shallow depth D and supporting a load P per unit length. The equivalent
problem in metal plasticity is a long rigid punch indenting the surface of an
elastic–perfectly plastic halfspace. There have been many published analyses
of the problem and, in the context of geotechnical engineering, the familiar
bearing capacity equation is a well-known result.

It is possible to approach the problem in a number of different ways. In this
section we will consider two relatively simple lower bound approaches based
on the idealisation shown in Figure 5.10. In that figure both the footing and
the soil above the horizontal plane passing through the base of the footing
are represented by uniform tractions applied on the surface of a homogeneous
halfspace. The uniform stress p is applied over the width of the footing and is
equal to the wall load P divided by B. The stress p0 represents the overburden
surcharge and is equal to ρgD. We assume that the material is a Coulomb soil.

To apply the lower bound theorem we require a statically admissible stress
field for the situation shown in Figure 5.10. An obvious possibility is the bi-
axial stress state illustrated in Figure 5.11. The two vertical dashed lines repre-
sent stress discontinuities, similar to the discontinuity used in Figure 5.1. The
halfspace is subdivided into three regions identified by the letters A and B. The
stresses shown are all principal stresses. The vertical components of stress in all
three regions increase with depth according to ρgz. The horizontal components
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Figure 5.11. The discontinuous stress field for a shallow strip footing – lower bound
analysis.
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Figure 5.12. Mohr diagram for Figure 5.11.

of stress are not yet specified, but they must be equal in the different regions in
order to preserve horizontal equilibrium.

Evidently there are many similarities here to the simple example we discussed
in relation to Figures 5.1 and 5.2. The best lower bound will correspond to the
greatest value for the stress p for which the yield condition is not violated.
Therefore we will take both regions to be at their limiting states. Unlike the
situation in the earlier example, the yield condition here is that of Coulomb
rather than Tresca. The final stress field is summarised by the Mohr diagram in
Figure 5.12, where we have taken the case for z = 0. The horizontal principal
stress evaluated at z = 0 in both regions is

σ A
xx = σ B

xx = 2c
√

N + p0 N (5.16)

and the lower bound estimate for p is

p = 2c
√

N + N
[
σ A

xx

]
z=0 = 2c

√
N (1 + N ) + p0 N 2 (5.17)
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Figure 5.13. Discontinuous stress field for the step-load problem – lower bound
analysis.

Suppose φ = 20◦. Then N is 2.04 and our lower bound estimate (5.17) can
be evaluated as

p

c
= 8.68 + 4.16

p0

c
(5.18)

For the case where p0 = c, we find p = 12.84 c. This is not a very good
lower bound, in the sense that the true collapse load is significantly greater, but
the stress field we have used is exceedingly simple and we should not expect
remarkable accuracy.

Next, we can attempt to improve our estimate. One way to do this is to add
additional regions to the stress field of Figure 5.11. Before we do so it is helpful
to consider the somewhat simpler problem of a stepped surface traction as
shown in Figure 5.13. For this problem the stress p0 acts for all x < 0, while p
is applied for x ≥ 0. This problem looks like the left edge of the footing problem
and we can concentrate our attention on it for the moment. The new stress field
we want to investigate consists of the three regions shown in Figure 5.13.

Regions A and C are familiar from our first attempt. The principal stresses
align with the coordinate directions, as they must in order to satisfy the surface
boundary conditions. The horizontal components of stress in both regions are
as yet not specified. The ‘new’ region in this situation is region B. As we will
see, the principal stresses in this region will not align with the coordinate axes.
The interesting point here is that the dashed lines of stress discontinuity are no
longer vertical but make an angle β with the horizontal. In order to preserve
equilibrium we must ensure that the normal and shear tractions on the β lines
are continuous. Also, in order to maximise p, we will probably want the stress
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Figure 5.14. Mohr diagram for region A in Figure 5.13.

fields in each region to have as large a Mohr circle as possible, indicating the
limiting yield state.

Begin with region A. As we noted above, the soil surface is a principal sur-
face, suggesting that the stress state within the region should have horizontal
and vertical principal directions. It is therefore immediately evident that the
horizontal stress σ A

xx should be the major principal stress, given by

σ A
xx = 2c

√
N + p0 N + ρgz (5.19)

This ensures that at z = 0 the Mohr circle for region A will look as shown in
Figure 5.14. Note that since the stress σ A

zz(z = 0) = p0 acts on a horizontal
surface, the pole for the Mohr circle will lie at σ A

xx as shown. We identify the
pole as O A

p .
Now consider the stresses that act on the surface separating regions A and

B. On circle A, those stresses will lie at the point where a line making an angle
β with the horizontal and passing through the pole O A

p intersects the circle.
The stresses are identified in Figure 5.14 by (σAB, τAB). These are, of course,
the normal and tangential components of stress acting on the surface separating
regions A and B and, in order to satisfy equilibrium, they must act in region
B itself. Thus the point (σAB, τAB) must lie on both the Mohr circle for region
A and the circle for region B.

It is now straightforward to completely define the stresses in region B. We
know that the Mohr circle must pass through (σAB, τAB) and, in order to max-
imise p, the circle must be at its limiting state. Of course, two limiting circles
can be constructed through any single stress point, but it would make little sense
to reuse circle A, therefore the Mohr circle for region B must be as shown in
Figure 5.15. In this figure we can also identify the pole for region B. It lies on
the intersection of the left-hand β line with the circle and is marked as O B

p . Note
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Figure 5.15. Mohr diagram for regions A and B in Figure 5.13.

that while O B
p falls near the point where the circle is tangential to the failure

envelope, this is a coincidence and has no relevance to the solution. Clearly,
since the pole does not coincide with either of the principal stresses on circle
B, there will be normal and shear stresses on horizontal and vertical surfaces
within the region. We could easily determine those by drawing horizontal and
vertical lines through the pole O B

p .
The last step is to determine the stress state in region C . Just as with region B,

we can immediately see that the Mohr circle for region C must pass through the
point marked (σBC , τBC ). Also, in order to maximise our result for p, the Mohr
circle should be at the limiting state. These two things alone are sufficient to
fully determine a Mohr circle for region C , but there is still one more condition
we must satisfy. Since the ground surface is a principal surface, the normal
stresses in region C must be principal stresses. Therefore the pole for circle
C must coincide with the minor principal stress. Referring to Figure 5.15, the
circle for region C must pass through not only point (σBC , τBC ), but also the
point marked R, and it should be tangential to the Coulomb yield surface. At
first glance the problem appears intractable since we have more conditions than
degrees of freedom available. In fact, there is one remaining parameter we have
not yet specified, the angle β. The way to proceed is to adjust the angle β in such
a way that the three conditions on circle C can be met. The result is illustrated
in Figure 5.16. All three circles are now shown together with the poles for each
and the common stress points. The greatest principal stress for circle C is our
estimate for the lower bound collapse load.

Note that the situation shown in Figure 5.16 applies at the ground surface
only. If z > 0 then the normal stresses in all three regions are increased by ρgz.
This has the effect of shifting the Mohr circles in the figure to the right, but
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Figure 5.17. Extending the step load problem to solve the shallow strip footing – lower
bound analysis.

not altering their size or their relationship to one another. In this way there
is no danger of violating the yield condition at some greater depth within the
halfspace. We can always add an isotropic stress to the normal stress components
in problems such as this where the ground surface is horizontal. Also, it might
appear from Figure 5.13 that region B will vanish when z = 0, but this is not a
problem. The stresses in each region will vary continuously for all values of z
and the limiting values as z → 0 will be as shown.

Is this solution relevant to the shallow foundation problem? It is, since we
can now place a new region similar to region B at each edge of the footing load.
That is, instead of the simple stress field in Figure 5.11, we now wish to consider
the situation shown in Figure 5.17. The two outer regions A are exactly as in
the stepped traction problem, and so is the region B at the left-hand edge of the
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footing. On the right-hand edge of the footing we now have a new region B ′.
This is nearly the same as region B, but the direction of the β line separating
B ′ from A is reversed. Referring to Figure 5.16, the Mohr circle for region B ′

will be exactly the same as for region B with the exception that the pole will
lie near the bottom of the circle rather than the top. Region C is unchanged.
We also find a new region D where B and B ′ intersect. We should check to see
that the yield condition is not violated in this region. The Mohr circle for region
D must share one point with both regions B and B ′. Each point is exactly the
same as the point shared between B and B ′with region A. The two points lie
directly above one another and hence there is no unique stress state for region
D. One possible solution is to make region D the same as region A. Clearly
this is a safe result in the sense that the yield condition will not be violated and
we see that the complete stress field is statically admissible.

For the purposes of comparison, if ϕ = 20◦, the angle β is roughly 69.2◦ and
the lower bound estimate for p is found to be 12.36 c + 5.50 p0. In the special
case where p0 = c this gives p/c = 17.86, an improvement of roughly 38% on
our first estimate based on Figure 5.11. The new result is considerably closer to
the true collapse load, but the analysis is correspondingly more complex. The
reason why the lower bound stress field shown in Figure 5.17 gives a signifi-
cantly better result than that shown in Figure 5.11 can be sensed intuitively. The
stress field beneath the actual footing will have a natural tendency to ‘distribute’
or ‘spread’ as z increases. This is not possible in Figure 5.11, but the stresses
in Figure 5.17 do permit spreading of a certain kind and hence give a better
answer. It is possible to add yet more regions to the situation in Figure 5.17
and this may lead to further improvements in our lower bound estimate, but the
increased accuracy entails an increase in computation complexity, and there is
significantly more work required. One way to avoid this extra effort is to let a
computer do the work by employing finite elements. A statically admissible,
discretised stress field may be obtained through an application of finite-element
theory to solve for the lower bound collapse load in a range of more complex
problems.

5.6 Shallow foundation – upper bound

Now we can attempt to establish an upper bound for the shallow foundation
problem sketched in Figure 5.10. The things we need are, first, a kinematically
admissible deformation and second, an energy balance expression similar to
(5.11). We will work through the problem in a series of stages beginning with
the most simple case of a cohesive soil with no internal friction. Levels of
additional complexity will be added one at a time.
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Figure 5.18. Collapse mechanism for shallow strip footing – upper bound analysis.

Case 1. φ = 0◦, p0 = 0, zero body forces

This is the simplest case for a shallow foundation. The sole source of strength
is the cohesion c, there is no surcharge effect due to depth of burial and the
effects of gravity are omitted. One possible deformation field is shown in
Figure 5.18. The heavy lines depict shear surfaces that delineate five rigid
blocks shaped as equilateral triangles with side dimension B. This is a particu-
larly simple deformation field and it will not yield especially accurate results,
but it is very convenient from the standpoint of computations and will be useful
for illustrating the upper bound theorem.

Recall that we can always think of the shear surfaces as thin bands of in-
tense shearing. Inspection of the figure shows that we will expect the triangle
marked 1 to move vertically downward as a rigid block due to the footing load
p. The region marked 0 surrounding the five triangles remains stationary. The
remaining triangles will move as rigid bodies and there is mirror symmetry
about the footing centre line. The triangle marked 2 will move horizontally to
the right to make way for triangle 1. The triangle marked 3 will move upward
and to the right to make way for triangle 2. A point worthy of note relates to the
movement of the rigid blocks at points of contact with the stationary mass 0.
Clearly, the triangles cannot penetrate into the basement material without vio-
lating compatibility. One way of addressing this issue is to incorporate small
‘cut-outs’ such as those illustrated in insets (a) and (b) in Figure 5.18. This
permits small movements of the blocks without compromising compatibility.
Any change in the calculation of external work or internal dissipation caused
by the cut-outs can be neglected.
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Figure 5.19. Velocity hodograph for the collapse mechanism in Figure 5.18.

For the case of zero internal friction, there will be no dilatancy. Therefore
the direction of motion of the rigid blocks will be parallel to the shear surfaces.
In order to calculate both the internal dissipation rate D and the external power
R, we will need to know the relative velocities for all of the numbered regions
in Figure 5.18. An easy way to determine all the necessary velocities is to con-
struct a velocity diagram or hodograph. This is a graphical representation of
all the velocities shown in Figure 5.19. In the figure the velocity of each region
is measured relative to each adjoining region. For example v01 represents the
velocity of region 1 relative to the (stationary) region 0. To construct the hodo-
graph we begin by drawing v01 vertically downward to an arbitrary scale. The
point 0 is the origin and represents no motion. Point 1 represents the downward
velocity of block 1. Next, we realise that block 2 must move horizontally rela-
tive to region 0; but must also move relative to block 1, and its relative motion
will be upward and to the right on a 60◦ angle. Drawing two lines: one from
point 0 in the horizontal direction, and one from point 1 in the 60◦ direction,
the intersection identifies point 2, and the velocities v02 and v12 are shown.
Finally, we find point 3 by drawing lines through point 0 and point 2 parallel to
the slip surfaces that separate block 3 from regions 0 and 2. By constructing
the diagram in this way we are assured of creating a compatible deformation
in the sense that the blocks will move without creating gaps or overlaps.

The magnitudes of all the relative velocities are easily determined in terms
of the velocity v01. The geometry of the hodograph shows that

v02 = v03 = v23 = v01 tan 30◦ = 0.577v01, v12 = v01/cos 30◦ = 1.155v01

(5.20)
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The internal dissipation rate will be the sum of the dissipation occurring on
each slip surface. Because of symmetry we can work this out for the right-hand
half of the deformation and double the result. Following (5.6) and remembering
that φ = 0, we find

D = 2 × Bc(v02 + v12 + v03 + v23) = 5.77Bcv01 (5.21)

To find our upper bound we equate D to the power of the external forces. The
only external load is the applied stress p and this will move downward with
velocity v01. Therefore,

R = pBv01 = 5.77Bcv01 = D (5.22)

So we find that our upper bound estimate is p = 5.77c. Once again, note that
v01 has cancelled from the energy balance equation. The magnitude of the slip
velocity is a virtual quantity and has no effect on the collapse load.

The exact solution to this problem is well known. It will be described in
detail in Chapter 6. The exact collapse load is (2 + π )c = 5.14c, roughly 12%
lower than our upper bound estimate. It is also straightforward to carry out a
lower bound analysis for these conditions. Using the multiple stress fields from
Figure 5.14 we can find that the lower bound is 4.83c, roughly 6% less than the
exact result.

Case 2. φ = 0◦, p0 �= 0, zero body forces

It is a simple matter to incorporate the surcharge due to the depth of burial of
the footing. This creates a new external force that must be considered in the
energy balance equation. The rate of work of the applied stresses now becomes

R = pBv01 − 2 × p0 Bv03 sin 60◦ (5.23)

Note that negative work is done by these forces since the block 3 is moving
upward. The presence of the surcharge on both sides of the footing accounts for
the factor of 2 in (5.23). If we now equate the power R to the rate of dissipation
from (5.21) we find a new upper bound collapse load

p = 5.77c + p0 (5.24)

Note that the footing width B does not appear. The result in (5.24) is especially
simple due to the simplified geometry assumed for the collapse mechanism in
Figure 5.18.

Case 3. φ = 20◦, p0 �= 0, zero body forces

Next we will introduce friction. In order to compare this with our lower bound
results we set φ equal to 20◦. This will have a dramatic effect on the collapse



5.6 Shallow foundation – upper bound 131

B

1 2 3

0

p

p0 p0

υ12

υ02

υ01

υ23 υ03

Figure 5.20. Collapse mechanism for a shallow strip footing showing the effect of
friction on the relative velocity directions.
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Figure 5.21. Velocity hodograph for Figure 5.20.

load. The reason is dilatancy. Figure 5.20 redraws the collapse mechanism of
Figure 5.18, but now shows the direction of relative motion associated with
each of the slip lines.

The velocity v01 is unchanged, but in every other case the direction of relative
motion is altered by an angle φ. Dilatancy forces block 2 to move upward, away
from the stationary region 0. There is also a new component of relative motion
on the line separating blocks 1 and 2, and blocks 2 and 3. In each case the
velocity vector is oriented at an angle φ to the slip line. We construct a new
hodograph as shown in Figure 5.21.

In Figure 5.21 the original hodograph of Figure 5.19 is shown as a dashed
line. The new hodograph is significantly expanded due to the effect of dilatancy.
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In the figure the lines representing v02, v12, v03 and v23 all lie at an angle φ to
the direction of the corresponding slip line. This moves point 2 well to the right
from its original position and point 3 is pushed far above the place it occupied in
Figure 5.19. From the hodograph geometry the magnitudes of the new relative
velocities are

v02 = 2.240v01, v12 = 2.748v01, v03 = 6.450v01, v23 = 5.672v01 (5.25)

Because of the larger magnitudes of the velocities, the dissipation rate is now
considerably greater. We now have

D = 2 × Bc(v02 + v12 + v03 + v23) cos φ = 32.16 Bcv01 (5.26)

Note that we must multiply all of the velocities in (5.26) by cos φ in order to
have the tangential velocity component shown in equation (5.6).

The power of the footing load p is unchanged for this case, but the surcharge
term now moves with a velocity equal to the vertical component of v03. The
energy balance equation now becomes

R = pBv01 − 2p0 Bv03 cos 10◦ = 32.16 Bcv01 = D (5.27)

Solving for p gives

p = 32.16 c + 12.70 p0 (5.28)

Clearly internal friction has had an important effect on our upper bound, but
note that as yet there is no influence of the footing width B.

Case 4. φ = 20◦, p0 �= 0, gravity effects included

The final step is to let gravity come into play. This will provide another ex-
ternal force that must be accounted for in the energy balance equation. Each
of the triangular blocks has the same area and hence the same weight, given
by ρgB2 sin 60◦ cos 60◦ = 0.433ρgB2. The gravity force does positive work in
block 1 since it moves downward, but negative work is done in both blocks 2
and 3. The power of all external forces now becomes

R = pBv01 − 2p0 Bv03 sin 80◦ + 0.433 ρgB2(v01 − 2v02 sin 20◦ − 2v03 sin 80◦)
(5.29)

When this is equated to the rate of internal dissipation D we find an upper bound
estimate of

p = 32.16 c + 12.70 p0 + 5.73ρgB (5.30)

Now we finally see a contribution to p that is proportional to the footing
width B.
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Figure 5.22. An alternative collapse mechanism for a shallow strip footing.

Comparing the result in (5.30) with the lower bound estimate, we find that
they differ by a considerable amount. First, the lower bound had no dependence
on the footing width. Even if we disregard the term involving B in (5.30), the
two results are still significantly different. For the case where p0 = c, the lower
bound gave p/c = 17.86. Ignoring the term involving B, equation (5.30) gives
p/c = 32.16 + 12.70 = 44.86. The reason for this large discrepancy lies
primarily with our upper bound calculation. The collapse mechanism given
in Figure 5.18 is too different from the true collapse mechanism to provide a
good estimate. It is relatively easy to improve on the result in (5.30) by simply
assuming a different collapse mechanism that is closer to the true mechanism.
As an example, consider the mechanism shown in Figure 5.22. Here the 60◦

angles of the equilateral triangles have been replaced with either 35◦, 55◦ or 75◦

angles at the places indicated. If we carry through the calculation for the case
where φ = 20◦, p0 �= 0 and gravity effects are included, we find the following
result:

p = 18.00 c + 7.55 p0 + 4.18 ρgB (5.31)

This estimate for the collapse load is significantly smaller than that in (5.30)
and therefore will be closer to the actual value. If we set p0 = c and ignore
the term involving B, we find p/c = 25.55, roughly a 75% improvement. The
patterns of the collapse mechanisms of Figures 5.18 and 5.22 are quite similar,
but the resulting upper bound has changed significantly.

5.7 Shallow foundation – discussion

We can pause here for a moment to consider some other aspects of the shallow
footing problem. It is a problem that has been studied by many researchers
over a period of 80 or more years and, because of the relatively large amount
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of information that has accumulated, it is beyond the scope of this textbook to
summarise all that is known. We can, however, point out a few relevant facts.

The most widely used solution for the shallow footing is the familiar bearing
capacity equation of Terzaghi. According to his analysis, the limiting value of
p is given by the sum of three terms

p = cNc + p0 Nq + ρg(B/2)Nγ (5.32)

Here Nc, Nq and Nγ are dimensionless functions of the angle of internal
friction φ

Nq = N eπ tan φ, Nc = (Nq − 1) cot φ, Nγ = 1.8(Nq − 1) tan φ (5.33)

where N = (1 + sin φ)/(1 − sin φ). These so-called bearing capacity coeffi-
cients Nc, Nq and Nγ will be discussed in more detail in Chapter 6. At this
point we wish only to draw out enough of the detail underlying (5.32) to pro-
vide comparisons with our limit theorem results. Terzaghi’s analysis was based
on a collapse mechanism similar to that shown in Figure 5.23. In the figure we
see a system of shear surfaces not too dissimilar to the mechanisms we have
used in our upper bound analysis. The triangular regions aba′ and acd can be
assumed to translate as rigid bodies, while the region abc deforms in such a way
that the requirement for kinematic admissibility is satisfied. Region abc must
maintain contact both along planes ab and ac and on the curved surface bc. The
angles marked α and β on the figure have values (45◦ + ϕ/2) and (45◦ − ϕ/2),
respectively. We will meet the collapse mechanism shown in Figure 5.23 again
in Chapter 6 where it will be studied in considerable detail.

The region abc is different from anything we have considered thus far. It is
called a region of radial shearing. In such a region, energy is dissipated both
throughout the region, as well as along the boundary bc. One might expect that
since the region abc rotates, the associated shear surface would be circular, but
this is not the case. Dilatancy requires that the moving block must not only

B
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p0 p0

αββ a

b c

da'

Figure 5.23. Terzaghi analysis for shallow strip footing (see the detailed discussion in
Chapter 6).
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Figure 5.24. Construction of a logarithmic spiral to define the zone of radial shearing in
Figure 5.23.

rotate but also shift away from the underlying soil. A soil particle initially on
the shear surface cannot move tangentially to the surface, but must instead move
at an angle φ to the tangent as shown in Figure 5.24. Clearly a circular surface
will not work since compatibility will be violated. The shape of surface that
will preserve compatibility is called a logarithmic spiral. It has the form

r = r0eθ tan ϕ (5.34)

where r and θ are, respectively, the radius and angle shown in the figure. In
the upper bound analyses we have done so far, only translational motions have
been considered. Rotational motions can also be considered, but, if φ �= 0, the
associated slip surfaces must be logarithmic spirals.

If we compare (5.32) with (5.31) or (5.30), we see that that all three equations
have a similar form, each with three terms proportional to c, p0 and ρgB. The
three terms in Terzaghi’s equation have roles similar to the terms in (5.31)
and (5.30). The term proportional to c arises due to the strength of the soil. If
the soil possessed no cohesion, there could be no internal dissipation and the
c-term would vanish from (5.31) and (5.30). The term proportional to p0 results
solely from the surcharge due to the depth of burial. The term proportional to
ρgB occurs because of the effect of gravity acting on the blocks of soil within
the collapse mechanism. It happens that the coefficients Nc and Nq are exact
results for the special case of a weightless soil, while Nγ is an approximation
introduced to account for the effects of gravity. The form shown for Nγ in (5.33)
was suggested by J.B. Hansen in 1961. Note that each of these contributions to
the limit load depends upon φ.

Using (5.33) we can evaluate the bearing capacity coefficients for any value
of φ. If we set φ = 20◦, we find (5.32) becomes

p = 14.84 c + 6.40 p0 + 1.77ρgB (5.35)

This can be regarded as a reasonably accurate result. There are a great many
other solutions for the problem that consider different aspects, such as whether
the footing is rigid or flexible, or whether the base of the footing is smooth or
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rough, but the resulting collapse loads are all roughly similar to (5.35). We can
use (5.35) as a basis for comparison with our lower and upper bound estimates.

First, consider our lower bound result. Using the multiple stress fields of
Figure 5.17 we arrived at a lower bound estimate of p = 12.36 c + 5.50 p0.
Comparison with (5.35) suggests our coefficient for c is 17% too small, while
that for p0 is 14% too small. Of course there is no term proportional to the
footing width B. It seems reasonable to conclude that the lower bound analysis
gives a good result except for the inability to account for the effect of gravity on
the soil, and hence the footing width B. In contrast, our upper bound analyses
do include the effect of footing width, but provide somewhat less accurate
estimates for the collapse load. Our best upper bound result used the collapse
mechanism sketched in Figure 5.22 and gave the collapse load shown in (5.31).
The three coefficients in (5.31) are too large by factors of 21, 18 and 133%,
respectively. Of the three coefficients only the third one appears to be grossly in
error. This third coefficient Nγ is by far the least well understood of the three.
The reason for this uncertainty will become clear in the next chapter when we
attempt to incorporate the effects of gravity within an exact solution of the
two-dimensional plasticity equations.

The main point to be made here does not really concern the lower and upper
bound analyses we have carried out thus far. Any geotechnical engineer con-
fronted with the footing problem in Figure 5.10 would immediately turn to
Terzaghi’s, or another similar, solution. There would be no reason to carry out
an analysis based on the collapse load theorems since other accurate solutions
already exist. The collapse load theorems are of limited use in regard to the
analysis of such a straightforward problem. Lower and upper bound analyses
come into their own, however, when problems of a more specialised nature
arise. Some examples are illustrated in Figure 5.25. Problems such as these

P P

P

Figure 5.25. Foundation problems where handbook solutions will not be useful.
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will rarely have ready-made solutions and the collapse load theorems provide
an immediately useful approach for the geotechnical specialist to follow. The
procedures can readily yield results that will be enhanced by the ability of the
practitioner to identify plausible load carrying paths within the soil mass and
plausible collapse mechanisms.

5.8 Retaining walls

When in 1773 Coulomb published his first memoir, he was concerned with the
strength of the common building materials of his day: masonry, timber and soil.
It was natural that he should focus attention on retaining walls as, at that time,
they constituted a major unsolved problem. In his first attempt he provided the
solution we continue to use today. Many things have changed including the way
we set out the problem and the notation we use, but Coulomb’s original analysis
remains basically unchanged. Although he would have been unaware of all the
modern plasticity theory discussed above, his solution was based on an intuitive
understanding of the principles associated with the upper bound theorem.

Coulomb realised that the retaining wall problem had two natural collapse
loads depending on how the wall itself might move. If the wall is free to move
slightly away from the backfill, the resulting force on the wall will be minimised.
Conversely, if the wall moves toward the backfill the thrust will be maximised.
Today we refer to these two conditions as active and passive states respectively.
All students of geomechanics will be familiar with the connotation of active and
passive in the sense that the active loads represent the weight of the backfill and
associated surface loads actively forcing the wall to move whereas the passive
forces are mobilised in resisting the movement of the wall towards the soil.

The retaining wall problem lends itself naturally to upper bound methods.
We will use the upper bound theorem to examine the problem sketched in
Figure 5.26. A retaining wall with vertical back of height H supports a horizontal
backfill with cohesion c and friction angle φ. Like Coulomb, we will assume
a collapse mechanism based on a failure plane making an undetermined angle
β measured from the back of the wall. This isolates a failure wedge behind

H
β

0
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1

Figure 5.26. Collapse mechanism for a retaining wall – upper bound solution.
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Figure 5.27. Velocity hodograph for Figure 5.26 – passive case.

the wall. We will identify the stationary soil mass outside the failure wedge as
region 0, the wall itself will be region 1 and the failure wedge region 2.

To begin, consider the passive case where the wall moves to the right in
Figure 5.26 and we initially assume the back of the wall is smooth so that,
although there is relative motion between the wall and the failure wedge, no
dissipation occurs there. The hodograph is as shown in Figure 5.27. The wall ve-
locity relative to the stationary mass is v01, the other velocities have magnitudes

v02 = v01 csc(β − φ), v12 = v01 cot(β − φ) (5.36)

From Figure 5.26 we see that the length of the slip surface is

L = H sec β (5.37)

The weight of the failure wedge is then found to be

W = ρgH 2

2
tan(β) (5.38)

The rate of dissipation is

D = cLv02 cos φ = cHv01 sec β csc(β − φ) cos φ (5.39)

The power of the external forces is

R = PPv01 − W v01 cot(β − φ) (5.40)

where PP represents the passive thrust on the wall. Equating R and D we find
the following dimensionless form for the passive thrust:

PP

cH
= ρgH

2c
tan β cot(β − φ) + sec β csc(β − φ) cos φ

Now we can adjust the angle β to minimise PP and hence find the best upper
bound. When we do this we find that the critical value for β is independent
of H and c. Its value is (π/4 + φ/2). This is, of course, the same as Coulomb’s
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Figure 5.28. Velocity hodograph for Figure 5.26 – active case.

result. If we set ϕ = 20◦, the upper bound estimate becomes

PP

cH
= 2.04

ρgH

2c
+ 2.856 (5.41)

For the active case the orientations of the relative velocities change. The wall
moves to the left in Figure 5.26 and the failure wedge moves down and to the
left. The hodograph is shown in Figure 5.28. The relative velocity magnitudes
are now given by

v02 = v01 csc(β + φ), v12 = v01 cot(β + φ) (5.42)

Note that for the active condition, the motion of the wall is away from the
backfill, opposite to the direction of the wall force PA. Therefore the wall force
does negative work. The rate of work of the external forces now becomes

R = −PAv01 + Wv01 cot(β + φ) (5.43)

while the dissipation rate is

D = cHv01 sec β csc(β + φ) cos φ (5.44)

Solving for PA we find

PA

cH
= ρgH

2c
tan β cot(β + φ) − sec β csc(β + φ) cos φ (5.45)

Unlike the passive case we now must maximise PA. The upper bound is less
than the true collapse load in the active condition. When we do maximise PA

we find the critical value of β is (π/4 − φ/2), just as Coulomb did. The upper
bound for the active case with ϕ = 20◦ is

PA

cH
= 0.49

ρgH

2c
− 1.40

When Coulomb carried out his calculations he did not use an energy balance
equation as we have done here. Instead he examined the forces that acted on the
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Figure 5.29. Effect of wall friction on retaining wall problem.

failure wedge and used equilibrium to establish a relationship between the thrust
(either active or passive), the reaction force on the slip surface and the gravity
force. He then minimised or maximised the thrust by varying the geometry of
the slip surface. This method is equivalent to the upper bound energy balance
approach as is shown in Appendix I.

There are many variations to this problem. A useful example is the situation
where the back surface of the wall is rough. The roughness is quantified by an
angle called the angle of wall friction, usually denoted by δ. For this case the
thrust will no longer be horizontal. Figure 5.29 illustrates the passive problem.
In the figure the wall is represented by the heavy vertical line. We now have
the condition where horizontal translation of the wall produces the hodograph
in Figure 5.27, but there is an extra source of internal dissipation due to slip
on the back face of the wall. This introduces a term proportional to the vertical
component of the thrust, PP sin δ, into the dissipation rate.

D = cLv02 cos φ + PPv12 sin δ (5.46)

The external work is the same as (5.40) except that we must use the horizontal
component of the wall thrust, PP cos δ.

R = PPv01 cos δ − W v01 cot(β − φ) (5.47)

Energy balance then gives

PP

cH
=

ρgH

2c
tan β cot(β − φ) + sec β csc(β − φ) cos φ

cos δ − sin δ cot(β − φ)
(5.48)

Now, when we minimise PP , we find that the result depends on δ. For example, if
φ = 20◦ and δ = 15◦, the critical value of β is roughly 65◦, which is considerably
greater than the case of the smooth wall where β = π/4 + φ/2 = 55◦. The
revised upper bound, with φ = 20◦, is

PP

cH
= 3.03

ρgH

2c
+ 4.45

Comparison with our result for the smooth wall (5.41) indicates that wall friction
may have a significant effect on the calculated thrust.
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Figure 5.30. A more complex collapse mechanism for the retaining wall problem.

Of course, it is also possible to use more complex collapse mechanisms.
For example, instead of the simple failure wedge in Figure 5.29, we could
investigate the mechanism shown in Figure 5.30. We now have two triangular
regions that depend upon the two angles β1 and β2. This problem becomes more
difficult since both β1 and β2 must be varied simultaneously to minimise PP .
Fortunately, there are a number of multivariate optimisation packages in many
of the symbolic manipulation computer codes and they can offer help with a
problem such as this.

Still greater complexity arises in cases where the backfill surface is no longer
horizontal or where the back face of the wall is not vertical. Solutions have
been tabulated for many of these situations in several textbooks. For example,
see the book by W.-F. Chen cited at the conclusion of this chapter.

5.9 Arching

Next, we will briefly deal with the flow of a Coulomb material through a chute
or hopper of restricted size. If the opening through which the flow passes is
too small, the flow may clog, forming a natural arch such as that shown in
Figure 5.31. In the figure the parallel sides of the channel are vertical and the

x

y

2a

Coulomb material

Rigid hopper wall

Arch

Figure 5.31. Arching of granular media in a narrow hopper.
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dimension of the channel normal to the plane of the drawing is assumed to
be large so that plane strain conditions exist. The material in the channel has
cohesion c, friction angle φ and density ρ. The opening dimension is 2a and
the angle of wall friction has the value δ.

We will use the lower bound theorem to estimate the greatest value of a
for which a natural arch is possible. To begin we require a suitable stress field
for the material in the channel. For the geometry shown in Figure 5.31, the
equilibrium equations are

∂σxx

∂x
+ ∂σxy

∂y
= 0

∂σxy

∂x
+ ∂σyy

∂y
= ρg

Many measurements made in channels and hoppers suggest that the horizontal
component of stress σxx is approximately constant everywhere in the channel.
Thus we set σxx = p0 = constant. Equilibrium for the x-direction then shows
that σxy must be independent of y. Equilibrium for the y-direction is a bit more
problematical. We cannot simply let σyy be proportional to ρgy as is the case in
a natural soil deposit. If we did so, the traction-free surface at the arch would not
be possible. Instead we assume σyy to be independent of y. Then equilibrium
shows that σxy = ρgx . In this way the weight of material in the channel is
supported by shear tractions at the channel walls.

The greatest value of |σxy | occurs at x = ±a. That value cannot exceed the
available frictional resistance p0 tan δ. Therefore in the limiting condition we
must have

p0 = ρga

tan δ
(5.49)

Now consider the Mohr circle for the stress state at the point on the arch
where it comes into contact with the wall, x = a. Since the arch is a traction-
free surface, the circle must pass through the origin. It must also pass through
the point σxx = p0, σxy = ρga. These two points are sufficient to construct the
circle, shown in Figure 5.32. We see from the geometry that the major principal
stress is

σ1 = p0 + ρga tan δ (5.50)

Using (5.49) to eliminate p0 and then simplifying gives

σ1 = ρga

sin δ cos δ
(5.51)

Finally, if we apply the lower bound theorem, we must ensure that the stress field
is ‘below yield’. The limiting condition corresponds to σ1 = 2 c

√
N . Therefore
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Figure 5.32. Mohr diagram for the arching problem – lower bound solution.
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Figure 5.33. Mohr diagram for the arching problem – analysis of arch geometry.

the limiting dimension for the channel is found from (5.51) as

aL = 2 c

ρg

√
N sin δ cos δ (5.52)

Note that if δ = 0, then aL = 0 and no arch can form when the walls are
perfectly smooth. At the other extreme, the roughest wall would have δ = φ

and we would then find that aL is equal to (2 c/ρ g)(1 + sin φ) sin φ.
Even though our stress field is only an approximation to the true stress field,

we can nevertheless use it to estimate the shape of the arch. Suppose the channel
dimension a is less than aL and an arch has formed. For a point on the hopper wall
at x = a, let δ′ represent the mobilised wall friction. That is, tan δ′ represents the
ratio σxy/σxx = ρga/p0. Naturally, δ′ ≤ δ. The Mohr circle for the point x = a
is now shown in Figure 5.33. Note the location of the pole on the vertical line
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through the stress point (p0, ρga). The surface supporting zero stress (the arch)
will lie parallel to the line from OP to the origin and we see that the slope
of this line is tan δ′. Thus the arch intersects the wall at an angle equal to
the mobilised friction angle. Now consider a point on the arch with x < a.
The Mohr circle for this point will have a smaller diameter than that shown in
Figure 5.33 since the shear stress σxy is reduced while σxx = p0 remains un-
changed. As x ranges between a and zero, the stress σxy changes from ρga to
zero and the slope of the arch changes from tan δ′ to zero. From the Mohr circle
we see that the arch slope is given by

dy

dx
= ρgx

p0
= x

a
tan δ′ (5.53)

Integrating this shows that the arch takes the shape of a parabola. Observations
of actual arches in narrow channels suggest that a parabolic shape is realistic.

5.10 Non-associated flow and the upper bound theorem

Throughout this chapter there has been a peculiar phenomenon we have not yet
discussed. Equation (5.6) suggests that whatever the amount of dissipation that
may occur within the shearing surface, it is always directly proportional to the
cohesion c. An alert student might then ask: what if c is zero? Will there be
no internal dissipation? These are good questions. Obviously the soil we are
concerned with might be a sand or gravel, in which case there would be no
cohesion. Equation (5.6) evidently implies that there can be no dissipation, but
that conclusion runs counter to our intuition. The problem lies in the associated
flow rule.

Recall how the dissipation rate per unit length of slip surface D was derived.
In Figure 5.4 we noted how the normality condition related the components of
the plastic strain rate vector. This led to a relationship between the slip velocity
components: vn = −vt tan ϕ. Effectively, the plastic strain rate components in
Figure 5.4 could be replaced by the corresponding slip velocity components
and the slip velocity vector would obey a normality condition. Then calculating
the dissipation rate D in (5.4) and (5.5) we find that there is positive dissipation
caused by the tangential slip, but negative dissipation caused by the normal or
dilatant displacement. The rate of work done by the normal stress in causing
dilatancy turns out to be exactly the negative of the rate of energy dissipated by
the shear stress causing tangential slip,

σvn = −σvt tan ϕ = −τvt (5.54)

So, in terms of energy balance, the frictional strength of the soil can produce
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dissipation, but the amount is exactly counterbalanced by the work done by the
normal stress against dilatancy. This leaves only cohesion as a source of strength
that may result in positive dissipation, as (5.6) makes clear. If we wished to have
positive frictional dissipation, then it appears there may be too much dilatancy
taking place.

This does not mean that the upper bound theorem is of no value for cohesion-
less soils. We can and do use the theorem with c set equal to zero and, despite
the fact that there is no internal dissipation, useful results are still obtained.
However, we are well aware that the associated flow rule produces too much
dilatancy when compared with test results for real soils, and it is clear from the
above discussion that the lack of dissipation in cohesionless soils also results
from too much dilatancy. One is led to the conclusion that the associated flow
rule may not be the best model for plastic deformations.

Unfortunately, non-associated flow rules do not permit us to prove certain im-
portant theorems, particularly the uniqueness theorem outlined in Appendix G.
Without the assurance of a unique solution, the true collapse load itself is no
longer unique. Apparently the only useful result that can be obtained is that a
non-associative material can be no stronger than an associative one.∗ Neverthe-
less, in one particular case we can employ a non-associated response. That is
the case of plane translational collapse mechanisms where blocks of rigid soil
are separated by planar slip surfaces, exactly as we have employed throughout
this chapter with regard to the upper bound theorem.

To begin, we might hypothesise that the slip velocity components on some
particular slip surface are related by

vn = −vt tan ψ (5.55)

where ψ is the angle of dilatancy discussed in Chapter 4. We anticipate that
ψ will be smaller than ϕ so that smaller amounts of dilatancy will occur. We
can also assume that the Coulomb failure condition is satisfied on the surface
so that (5.1) applies. There are implications of this assumption that will be
discussed further below. Using (5.55) the rate of dissipation D given in (5.4) now
leads to

D = vt [c + σ (tan ϕ − tan ψ)] (5.56)

If ψ and ϕ are equal we re-obtain (5.6), but if they are different we see that
dissipation can occur even when c is zero.

∗ This follows from the observation that, at collapse, the actual stress field in a non-associative
soil will be statically admissible. Therefore, by the lower bound theorem, the collapse load for
a non-associative material cannot exceed that for a corresponding material with the associated
flow rule.
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Figure 5.34. Upper bound analysis for the vertical cut problem – effect of non-
associativity.

Apparently non-associativity and its result in (5.56) combine to overcome the
problem of dissipation in cohesionless soils, but a new problem has now arisen.
We cannot apply (5.56) unless we know the normal stress σ . Fortunately, in the
case of translational collapse mechanisms, this is not a major difficulty. For any
statically determinate failure mechanism we can find the normal stresses from
the conditions of equilibrium. This is best illustrated by an example.

Consider once again the problem of the vertical cut illustrated in Figure 5.5.
Suppose the soil has properties ρ, c and ϕ, and obeys a non-associated flow rule
with angle of dilatancy ψ . We assume a planar failure mechanism, but we note
that the slip velocity will be oriented at an angle ψ to the slip surface as shown
in Figure 5.34. The Mohr diagram is also shown in this figure to emphasise that
the slip velocity vector is no longer normal to the failure surface. The rate of
working of the external forces is given by (cf. (5.10))

R = v

2
ρgH 2 tan β cos(ψ + β) (5.57)

The internal dissipation rate per unit length of slip surface is given now by (5.56)
with vt = v cos ψ . Integrating over the slip surface length H/ cos β gives the
total dissipation rate D

D = cHv cos ψ

cos β
+ v cos ψ


 H/cos β∫

0

σ (tan ϕ − tan ψ) d�


 (5.58)



5.10 Non-associated flow and the upper bound theorem 147

H

β β

Slip surface 

W

P

S

W

S

P

Force polygon

Figure 5.35. Using force equilibrium to determine normal stress on a slip surface.

Now the question arises, what is the value of σ? Equilibrium of forces on the
triangular soil wedge is easily determined from the force polygon sketched in
Figure 5.35. We see that the total normal force on the wedge is given by

P = W sin β = 1

2
ρgH 2 tan β sin β (5.59)

This force is exactly equal to the stress σ integrated over the length of the slip
surface, hence

H/cos β∫
0

σ d� = 1

2
ρgH 2 tan β sin β (5.60)

and (5.58) becomes

D = v cos ψ

[
c

H

cos β
+ 1

2
ρgH 2 tan β sin β(tan ϕ − tan ψ)

]
(5.61)

Finally, we set R = D and solve for H giving (cf. (5.12))

H = 2c

ρg

cos ψ

sin β cos(β + ψ) − cos ψ sin2 β(tan ϕ − tan ψ)
(5.62)

The usual course would now be to minimise H with respect to β in order to
determine the best estimate for the upper bound. If, however, we first simplify
(5.62) by expanding the cos(β +ψ) term, a surprising result is found. All terms
involving ψ vanish! We are left with

H = 2c

ρg

1

sin β(cos β − sin β tan ϕ)
(5.63)

Evidently the value of ψ does not affect the upper bound solution. Moreover, it
is easy to show that (5.63) is identical to (5.12). Thus the upper bound for the
non-associative case is exactly the same as that for the associative case.
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The conclusion that the associative and non-associative cases have the same
upper bound solution is not simply an accident or solely confined to the simple
vertical cut problem. In fact, the conclusion is true for any statically determinate
translational collapse mechanism. The reason lies in the equivalence of the upper
bound, energy balance method with the so-called limit equilibrium method. The
equivalence of the two methods is discussed in Appendix I. Limit equilibrium
is the method originally used by Coulomb to solve the retaining wall problem.
One uses equilibrium to determine the forces (both magnitude and direction)
acting on the collapse mechanism within the soil mass. Usually a force polygon
is constructed. The failure mechanism geometry is then varied to maximise
(passive case) or minimise (active case) the forces tending to cause collapse. The
results from limit equilibrium will always be the same as those from the upper
bound theorem for any translational collapse mechanism. Hence, if the upper
bound theorem is applied to a particular translational collapse mechanism,
there can be no dependence on the choice of flow rule since the result can be
determined solely from equilibrium considerations.

Finally, recall the assumption made following equation (5.55) that the stresses
acting on the failure surface obey the Coulomb criterion. This is not a trivial
assumption. In fact, if (5.1) and (5.55) both apply, then Saint-Venant’s hypoth-
esis cannot be true. That is, the principal directions of stress and plastic strain
rate cannot be the same. This may not be a serious problem since, as we noted
in Chapter 4, Saint-Venant’s hypothesis is a convenience but is not required by
any physical law. It is possible to construct a theory for which equation (5.55)
and Saint-Venant’s hypothesis both apply. It is then found that the stresses on
the failure surface no longer obey (5.1). Instead the stress point moves nearer
the top of the Mohr circle, to the point where the direction of the slip velocity
vector is normal to the circle. In this modified theory the upper bound solution
is no longer identical to the limit equilibrium solution. A detailed derivation
may be found in a paper by A. Drescher and E. Detournay cited below.

Further reading

Two of the seminal papers by Drucker et al., referred to at the beginning of the
chapter, are

D.C. Drucker, W. Prager and H.J. Greenberg, Extended limit design theorems for
continuous media, Quart. Appl. Math., 9, 381–389 (1952).

D.C. Drucker and W. Prager, Soil mechanics and plastic analysis for limit design,
Quart. Appl. Math., 10, 157–165 (1952).

An entire book devoted to the solution of geotechnical problems using limit
analysis and containing numerous useful charts, tables and an extensive list of
references is
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W.-F. Chen, Limit Analysis and Soil Plasticity, Elsevier, Amsterdam, 1975.

The use of finite elements in lower bound estimation has been studied by a
number of researchers. Two interesting references are

J. Lysmer, Limit analysis of plane problems in soil mechanics, J. Soil Mech. Fnds. Div.
ASCE, 96 (SM4), 1311–1334 (1970).

S.W. Sloan, Lower bound limit analysis using finite elements and linear programming,
Int. J. Numer. Anal. Methods Geomech., 12, 61–77 (1988).

The bearing capacity coefficients given in (5.33) are derived in a variety of
texts. See

K. Terzaghi, Theoretical Soil Mechanics, Wiley, New York, 1943.
K. Terzaghi and R.B. Peck, Soil Mechanics in Engineering Practice, Wiley, New York,

1948.
J.B. Hansen, A general formula for bearing capacity, Ingeniøren, 5, 38–46 (1961).

Coulomb’s memoir is translated and elaborated in some detail in this book:

J. Heyman, Coulomb’s Memoir on Statics – an Essay in the History of Civil
Engineering, Cambridge University Press, Cambridge, 1972.

A discussion of non-associated flow rules in the upper bound theorem may be
found in

A. Drescher and E. Detournay, Limit load in translational failure mechanisms for
associative and non-associative materials, Geotechnique, 43, 443–456 (1993).

Exercises

5.1 Use the lower bound theorem to graphically estimate the collapse load
p acting on a horizontal surface adjacent to the 20◦ slope shown in
Figure 5.36. The soil has strength properties of c = 10.5 kPa and φ = 35◦.
Disregard body forces and use two discontinuous stress fields separated
by the dashed line O O ′. What inclination of the line O O ′ is required to
produce a statically admissible stress field?

p

O

O

20°

Figure 5.36.
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5.2 Recalculate the lower bound from Exercise 5.1 for the case of a 45◦ slope.
5.3 Use the collapse mechanism sketched in Figure 5.37 to estimate the upper

bound for the uniform stress p. The slope is a homogeneous soil with
ρ = 2.0 t/m3, c = 10 kPa and φ = 15◦.

2.0 m

p

45 °
60 °

135 °

Figure 5.37.

5.4 Recalculate the upper bound in Exercise 5.3 for undrained conditions with
φ = 0◦.

5.5 Work through the details for the collapse mechanism shown in Figure 5.22
for the strip footing problem and verify the result:

p = 18.00 c + 7.546 p0 + 4.181 ρgB

5.6 Use the upper bound method to compare values of collapse load for
the strip footing problem using the two collapse mechanisms shown in
Figure 5.38. In both cases the soil has cohesion c and zero internal fric-
tion. The footing width is B and it supports a load P . The left-hand
mechanism consists of two 45◦ wedges with planar slip surfaces. The
right-hand mechanism is a semi-circular barrel-shaped slip surface with
radius R = B.

P P

R

Figure 5.38.
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5.7 Consider the sloping retaining wall shown in Figure 5.39. The backfill
supports a uniform applied stress p0. Given that φ = 15◦ and δ = 10◦,
find the upper bound for the passive thrust PP for the collapse mechanism
shown.

70°

45 °

10
5

60° 30 °

H

0p

105 °

Figure 5.39.

5.8 Consider the step load problem illustrated in Figure 5.13. For the undrained
case where φ = 0◦, prove that the value of the angle β that maximises the
lower bound estimate for p is exactly 67.5◦. Then show that p will equal
p0 + 4.828 c where c is the cohesion.

5.9 Consider a hopper with sloping sides as shown in Figure 5.40. The angle of
wall friction is given as δ and the material filling the hopper has cohesion
c and angle of friction φ. Use the stress field specified by

σxx = p0 = constant, σxz = ρgx, σyy = σyy(x)

to obtain a lower bound estimate for the critical opening dimension ac in
terms of the angle β. What happens if β approaches zero?

x
β

aa

y

Figure 5.40.
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Slip line analysis

6.1 Introduction

The simplicity of the collapse load theorems masks some of the more com-
plex aspects of engineering applications involving plasticity. Solutions for fully
three-dimensional elastic–plastic response will generally be difficult if not im-
possible to obtain in closed form. There is, however, one more class of problem
for which relatively simple solutions are possible. This is the class of two-
dimensional problems concerning plane plastic flow for which regions of the
material are in a failure condition. The failure regions need not cover the entire
body, but within the failing zone we must be assured that the yield condition is
satisfied everywhere.

For these plane problems there will be three unknown components of stress:
for example, σxx , σyy, σxy, where the (x, y)-plane is taken to be the plane of
the problem. Within the failing region the three stresses are related by three
equations: two equations of equilibrium plus the equation of the yield surface.
Only first-order derivatives are involved. While this in itself does not appear
overly complex, it will become apparent that considerably more simplification
is possible by invoking a new coordinate system. Introducing coordinates that
coincide with the potential failure surfaces, we cause the system of equations
to become extremely simple. In our two-dimensional problem, the potential
failure surfaces are seen simply as lines and they have come to be called slip
lines. In general, the slip lines will be neither straight nor orthogonal, so the
problem is not overly simple, but it will transpire that the geometry is often not
too complex. For those who have studied partial differential equations, the slip
lines are actually characteristic lines and we will be constructing characteristic
solutions for this class of problem. If you are not familiar with the theory of
characteristics and wish to learn more, the works cited at the end of the chapter
may be useful.

152



6.2 Two-dimensional stress states 153

Slip line analysis is applicable to a range of material models, but by far the
easiest model to use to introduce the method is a Coulomb material with zero
friction angle. We begin the chapter with this simple material model and investi-
gate the modifications required for non-zero frictional strength later. Emphasis
will be placed on the determination of the two-dimensional stress field that
results when the yield criterion is satisfied throughout some region of the ma-
terial. Calculation of the associated strain rates is considered at the end of the
chapter. Slip line analysis is by nature a geometric subject and the reader is
encouraged to make sketches to help understand the derivations and problems
outlined below.

6.2 Two-dimensional stress states

Throughout this chapter attention is focused on the class of two-
dimensional plane strain problems. Let the (x, y)-plane represent the plane of
the unknown stress components. The stress matrix in two-dimensional form is
written as

σ =
[
σxx σxy

σxy σyy

]
(6.1)

and the three components of stress must obey the two-dimensional form of the
equations of equilibrium

∂σxx

∂x
+ ∂σxy

∂y
= 0

(6.2)
∂σxy

∂x
+ ∂σyy

∂y
= 0

where we have assumed no body forces are acting. We will consider the effects of
gravity later in the chapter. If the material is at a state of failure, the stresses must
also obey the two-dimensional form of the failure condition, i.e. an equation
of the form f (σxx , σyy, σxy) = 0. To begin, consider the simple case of a
purely cohesive material. That is, the yield function f corresponds to a Coulomb
material with zero angle of internal friction (which we realise is equivalent to
a Tresca material). In terms of principal stresses, we have

σ1 − σ3 = 2c (6.3)

where σ1 and σ3 represent the principal stresses lying in the (x, y)-plane. The
intermediate principal stress σ2 is normal to the plane. We assume σ2 will always
remain the intermediate principal stress whatever happens to the other stresses.
The stress state may be visualised by sketching the Mohr circle as shown in
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σxx
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ψ 2ψ
σxy
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τ

Figure 6.1. Mohr diagram for a two-dimensional stress state.

Figure 6.1. The stress points corresponding to (σxx , σxy) and (σyy, σxy) are
plotted at arbitrary locations on the circle circumference (except for the fact
that they lie at each end of a diameter), and the pole of the Mohr circle is also
shown. It lies at the intersection of the circle with the horizontal line passing
through the point (σyy, σxy). Since (6.3) is satisfied, the radius of the circle is the
cohesion c. We have sketched the line joining the pole to the smallest principal
stress σ3. This line will lie parallel to the minor principal surface at the point
in the material where the stress state applies. Let ψ be the angle between the
minor principal surface and the horizontal as shown in the figure.

An interesting point can be made here. Three bits of information are required
to construct the Mohr circle in Figure 6.1. Those bits could be σxx , σyy and σxy ,
which together contain all the relevant information; or we might consider other
possible bits. Note that the radius of the circle is a constant c. It might be useful
to use c as one piece of information since it does not change from place to place
in the failing region. If we take c as one bit, then the centre of the circle would
also be a useful bit. Let p represent the two-dimensional mean stress defined as

p = 1

2
(σxx + σyy) = 1

2
(σ1 + σ3) (6.4)

Obviously this is not the same definition as our mean stress p for three-
dimensional stress states, but it is consistent in the sense that it represents
the average normal stress for our plane two-dimensional stress state, and it
identifies the location of the centre of the Mohr circle. Knowing c and p we can
draw the circle. The only missing information is how surfaces are oriented with
regard to our (x, y)-coordinate frame. We will introduce the angle ψ as the third
piece of information to satisfy this final requirement. The three numbers c, p and
ψ together contain all the relevant information needed to construct the stress
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state at the point in question and, importantly, only two of them are variables.
If we roam over the failure region in our mind’s eye we see that the stress state
depends only on two variables: p and ψ . If we stop at any particular point we
can immediately determine the stress components from

σxx = p + c(cos 2ψ), σyy = p − c(cos 2ψ), σxy = c(sin 2ψ) (6.5)

Using these equations in the equilibrium equations (6.2) we have

∂p

∂x
− 2c(sin 2ψ)

∂ψ

∂x
+ 2c(cos 2ψ)

∂ψ

∂y
= 0

(6.6)
∂p

∂y
+ 2c(sin 2ψ)

∂ψ

∂y
+ 2c(cos 2ψ)

∂ψ

∂x
= 0

giving two equations for our two unknown variables p and ψ .

6.3 Slip lines

As they stand, equations (6.6) may still prove difficult to solve for all but simple
boundary conditions. Fortunately we do not need to solve them as they stand.
Instead we can introduce a new coordinate frame. Let the new coordinates
be denoted by α and β and orient their directions so that they align with the
potential failure surfaces. Figure 6.2 shows how the α- and β-directions are
oriented. The α-direction lies parallel to the line joining the pole to the smallest
shear stress. Thus the α-axis or α-line is parallel to one potential failure surface.
Similarly the β-line will lie parallel to the other potential failure surface, and

p

2ψ

τ

σ

α-
lin

e

ζ = π/4 + ψ

ζ = π/4 + ψ

OP

π/2 − ζ = π/4 − ψβ-line

x

y α

β
dy/dsα = sin ζ

dx/dsα = cos ζ

Figure 6.2. Definition of α- and β-lines on the Mohr diagram and their physical direc-
tions in the plane.
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is therefore parallel to the line joining OP to the largest shear stress. Note that
the α- and β-directions are orthogonal. We will use ζ to represent the angle
(π/4+ψ) between the α- and x-directions. Finally, note that the new coordinate
directions apply only at the point of interest in the failure region. If we move
to a neighbouring point the α- and β-directions may change. Thus the α- and
β-lines are not necessarily straight.

Now we will focus attention on the α direction for the moment. Let sα denote
the distance measured along the α-line and consider the directional derivative
of p in this direction,

dp

dsα

= ∂p

∂x

dx

dsα

+ ∂p

∂y

dy

dsα

= ∂p

∂x
cos ζ + ∂p

∂y
sin ζ (6.7)

We have expressions for ∂p/∂x and ∂p/∂y from the equilibrium equations (6.6).
If we use those in (6.7) together with the geometric relations sin 2ψ = − cos 2ζ

and cos 2ψ = sin 2ζ we find

dp

dsα

= 2c

[
(−cos 2ζ cos ζ − sin 2ζ sin ζ )

∂ψ

∂x

+ (−sin 2ζ cos ζ + cos 2ζ sin ζ )
∂ψ

∂y

]
(6.8)

Now using the double angle formulae this expression reduces to

dp

dsα

= 2c

(
−cos ζ

∂ψ

∂x
− sin ζ

∂ψ

∂y

)
= −2c

(
∂ψ

∂x

dx

dsα

+ ∂ψ

∂y

dy

dsα

)
(6.9)

So, finally, we conclude that

dp

dsα

= −2c
dψ

dsα

(6.10)

And this will be true everywhere on the α-line.
The surprising thing about equation (6.10) is that ordinary derivatives rather

than partial derivatives appear. We can immediately integrate (6.10) to see that
on the α-line

p = −2cψ + constant = −2cψ + K1 (6.11)

Therefore, everywhere on this line p and ψ are linearly related. If we know the
values of p and ψ at any single point we can determine the constant K1. Then
if we know the shape of the line in the neighbourhood of that point, we can
easily find both ψ and p. In many problems of interest it will turn out that the
shape of the line is easily determined. Using a similar analysis for the β-line
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we find a result similar to (6.11),

p = +2cψ + K2 (6.12)

Note the difference in sign between this result and (6.11).

6.4 Slip line geometries

We can think of the α- and β-lines forming a network that covers the failing
region. Every point in the region is at its limiting state in the sense that, on
two particular surfaces, the shear stress magnitude is equal to the cohesion c.
Physically the α- and β-lines represent the orientations of those surfaces. Em-
bedded in equations (6.11) and (6.12) are limitations on how the surfaces may
be oriented. To see this, consider two α-lines and two β-lines as shown in
Figure 6.3. Aside from the fact that the lines are orthogonal we make no restric-
tions on either pair. The intersections at the four ‘corners’ of the enclosed region
are denoted A, B, C and D. The angle between the α-lines and the horizontal is
ζ , which we know to be (π/4+ψ). Let ψA be the value of ψ appropriate for the
intersection A as shown in Figure 6.4. If pA denotes the corresponding mean
stress, then equation (6.11) asserts that (pA + 2cψA) is a constant for all points
on the α-line. Therefore the values of p at points A and B are related to the

α-linesβ-lines

C

B

A

D

Figure 6.3. Pairs of intersecting α- and β-lines.

β-lines
B

A

π/4+ψB

π/4+ψA

α-line

Figure 6.4. Expanded view to the lower α-line from Figure 6.3.
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values of ψ at those points according to

pA − pB = −2c(ψA − ψB) (6.13)

In the same fashion we can follow the β-line from B to C and use (6.12) to
show that

pB − pC = 2c(ψB − ψC ) (6.14)

Note the difference in signs between the last two equations. Moving on around
the figure we also have

pC − pD = −2c(ψC − ψD) (6.15)

and

pD − pA = 2c(ψD − ψA) (6.16)

If we now add the last four equations we find that all the mean stress values
cancel and we are left with

ψD − ψA = ψC − ψB (6.17)

Equation (6.17) is called Hencky’s first theorem, named after the German
mathematician H. Hencky who obtained (6.17) in 1923. The equation asserts
that the angle subtended by two α-lines at their intersection with a particular
β-line is the same as the angle subtended at their intersection with any other
β-line within the failure region. Figure 6.5 illustrates the result. The argu-
ment is easily reversed to show that the same result must also apply for β-line

Equal
angles

β-lines
α-lines

Figure 6.5. Interpretation of Hencky’s theorem.
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intersections with α-lines. We can also rearrange (6.17) to give

ψB − ψA = ψC − ψD (6.18)

This shows that the change in the orientation of any α-line at its intersection
with any two particular β-lines is the same for all α-lines throughout the failure
region. In particular, if an α-line is straight between two β-lines, then all α-lines
must also be straight between those two β-lines.

We can assist the use of equations (6.11) and (6.12) by considering a new
diagram where we plot the mean stress p against the product 2cψ as shown in
Figure 6.6. If we consider the two-dimensional stress state (pA, 2cψA) at some
point A in the failure region, then equations (6.11) and (6.12) tell us that all the
stress states on the α-line that passes through our point must lie on the diagonal
−45◦ line shown in the figure. Similarly, all stress states on the β-line passing
through our point all lie on the +45◦ line in the (p, 2cψ)-plane.

Now consider the situation sketched in Figure 6.7. Suppose we know the
values of p and ψ at points 1 and 2 inside the failure region. Let point 3 lie at
the intersection of the α-line through point 2 and the β-line through point 1. We
can easily determine the values of p and ψ at the new point 3. In the (p, 2cψ)-
plane, the stress state at point 3 must lie on the +45◦ line through (p1, 2cψ1)
and on the −45◦ line through (p2, 2cψ2) as shown in Figure 6.7. Values of p3

and ψ3 are uniquely determined by the intersection of the two 45◦ lines. We

A

β-line α-line

Failure
   region

p

2cψ

( pA , 2cψA)

Stress states 
   on -linesα

Stress states 
   on -linesβ

Figure 6.6. Two-dimensional stress state corresponding to a point in the failure region.

1

3

2

β-line

α-line

Failure
   region

p

2cψ

( p1, 2cψ1)

( p2, 2cψ2)

( p3, 2cψ3)

Figure 6.7. ‘Marching’ the slip line solution forward into the failure region.
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can use this analysis to extend the solution throughout a network of α- and
β-lines. Often this method is referred to as ‘marching’ the solution forward. In
the theory of partial differential equations the α- and β-lines are referred to as
characteristic lines or simply characteristics. So-called marching solutions are
typically found for equations of the form we are dealing with here. Generally,
we begin with a known stress condition on a boundary of the failure region
and we march the solution into the region using our knowledge of how the
characteristic lines must behave. The entire problem is reduced to correctly
constructing the network of α- and β-lines throughout the failure region.

6.5 Some simple problems

We can now begin to consider some simple situations where slip lines might
be used profitably. The simplest situation we could imagine would probably
be a traction-free surface such as that shown in Figure 6.8. If the surface is
the boundary of a failure region for a Coulomb material with ϕ = 0, the Mohr
stress circle must be as shown in the figure. The circle must pass through the
origin because of the zero-traction condition. The pole is located as shown in
the figure.

How do we go about extending the given boundary information into the inte-
rior of the failure region? The answer is shown in Figure 6.8. We draw α- and β-
lines through points 2 and 1, respectively so that they are parallel to the surfaces
that support the least and greatest shear stresses. The intersection of the lines
identifies our new point 3. The lines shown in the figure are straight. We might
have drawn curved lines, but in fact the lines must be straight because the

OP

Parallel lines

ψ
1

2

3

α-line

β-line

σ

τ

Failure
   region

Figure 6.8. Slip line solution for a traction-free planar surface.
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two boundary points both support the same stress-free condition. Thus, in the
(p, 2cψ)-diagram, both points 1 and 2 lie at the same point, namely at p = c and
2cψ where ψ is the angle of the traction free surface. In this case we see that
point 3 must also lie at this same point, so that the entire triangle with vertices
1, 2 and 3 will have the same values of p and 2cψ .

It appears that we have uniquely solved for the stresses inside the 1, 2, 3
triangle, but this is not precisely true. There is some ambiguity concerning the
Mohr circle in Figure 6.8. We have drawn the circle to represent a compressive
stress state inside the failing region, but we could equally well have drawn a
circle with radius c on the tension side of the diagram. This would produce a
solution that satisfies all the conditions of equilibrium and failure as well as
satisfying the traction-free boundary, but would be completely different from
the solution represented in the figure. There will often be situations like this
where two solutions are possible for a given problem. Usually other conditions
will be present to constrain which solution is physically possible and which is
not.

What if the boundary in Figure 6.8 were not traction-free but instead sup-
ported a uniform traction with components σ and τ acting normal and tangential
to the surface? We could easily represent this new situation by drawing the Mohr
circle with radius c that passes through the point (σ, τ ). We then find the pole
and determine the angle ψ as well as the orientations of the characteristic lines.
Since the boundary supports a uniform traction, the α- and β-lines will be
straight. We draw the lines through any two points on the boundary to establish
a triangular region of uniform stress. Basically there is no additional difficulty
compared with the traction-free boundary.

Once we have established a new point such as point 3 in the interior of the
failure region we can use this point to extend the solution further. For the case
of a planar boundary supporting a uniform traction we can easily construct a net
of α- and β-lines such as that shown in Figure 6.9. All the characteristic lines
represent potential failure surfaces. The lines are straight and their intersections
are orthogonal.

The key to the simplicity of the solution in Figure 6.9 lies in two elements.
First, the boundaries we have considered are planar. If we had a uniform traction
acting on a curved boundary we would find different values of ψ at different
boundary points. Second, we have only considered uniform traction conditions.
Even with a planar boundary, if the specified boundary tractions were varying,
then we would need to deal with different Mohr circles for different boundary
points. In both cases the simplicity seen in Figure 6.9 is lost. The characteristic
lines may now be curved and the stress state inside the failing region will change
from place to place.
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Figure 6.9. Slip line solution for planar boundary with uniform applied tractions.
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Figure 6.10. Slip line solution for non-planar boundary.

To illustrate the first point consider the curved traction-free surface sketched
in Figure 6.10. If we wish to march the solution into the interior of the failing
region starting from points 1 and 2, the corresponding points on the (p, 2cψ)-
diagram have the same ordinate but different values of 2cψ . The α- and
β-lines are also curved since ψ changes on both lines. The values of p and
2cψ at point 3 are easily determined from the intersection of the 45◦ lines in the
(p, 2cψ)-plane. Note that for both points 1 and 2 the value of the mean stress
is equal to c. This results from the traction-free boundary demanding that the
Mohr circles pass through the zero-stress origin. The values of ψ1 and ψ2 are
simply the orientations of the boundary at points 1 and 2. The reader should
sketch the Mohr circles for points 1 and 2 to verify that the (p, 2cψ)-diagram
is as shown, provided we assume a compressive stress field inside the failure
region. The exact details of how the α- and β-lines change slope may still seem
somewhat obscure. In practice, if points 1 and 2 are relatively close together
and the boundary shape is not severely contorted then we may safely assume
that both characteristic lines have constant curvature. For some problems we
may be able to determine the exact shape of the lines from other conditions.

The second boundary condition that will result in curved characteristics is
a non-uniform traction condition. We will illustrate this condition using the
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Figure 6.11. Plane strain step load problem.
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Figure 6.12. Mohr circles for failure regions A and B in Figure 6.11.

simple stepped surface traction applied to a halfspace shown in Figure 6.11. A
uniform applied pressure p0 acts on part of the halfspace surface, while a larger
pressure p1 acts on the remainder. We are familiar with the uniform traction
condition and realise that the characteristics will be straight lines and the stress
state inside the failure region will be constant; however, it is clear that there
are two distinct regions corresponding to the two different boundary pressures.
Based on our knowledge of constant boundary tractions we can sketch two sets
of characteristic lines as shown in Figure 6.11. The question now is this. What
happens in the region between the two sets of straight characteristics?

To begin our analysis let the area covered by the characteristics beneath the
applied pressure p1 be called region A and the area beneath p0 be region B.
It may be that p1 extends on to the left in the figure, in which case region A
would also extend away to the left. Similarly region B may extend to the right
if the surface load p0 is applied further to the right. These are details that do not
concern us at this point. Our focus is on that part of the failing region between
regions A and B. In order to understand what happens in this region consider
the Mohr circles sketched in Figure 6.12. Both circles represent failure states
and therefore have radius c. The circles have been drawn so that p1 is the major
principal stress in region A and p0 the minor principal stress in region B. There
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are other possibilities such as both p1 and p0 being the major principal stress,
but the situation sketched in Figure 6.12 is the correct one, as will become clear
below.

There are several interesting points concerning Figure 6.12. Since p0 is the
minor principal stress and p1 the major principal stress, the poles for the two
Mohr circles fall at different places. For region A, O A

P lies at the smaller prin-
cipal stress, while O B

P lies at the larger principal stress on circle B. If we
construct the lines joining the two origins of planes to their respective minor
principal stresses we find that for region A, ψA = π/2, while for region B,
ψB = π . The fact that ψB is π rather than zero may seem surprising at first, but
this will be the case. The reasons for this are investigated in Exercise 6.1 at the
end of the chapter. Moving on, note that following our convention that α-lines
are parallel to the line joining the pole to the smallest shear stress, we see that
the α-lines in the two regions have orthogonal orientations. Finally, note the
values of the two-dimensional mean stress associated with each Mohr circle.
For region A the mean stress is pA = p1 −c, while for region B, pB = p0 + c.
Each of these points is important in understanding how regions A and B are
joined.

How should we go about constructing a net of characteristic lines in the region
between the constant stress regions A and B? One obvious possibility would be
simply to extend the straight characteristics into the intervening region, but this
clearly will not work for several reasons. First, the stress states in regions A and
B are different and we cannot simply merge them without altering something.
Also, note that the directions of the α-characteristics in regions A and B are
different. In region A the α-line has a negative slope (see Figure 6.12), while
in region B the opposite is true. This fact suggests that the α-lines in region A
must somehow end up as α-lines in region B. With these thoughts in mind, if
we look at Figure 6.11, it might appear that bending the α-lines smoothly from
region A into region B could be a good idea. The result is shown in Figure 6.13.

p0

p1

Region A Region B

Centred fan

Figure 6.13. Slip line solution for the step load problem.
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Figure 6.14. Relationship of applied tractions in the step load problem.

In Figure 6.13 α-lines in the area between regions A and B have been drawn
as circular arcs. Their associated β-lines are straight lines. This solution is, in
fact, the only possibility. Any attempt to construct an alternative solution will
fail to meet the criteria already laid down for the characteristic line nets. The
new network of lines between regions A and B is often referred to as a ‘centred
fan’ as all the β-lines emerge from a central point.

We can now construct the (p, 2cψ)-diagram for the situation in Figure 6.13.
This is done in Figure 6.14. In the figure the point for region B corresponds to
ψB = π and pB = p0 + c. Similarly, for region A the point lies at 2cψA = πc
since ψA is equal to π/2. The mean stress pA is also shown, but note that its value
cannot be assigned independently. The points corresponding to regions A and
B in the (p, 2cψ)-diagram must lie on the diagonal line making an angle of−45◦

with the horizontal axis, i.e. the condition for all α-lines. We see immediately
that pA and pB must be related by

pA = pB + π c (6.19)

If we replace pA and pB by their equivalent values p1 − c and p0 + c, we find

p1 = p0 + (2 + π )c = p0 + 5.14c (6.20)

This equation expresses the fact that the magnitude of the pressure step on
the halfspace surface must be exactly (2 + π ) times the cohesion in order that
failure results. Equation (6.20) has already been noted in Chapter 5. It is well
known from studies of the problem of a smooth rigid punch indenting a Tresca
halfspace. We can now combine two step load problems to solve the strip footing
problem once again. The resulting slip line field is shown in Figure 6.15.

To conclude this section we will consider the plane strain problem of a tunnel
being driven deep in a rock mass. If the in situ stress in the rock is sufficiently
great there will be a failure region surrounding the tunnel similar to the plastic
region we found in Chapter 4 when we considered the cavity expansion problem.
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Figure 6.15. Step load solution generalised to represent the shallow strip footing.
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Figure 6.16. Circular tunnel in a deep rock mass.

We will approximate this unloading problem as shown in Figure 6.16. Only half
the tunnel is shown due to the obvious symmetry. The tunnel radius is a and the
radius of the failure region is b. We assume the boundary of the failure region
supports a uniform stress σ B as shown in the figure.

Note that the boundary of the tunnel and the boundary of the failure region
are both principal surfaces. In fact, all circular surfaces in the failure region
that are concentric with the tunnel boundary are principal surfaces. Mohr stress
circles for point A on the tunnel boundary and point B on the outer boundary
of the plastic region are also shown in Figure 6.16. For both circles the least
principal stress is taken to be the stress acting on the circular boundary of the
tunnel or the failure region boundary. We would intuitively expect this to be
so since, assuming the rock mass initially supported an approximately uniform
isotropic stress, driving the tunnel creates a reduction in the radial stress that
will be greater than the reduction in the associated hoop stress.
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We know that the characteristic lines will be curved in this situation since
neither boundary is planar. Trial α- and β-lines are sketched on the figure. The
two points A and B are chosen as the ends of our trial α-line. The particular
α-line considered happens to touch the tunnel boundary at the point where the
boundary tangent is vertical. As a result the pole for circle A lies at the origin
of the Mohr diagram. For point B the pole lies at the point shown. Directions
of the α-line are sketched on the two Mohr circles.

From our knowledge of Mohr circles we are aware that the line joining the
pole to the least principal stress will always be parallel to the minor principal
surface. The minor principal surface is, for any point in the failure region, the
circle concentric with the tunnel boundary. Therefore the angle ψ associated
with the characteristic line is the complement of the polar angle θ measured
clockwise from the horizontal. That is, θ = π/2 − ψ for any radial direction
measured from the tunnel centre. We can use the radial distance r and the angle θ

to define a convenient polar coordinate system for the problem. This coordinate
system is sketched in Figure 6.17.

Now consider the trial α-line in Figure 6.16 in more detail. We realise the
line must be oriented at 45◦ to the principal surfaces, which are all radial and
all circular surfaces in the failure region. This fact permits us to determine the
shape of the line easily. Figure 6.17 shows a typical α-line at its intersection
with two radii separated by an angular increment dθ . Because the intersections
must make an angle of 45◦, we see that the distances dr and r dθ = −r dψ are
equal. Separating variables and integrating shows that

ψ − ψA = − ln
( r

a

)
(6.21)

where ψA is the value of ψ at r = a. We can use (6.21) to graph all α-lines.

dr

r d
θ

y

x

α-line

r

θ=π/2 − ψ

dθ

45°

Figure 6.17. Definition of the polar angle θ associated with the α-line in Figure 6.16.
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Figure 6.18. Slip line geometry for the tunnel problem.

β-lines are determined by a similar equation where the sign of ln (r/a) is
reversed. Figure 6.18 shows the resulting network of characteristic lines.

Finally, note how the radial and hoop stresses σrr and σθθ vary throughout
the failure region. Equation (6.11) applies for all points on an α-line. Thus for
the α-line that originates on the tunnel boundary at an angle ψA we have

K1 = pA + 2cψA = c + 2cψA (6.22)

Therefore at any other point on this line the value of the two-dimensional mean
stress must be

p = K1 − 2cψ = c − 2c(ψ − ψA) = c + 2c ln
( r

a

)
(6.23)

and the associated radial and hoop stresses are

σrr = p − c = 2c ln(r/a)

σθθ = p + c = 2c[1 + ln(r/a)]
(6.24)

If the stress σ B is known∗ we can use (6.24) to determine the outer dimension
b of the failure region.

b = a exp

(
σ B

2c

)
(6.25)

∗ We can assume σB to be approximately equal to the in situ stress in the rock at the depth of the
tunnel.



6.6 Frictional materials 169

6.6 Frictional materials

Up to this point we have been content to deal with the case in which our ma-
terial has no frictional strength. This results in simple equations describing
orthogonal characteristics and relatively simple solutions for the problems con-
sidered. There are obvious benefits to this approach in terms of learning the
basic concepts of slip line theory without becoming embroiled in too much de-
tail. Introducing friction will clearly bring added complexity as seen at a glance
by considering Figure 6.19.

2ψ

(σxx , σxy)

(σyy , σxy) OP

φ
c

ζ=π/4+ψ−φ/2

α-li
ne

β-line
τ

σ

Figure 6.19. Effect of friction of slip line orientation.

With non-zero friction we no longer have a constant radius for the Mohr
circle. The circle radius becomes a function of the two-dimensional mean stress
p according to

1

2
(σ1 − σ3) = 1

2

[
(σxx − σyy)2 + 4σ 2

xy

]1/2 = c cos ϕ + p sin ϕ (6.26)

We also see that the α- and β-lines are no longer orthogonal but instead must
intersect at an angle of π/2 − ϕ. Clearly things are not as simple as before,
nevertheless we can still use p, together with the angle ψ , to characterise the
two-dimensional stress state fully:

σxx = p + (c cos ϕ + p sin ϕ) cos 2ψ

σyy = p − (c cos ϕ + p sin ϕ) cos 2ψ (6.27)

σxy = (c cos ϕ + p sin ϕ) sin 2ψ

Using these equations to replace the stress components in the equilibrium
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equations (6.2) we find

(1 + sin ϕ cos 2ψ)
∂p

∂x
+ sin ϕ sin 2ψ

∂p

∂y

= 2(c cos ϕ + p sin ϕ)

(
sin 2ψ

∂ψ

∂x
− cos 2ψ

∂ψ

∂y

)
(6.28)

sin ϕ sin 2ψ
∂p

∂x
+ (1 − sin ϕ cos 2ψ)

∂p

∂y

= −2(c cos ϕ + p sin ϕ)

(
cos 2ψ

∂ψ

∂x
+ sin 2ψ

∂ψ

∂y

)

which are equivalent to (6.6). We can solve (6.28) for ∂p/∂x and ∂p/∂y and
use the result in (6.7) to find the equation for the α-line

dp

dsα

= −2(c + p tan ϕ)
dψ

dsα

(6.29)

A similar result applies for the β-line with the sign on the right-hand side of
the equation reversed. Integrating we find the equivalent expressions to (6.11)
and (6.12)

α lines → ln(c + p tan ϕ) + 2(tan ϕ)ψ = K1
(6.30)

β lines → ln(c + p tan ϕ) − 2(tan ϕ)ψ = K2

We can use equations (6.30) to relate stress states along any particular charac-
teristic line. Even though these equations appear rather different from (6.11)
and (6.12), it is easy to show that the Hencky equations (6.17) and (6.18) still
apply.

Finally, note that we can construct a graph similar to the (p, 2cψ)-diagram
shown in Figure 6.6, but we must plot ln(c + p tan ϕ) versus 2(tan ϕ)ψ . Points
on any α-line will correspond to negative sloping 45◦ lines in the (ln(c+p tan ϕ),
2(tan ϕ)ψ)-plane, while points on any β-line must lie on positive 45◦ lines in
the diagram. There are obviously strong similarities between the cases of zero
frictional strength and non-zero strength, and we can exploit our knowledge of
the zero-friction case to revisit some of the simple problems considered earlier.

First, consider the case of a planar boundary supporting a constant normal
traction shown in Figure 6.20. Just as in the purely cohesive case, there are two
possible solutions but now, with frictional strength, we find different (α, β)-
nets. If the boundary stress happens to be the smaller principal stress, the α-
and β-lines make angles of (π/4 − ϕ/2) with the boundary. On the other hand,
if the applied stress happens to be the larger principal stress, the α- and β-lines
make angles of (π/4 + ϕ/2) with the boundary. Clearly, the resulting stress
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Figure 6.20. Uniform traction acting on halfspace surface–passive and active cases.

states are very different. The familiar terms passive and active are applied to
the two conditions. The relation to Rankine’s retaining wall analysis is obvious.

Next, consider the step load problem from Figures 6.11 and 6.13. For a
frictional material we would expect to see regions of constant stress beneath
each constant part of the surface load, but unlike Figure 6.11 the alignment of the
characteristic lines will differ as shown in Figure 6.21. Region A corresponds to
an active stress state while region B corresponds to a passive condition. Mohr
circles for the two regions are also shown. The material between regions A
and B is filled by a centred fan, but its geometry is also different from that
in Figure 6.13. We can investigate the shape of the characteristic lines within
the fan by noting that the intersections between α- and β-lines must inscribe
an angle of (π/2 − ϕ) as noted in Figure 6.22. From the geometry shown it is
evident that tan ϕ = dr/r dθ . Integrating leads to

ln

(
r

r0

)
= (θ − θ0) tan ϕ (6.31)

where r0 and θ0 are defined in the figure. Equation (6.31) is exactly equivalent
to equation (5.34), the equation for the logarithmic spiral. All the α-lines within
the fan are logarithmic spirals. The β-lines of course are all straight.

Considering once again the Mohr circles in Figure 6.21 we see that the values
of the angle ψ in regions A and B are π/2 and π , respectively, exactly the same
as found in Figure 6.12. We also note that 2(tan ϕ)ψ and ln(c + p tan ϕ) for
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Figure 6.21. Step load problem for a frictional Coulomb soil.
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Figure 6.22. Geometry of slip lines within a centred fan for frictional material.

each region are related, lying on the −45◦ line in (2(tan ϕ)ψ, ln(c + p tan ϕ))-
space. Thus the values of two-dimensional mean stresses pA and pB must be
related by

2(tan ϕ)(ψA − ψB) = −(tan ϕ)π = −ln(c + pB tan ϕ) + ln(c + pA tan ϕ)

(6.32)

Rearranging this equation gives

pA = c(eπ tan ϕ − 1)cot ϕ + pBeπ tan ϕ (6.33)
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We note that pA and pB are related to p1 and p0 by

p1 = c cos ϕ + pA(1 + sin ϕ)

p0 = −c cos ϕ + pB(1 − sin ϕ)
(6.34)

Using these in (6.33) gives

p1 = c cot ϕ(Neπ tan ϕ − 1) + p0 Neπ tan ϕ = cNc + p0 Nq (6.35)

where N carries its usual definition from (4.16) and Nc and Nq are the first and
second bearing capacity coefficients defined in (5.33).

It is a simple matter to join two characteristic nets to give the complete
solution for the strip footing problem. Figure 6.23 shows the familiar diagram.
The figure has been drawn for the case where ϕ = 30◦. Use of a different value
for ϕ would clearly alter the details, but not the substance, of the (α, β) net.

The solution for the strip footing shown in Figure 6.23 as well as the relation
(6.35) was first discovered by the great German engineer Ludwig Prandtl in
1920. Prandtl is best known for his work in fluid dynamics but he also made a
number of important discoveries in the field of solid mechanics. Note that the
solution we have obtained still represents the case of zero body forces. We will
see shortly that introducing gravity will lead to significant complications.

A second kinematic failure mechanism that is equally likely to that illustrated
in Figure 6.23 was suggested by Hencky and is illustrated in Figure 6.24. In
this mechanism two active zones develop beneath the strip load. The value of
the limit pressure p1 for this solution is exactly the same as that given in (6.35)
for the Prandtl mechanism. In an intuitive sense the Hencky mechanism may
appear to be less physically realisable than that of Prandtl, but mathematically
there is no reason why it should not occur.

p0p0

p1

Figure 6.23. Prandtl solution for the shallow strip footing problem.

p0p0

p1

Figure 6.24. Hencky solution for the shallow strip footing problem.
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Figure 6.25. Slip line geometry for a tunnel within frictional material.

To complete this section we will briefly revisit the tunnel problem illustrated
earlier in Figure 6.16. If we introduce frictional strength the results are modified
as follows. We note that all circles concentric with the tunnel boundary will still
be principal surfaces and will support the smallest principal stress, exactly as
before. Equation (6.21), describing the geometry of α-lines, is now replaced by

ψ − ψA = − ln(r/a)

tan(π/4 − ϕ/2)
(6.36)

This leads to the network of characteristic lines shown in Figure 6.25. A
value of 30◦ has been used for ϕ in constructing the figure. Finally, the radial
and hoop stresses in the failure region are given by

σrr = c

tan ϕ

[( r

a

)�

− 1

]
(6.37)

σθθ = c

tan ϕ

[
N
( r

a

)�

− 1

]

where � is the constant

� = 2 tan ϕ cot(π/4 − ϕ/2) (6.38)

If ϕ = 30◦, the value of � will be exactly 2. The radius b of the failure region
is given by the first equation of (6.37) with σrr set equal to σB ,

b = a [1 + (σB/c) tan ϕ]1/� (6.39)

Equations (6.37) and (6.39) may be compared with (6.24) and (6.25) from
the purely cohesive case. The addition of friction strongly affects the solution,
particularly as σB becomes greater.
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6.7 Effects of gravity

In this section we will briefly outline the effects of introducing gravity, both on
the equations and on solutions. In a nutshell, gravity brings complexity, more
complexity than is comfortable for an introductory text such as this. Thus we will
bypass most of the complications and simply summarise the main differences
from the weightless cases considered thus far. A far more complete discussion
may be found in the book by V.V. Sokolovski cited at the end of this chapter.

Let us begin by considering the two-dimensional plane strain problem of
a halfspace with horizontal surface supporting some applied loads. Suppose
we organise our coordinate frame so that the x-axis is horizontal and the
y-axis is vertical (downwards) and y = 0 identifies the halfspace surface. The
equilibrium equations now become

∂σxx

∂x
+ ∂σxy

∂y
= 0

(6.40)
∂σxy

∂x
+ ∂σyy

∂y
= ρg

First, we consider purely cohesive materials. The effect of gravity in this case
is minimal and it provides an easy introduction to the basic ideas. For a purely
cohesive material equation (6.10) is now replaced by

dp

dsα

= −2c
dψ

dsα

+ ρg sin ζ (6.41)

As before ψ and ζ are related by ζ = π/4 + ψ . If we separate variables and take
note of the geometrical relationship dy = sin ζ dsα , we may integrate (6.41) to
find the following relation must hold on α-lines:

p + 2cψ = ρgy + K1 (6.42)

Similarly for β-lines,

p − 2cψ = ρgy + K2 (6.43)

It is easy to show that Hencky’s equations (6.17) and (6.18) still apply for this
case. If our halfspace supports a uniform applied stress p0, the characteristic
lines are straight 45◦ lines, exactly as in the case with zero gravity. Adding
(6.42) and (6.43) shows that, at the intersection of any pair of α- and β-lines,
the two-dimensional mean stress is increased by the amount ρgy, exactly as we
would expect. Aside from this feature, the solution for the strip load problem
shown in Figure 6.15 and equation (6.20) is unchanged. Gravity has no effect
on the limiting stress for the strip footing resting on purely cohesive soil.
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Intuitively we might expect an absence of dramatic effects for a purely cohe-
sive material since there is no dependence of strength on normal stress. Clearly
this is not the case for a frictional material. The strength will depend on nor-
mal stress and, if gravity is operating, normal stresses will increase with depth
below the halfspace surface. So what happens when gravity acts on a frictional
material? We begin again with equations (6.27). Using them in the equilibrium
equations (6.40) we can eventually arrive at the following differential equations
applying on the characteristic lines:

cos ϕ
dp

dsα

+ 2(c cos ϕ + p sin ϕ)
dψ

dsα

= ρg sin(ϕ + ζ )

(6.44)

cos ϕ
dp

dsβ

− 2(c cos ϕ + p sin ϕ)
dψ

dsβ

= ρg cos ζ

These equations are sometimes referred to as Kötter’s equations, named after
the German engineer F. Kötter who obtained a set of equivalent expressions in
1903. They are significantly more difficult to integrate than the corresponding
equations for the zero-gravity case. In most instances numerical methods are
required both to find the shape of the characteristic lines as well as the stresses
at the nodes where the lines intersect. In general, the lines will not be straight.
As an illustration, Figure 6.26 shows the network of α- and β-lines for the strip
load problem.

There are several interesting points concerning this figure. First, note that
the kinematic mechanism shown is similar to that suggested by Hencky in
Figure 6.25 with two active regions beneath the strip load. The passive regions
lying outside the strip load consist of straight line characteristics and are exactly
the same as for the zero-gravity case. Differences only arise in the centred fans
and in the active regions. All characteristics in both these regions are curved,
unlike the zero-gravity case. A second important difference is found when one
traces the mean stress p from the surface outside the footing (we have assumed
a traction-free case in Figure 6.26) along a characteristic curve to the surface
beneath the footing. It is found that the normal traction beneath the footing can
no longer be uniform as we have assumed earlier. A stress distribution similar

Figure 6.26. Slip line geometry for strip load with gravity.
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to that shown is required to produce failure throughout the network of α- and
β-lines. The exact details of both the characteristic net and the distribution of
normal load depend on the values of c, ϕ and ρ. However, the details are not of
great concern. The points we wish to emphasise here are the differences from
the zero-gravity case.

We can now clearly see why the third bearing capacity coefficient Nγ in
(5.33) is the most difficult to specify. All attempts to formulate an equation of
the form of (5.32) are founded on the concept that the effects of gravity may
be separated from the effects of soil strength and surcharge. In effect equation
(5.33) represents a superposition of three different solutions; a superposition
which, of course, is theoretically impossible because of the nonlinear nature
of the problem. All bearing capacity formulae of the type shown in (5.32) are
approximations. The first two terms represent the exact solution to the strip
load problem without gravity while the third term approximates the effect of
soil weight. This overlooks the fact that, when gravity is included, the weightless
solution becomes invalid. The only correct solution is to solve Kötter’s equations
as they stand using numerical methods. This was done by Sokolovski and, more
comprehensively, by H.Y. Ko and R.F. Scott.

6.8 The velocity field

To complete this chapter we will develop representations for the plastic strain
rates and associated velocities that apply on the slip lines. We assume we are
dealing with a perfectly plastic Coulomb material obeying an associated flow
rule. We also assume the slip line network has been determined. To begin,
rewrite equation (6.26) in the form of a yield equation for our two-dimensional
stress state

f = [(σxx − σyy)2 + 4σ 2
xy

]1/2 − (σxx + σyy) sin ϕ = 2c cos ϕ (6.45)

Then the associated flow rule tells us that

ε̇ p
xx = λ

∂ f

∂σxx
= λ


 σxx − σyy[

(σxx − σyy)2 + 4σ 2
xy

]1/2
− sin ϕ




ε̇ p
yy = λ

∂ f

∂σyy
= λ


− σxx − σyy[

(σxx − σyy)2 + 4σ 2
xy

]1/2
− sin ϕ


 (6.46)

ε̇ p
xy = λ

∂ f

∂σxy
= λ

4σxy[
(σxx − σyy)2 + 4σ 2

xy

]1/2
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If we now use equations (6.27) here, we find the following simpler forms for
the plastic strain rates:

ε̇ p
xx = λ(cos 2ψ − sin ϕ), ε̇ p

yy = λ(−cos2ψ − sin ϕ), ε̇ p
xy = 2λ sin 2ψ

(6.47)

Two points emerge from these equations. First, note the plastic volumetric strain
rate implied by (6.47).

ė p = ε̇ p
xx + ε̇ p

yy = −2λ sin ϕ (6.48)

Thus for any value of ϕ greater than zero, the plastic volumetric strain will
always result in dilation. This point was noted in Chapter 4 and is empha-
sised again here. Usually the amount of dilation predicted by (6.48) will be
greater than appears reasonable when compared with measurements. Several
researchers have proposed modifications for the plane strain equations pre-
sented here in an effort to obtain more realistic volumetric strains. The most
widely accepted is probably the theory proposed by A.J.M. Spencer for which
an incompressible response results. The associated flow rule is obviously not
used in Spencer’s theory.

The second point arising from (6.47) concerns the extensional strains in the
directions of the characteristic lines. It is a simple matter to obtain the plastic
extensional strain rate in any arbitrary direction in the plane of our problem. For
example, suppose we wish to determine the extensional strain rate ε̇

p
nn , where

the n-direction is oriented at an arbitrary angle η measured counterclockwise
from the horizontal x-axis. Then it is easy to show that

ε̇ p
nn = ε̇ p

xx cos2 η + ε̇ p
yy sin2 η + 2ε̇ p

xy sin η cos η (6.49)

If we let η = ζ , the angle of the α-line, then (6.49) will give ε̇
p
αα , the extensional

strain in the α-direction. Replacing η by ζ and using (6.47) we find the following
result:

ε̇ p
αα ≡ 0 (6.50)

That is, the plastic extensional strain rate in the direction of the α-line is
everywhere exactly zero. A similar result applies for the β-lines. This con-
dition of inextensibility tells us that all of the deformation associated with the
α- and β-directions is pure shear. If we consider other directions such as the
x-direction, for example, there will be both shearing and extensional deforma-
tion as is clear from (6.47).∗

Even though the plastic extensional strain parallel to the α- and β-directions
is identically zero, the plastic strains perpendicular to the slip lines can never
be zero except in the case of a purely cohesive material. The plastic strain rate

∗ Of course if the x-axis happens to coincide with the α-direction, then we would have ζ = 0 and
(6.47) would show that ε̇

p
xx = 0. The same would apply to the β-line.
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perpendicular to either slip line will be given by −2λ sin ϕ. This result may
be obtained by transforming the coordinate frame as we did above to find ε̇αα ,
or by simply assuming that the x-axis happens to align with the α-direction in
equations (6.47). The corresponding shear strain rate is given by −2λ cos ϕ. The
ratio of the strain rates is tan ϕ. This fact agrees precisely with comments made
in Chapter 5 leading up to the derivation of equation (5.5). Whenever ϕ > 0
and the associated flow rule is in use, we will always find dilation involved with
plastic flow.

Particles within the failure region will deform plastically according to the
plastic strain rates given above. These strains will result in a field of velocity
vectors covering the failure region. Let the velocity at a point be v = v(x, y)
with components vx and vy in the x- and y-directions. Of course, there may
be velocities associated with elastic deformation or with rigid-body motion,
but we will assume that these are zero and all velocities are associated with
plastic flow. It will be convenient to let vα and vβ be components of v in the
α- and β-directions. A typical configuration showing vα as well as vx and
vy is shown in Figure 6.27. A similar construction may be made for the vβ

component. Of course, the α- and β-directions are not orthogonal and the
components vα and vβ will not be either. We can visualise either component as
the orthogonal projection of the vector v on the α- or β-direction. The different
velocity components are related as follows:

vα = vx cos ζ + vy sin ζ , vβ = vy cos(ζ + ϕ) − vx sin(ζ + ϕ) (6.51)

vx = 1

cos ϕ
[vα cos(ζ + ϕ) − vβ sin ζ ],

(6.52)

vy = 1

cos ϕ
[vα sin(ζ + ϕ) + vβ cos ζ ]

ζ
ζ

υx

υ α

υ x

ζ
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s υy

υ y

ζ
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v
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y

π/2−φ

Figure 6.27. Components of the velocity vector in the slip line directions.
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Next, consider how vα varies in the α-direction

dvα

dsα

= d

dsα

(vx cos ζ + vy sin ζ )

=
(

∂vx

∂x
cos ζ + ∂vx

∂y
sin ζ

)
cos ζ +

(
∂vy

∂x
cos ζ + ∂vy

∂y
sin ζ

)
sin ζ

+ (−vx sin ζ + vy cos ζ )
dζ

dsα

(6.53)

The first two terms on the right-hand side of the second equals sign actually
sum to zero because of the inextensibility condition.∗ Only the third term on
the right-hand side does not vanish. If we now use (6.52) to replace vx and vy

we find

cos ϕ
dvα

dsα

= (vα sin ϕ + vβ)
dζ

dsα

(6.54)

A similar development for the change of vβ in the β-direction leads to

cos ϕ
dvβ

dsβ

= −(vα + vβ sin ϕ)
dζ

dsβ

(6.55)

These two equations fully define the velocity components vα and vβ on the
characteristic lines.

We can immediately use (6.54) and (6.55) to investigate the velocity fields
associated with the slip line networks we determined earlier. First, if the char-
acteristic lines are straight such as those illustrated in Figure 6.20, the angle
ζ is constant and consequently the velocities vα and vβ must also be constant.
This does not mean that vα and vβ are constant everywhere, however. Each
velocity component need only be constant along its particular slip line. Thus
if we consider two parallel α-lines separated by some normal distance hα , the
velocity vα may be completely different on the second slip line from the value
found on the first. It is evident that vα is a function of the distance hα and we
can write vα = vα(hα). Similarly, if hβ is measured normal to the β-lines, then
vβ = vβ(hβ). Clearly it is possible to construct quite complex deformations
from the combined action of the two velocity components even in this simple
case of constant stress. The complete velocity field is said to be a superposition
of two shear flows. In fact, there is not even a requirement that the functions
vα(hα) and vβ(hβ) should be continuous. If a discontinuity occurs in vα(hα),
for example, then there will be discontinuous velocities on either side of one

∗ Referring to equation (6.49), if we replace η with ζ the result is zero as shown in (6.50). Also
ε̇

p
xx = ∂vx/∂x with similar expressions for the other strain components. We see that the terms in

(6.53) are exactly the same as those in (6.49), with η = ζ , and therefore the sum is zero as stated
above.
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particular α-line. There might be zero velocity on one side of the line and non-
zero slip on the other side. The relation to our upper bound theorem solutions
in Chapter 5 is clear.

If lines of discontinuity do exist, either within the failure region or bounding
the failure region, we must think of them as thin shear bands. The reason lies
in the fact that dilatancy will always be associated with slip. If the shear band
possessed no thickness it would be impossible to accommodate dilation. This
point was also made in Chapter 5. Note that if we construct a local Cartesian
coordinate system parallel and perpendicular to a line of discontinuity, the
components of relative velocity normal and tangent to the line will have the ratio
tan ϕ. The relative velocity vector itself will always lie at an angle ϕ to the line of
discontinuity as was pointed out in the derivation of equation (5.5). Of course,
if a non-associated flow rule is used, these constraints no longer apply.

Finally, let us consider the velocity field associated with a centred fan of
slip lines like that in Figure 6.21. In the fan shown in that figure the β-lines
are straight while the α-lines are logarithmic spirals. Because the β-lines are
straight we know that vβ will be constant on any particular line, but may take
on different values for different lines. This fact can be expressed by noting that

vβ = g(θ ) (6.56)

where g is an arbitrary function of the angle θ defined in Figure 6.22. Using
(6.56) in (6.54) and integrating leads to the following expression for the velocity
vα associated with the α-lines:

vαe−ζ tan ϕ = sec ϕ

∫
g(ζ + ϕ)e−ζ tan ϕ dζ + C1 (6.57)

Here we have used the fact that θ = ζ + ϕ. C1 is the constant of integra-
tion associated with the particular α-line of interest. In the special case where
g(θ ) = 0, we see that vα will behave exponentially with ζ .

The usual interpretation of the velocity field for the situation shown in
Figure 6.21 is that regions A and B move as rigid bodies. The outermost α-line
represents a discontinuity separating the failure region from the surrounding
body which remains stationary. Region A moves vertically downward, the fan
rotates and region B moves upward and to the right. This corresponds to the
picture presented in Chapter 5 for the same problem. Note that the actual mag-
nitude of the velocities is not specified. This is consistent with the assumption
of perfect plasticity in that the strain rates are determined only to within the
multiplier λ. It is only possible to determine the velocity field completely if
the velocity of a boundary point is specified initially. For example, we might
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specify that the footing is to move vertically downward with a velocity v0. Then
all the velocities within the failure region could be calculated in terms of v0.
These thoughts are elaborated in Exercise 6.6 below.

Further reading

Early works referred to in this chapter may be found in

H. Hencky, Über einige statische bestimmte Fälle der Gleichgewichts in plastischen
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(1903).
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Butterworths, London, 237pp., 1960.
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pp. 435–475, 1963.

Comprehensive numerical solutions for Kötters’ equation may be found in

H.Y. Ko and R.F. Scott, Bearing capacities by plasticity theory, J. Soil Mechan. Found.
Div., ASCE, 99, SM1, 25–43 (1972).

The theory for non-associated flow by Spencer is described in the reference
below. Spencer’s work was significantly extended in the second citation.

A.J.M. Spencer, A theory of the kinematics of ideal soils under plane strain conditions,
J. Mech. Phys. Solids, 12, 337–351 (1964).

M.M. Mehrabadi and S.C. Cowin, Initial planar deformation of dilatant granular
materials, J. Mech. Phys. Solids, 26, 269–284 (1978).

Seminal works in determination of the strain rate and velocity fields for the case
of associated flow of perfectly plastic Coulomb materials are

D.C. Drucker and W. Prager, Soil mechanics and plastic analysis or limit design,
Quart. Appl. Math., 10, 157–165 (1952).

R.T. Shield, Mixed boundary value problems in soil mechanics, Quart. Appl. Math.,
11, 61–75 (1953).

An introduction to the method of characteristics, applied to soil mechanics as
well as other fields, is given by

M.B. Abbott, An Introduction to the Method of Characteristics, Thames and Hudson,
London, 1966.
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Exercises

6.1 In Figure 6.12 the angleψB was set equal toπ . An alternative interpretation
of the situation depicted in Figure 6.11 would have ψB = 0. Using this
alternative interpretation, carry through the analysis to determine p1 in
terms of p0. Discuss your conclusion in light of the initial assumption that
p1 is the greater applied stress.

6.2 Consider the problem illustrated in Figure 6.28. An embankment with
slope angle ξ consists of a purely cohesive material. It supports an applied
stress p0 on its horizontal surface. Ignore gravity.

Embankment,  φ = 0
ξ

p0

Figure 6.28.

(a) Sketch the network of α- and β-lines that would result if the embank-
ment was in a failure state.

(b) Determine the magnitude of the load p0 required to cause failure in
terms of the cohesion c and the angle ξ .

6.3 Solve equations (6.28) for ∂p/∂x and ∂p/∂y. Use your result to complete
the derivation of (6.29).

6.4 A halfspace of purely cohesive material supports a system of applied
surface tractions that produce the network of α- and β-lines shown in
Figure 6.29. Determine all possible systems of surface tractions that might
produce the network shown.

45

Figure 6.29.

6.5 Note from Figure 6.26 that, in the passive region outside the strip load, both
α- and β-lines are straight. Thus the derivatives of ψ in Kötter’s equations
(6.44) will vanish. Use Kötter’s equations to show that the vertical stress
component everywhere within the passive zone is equal to ρgy.
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6.6 Figure 6.30 shows the right-hand side of the strip footing characteristic
line network. Assume that the region ABC moves vertically downward as
a rigid body with velocity v0.

AB

C
D

E

Figure 6.30.

(a) Determine the values of vα and vβ in terms of v0 in the region ABC.
(b) Everywhere on the line of discontinuity CDE the velocity vector must

lie at an angle ϕ above the characteristic line. Use this fact to prove
that vβ = 0 everywhere in the region ACDEA.

(c) Use the result from (b) to show that the velocity vector at every point
in the region ACDEA must be perpendicular to the β-line passing
through the point.

(d) Crossing the line of discontinuity AC, the relative velocity (or change
in velocity) must lie at an angle ϕ to the line. Use that fact together
with the result from (c) to prove that on the line AC the velocity of
particles in ACDEA must have magnitude v = v0/2 sec(π/4 + ϕ/2).

(e) Use the result from (d) to show that the value of v in the fan ACD is
given by

v = v0

2
sec
(π

4
+ ϕ

2

)
eθ tan ϕ

where θ is measured from the line AC.
(f) What is the velocity of the ground surface AE?

6.7 A thick-walled tube of purely cohesive material is deforming in plane
strain conditions. The radius of the inner surface of the tube is a, and
the outer radius is b. The inner surface of the tube supports an applied
pressure p0. The outer surface of the tube supports an applied pressure
p1. Assuming the cross-section of the tube is in a fully yielded condition,
discuss all the possible values that p0 and p1 may take.



7
Work hardening and modern theories

for soil behaviour

7.1 Introduction

This final chapter presents a collection of ideas related to work hardening,
as well as some thoughts on modern descriptions of the mechanical response
of soils. Recall from Chapter 3 that work hardening materials, in contrast to
perfectly plastic materials, may change their response during yielding. These
changes are accomplished by altering, in some fashion, the shape or size of the
yield surface as plastic flow occurs. Initially the concept of work hardening
was introduced to give a better representation of the stress–strain response of
metals. The ideas involved are straightforward, although there is a price to pay
in terms of increased levels of complexity. We have avoided the topic until now,
not because it is unimportant, but because it plays such an important role in the
modern theories of soil plasticity that are also considered in this chapter.

Geotechnical engineers have found the general concept of work hardening
extremely useful whenever there is a need for response calculations that are
more detailed than is possible with perfect plasticity. In particular, the closed
yield surfaces described in Chapter 3 would be nearly useless without work
hardening. With a closed yield surface there is a possibility of plastic response
under increasing isotropic stress, but one cannot arbitrarily limit the amount
of stress increase by establishing a fixed yield surface at some arbitrary stress
level. We must be able to increase the isotropic stress, to move the stress point
out along the space diagonal, without limitation. This implies that the yield
point must also change and hence, work hardening must occur.

The whole concept of how a soil yields under increasing isotropic stress is one
of the two central points (the other being frictional strength) that discriminates
between metal plasticity and soil plasticity. There has been ample evidence for
soil yielding due to isotropic stress for many decades, but only since the 1960s

185
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have there been plasticity theories that incorporate the effect coherently. We
group these theories under the general heading of critical state soil mechanics.
Even newer are theories that attempt to account on a microscopic scale for the
grain crushing and rearrangement that lead to plasticity effects.

The 40 or so years since the introduction of critical state soil mechanics
has seen a proliferation of similar material models all attempting to repro-
duce more closely the observed stress–strain response measured in laboratory
tests. At times these theories seem to provide more detail than is either nec-
essary or desirable. To reproduce every twist and turn in a collection of lab-
oratory data may seem an admirable goal from the standpoint of academic
accuracy but the practicalities usually require that the model be based on a
large number of parameters. Models with as many as 20 or more material pa-
rameters have been proposed. The problem of determining parameter values
for a particular application becomes a daunting task. Moreover, the variability
of natural soil deposits suggests that even when the parameters are well de-
fined, they may provide a model which is at best applicable in only a small
part of the total soil affected. In many practical situations the geotechnical
engineer has more need of robust approximations than of extreme but fragile
precision.

In the preceding six chapters we have mostly taken the rough but robust
approach that characterises the engineering approximation in contrast to the
delicate but precise approach that is possible with modern critical state theories.
That is not to suggest that we see no value in critical state soil mechanics. The
exact opposite is true. Nevertheless, it is in the best interest of geotechnical
engineering that practitioners have a solid background knowledge of the nuts
and bolts of all of the theory of plasticity. The aspects of plasticity covered in
many modern textbooks as well as in many geotechnical engineering courses
begin and end with critical state theories, with the result that graduates have
little contact with what might be called the classical aspects of plasticity: metal
plasticity, collapse load theorems and slip line fields. We believe these aspects
form an essential underpinning for the appreciation and critical analysis of what
the modern theories are capable of producing.

This chapter will introduce some of the detail involved in critical state the-
ories, but no more than is necessary to provide a basic understanding of the
goals of the theory and how the earliest models worked. We will also attempt to
investigate one of the rudimentary theories for a micromechanical description
of soil response. Unlike the previous six chapters some of the material presented
here may become dated or even obsolete because of discoveries yet to be made.
We begin, however, with some basics.
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Perfectly plastic flow

Yield stress
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Work hardening plastic flow(a) (b)

Figure 7.1. Stress–strain response for perfect and work hardening plastic materials.

7.2 Work hardening for metals

The post-yield response of a typical ductile metal is usually more like that illus-
trated in Figure 7.1(b) than the perfectly plastic response shown in Figure 7.1(a).
Yielding and flow are accompanied by an apparent increase in strength called
hardening. The term strain hardening is often used since the strength increase
happens as the plastic straining increases. The term work hardening is also used
to describe the phenomenon.

Figure 7.1 is a bit vague about what measures of stress and strain are in use,
but we can think of the data as arising from a simple tension test. In that case
our concerns would be the principal stress σ1 and the corresponding axial strain
ε1. The yield stress would be the tensile strength σT . For the work hardening
case we see an initial yield stress similar to the perfectly plastic case, but as
the strain increases the yield stress also increases. A relatively painless way to
account for that behaviour is to make σT grow as the amount of plastic strain
or the quantity of plastic work increases.

The above ideas may be generalised as follows. Suppose we wish to use a
Tresca yield condition which, following (3.10), we might write as

σ1 − σ3 = σT = σT (Wp) (7.1)

Here the yield stress σT is written as a function of the plastic work Wp. In a
general sense, the yield function f in (3.1) and (3.2) has now become a function
of Wp as well as a function of the components of stress. The plastic work is
found by integrating equation (4.10) or (4.11)

Wp =
∫

Ẇp dt =
∫

tr(σε̇ p) dt =
∫ (

σ1 dε
p
1 + σ2 dε

p
2 + σ3 dε

p
3

)
(7.2)

where the range of integration covers the range of plastic response. Physically
the plastic work is that part of the total stored energy W not produced by elastic
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σT(Wp)

σT(0) = σT
0

ε1

σ1

We

W
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B

σT

Wp = W − We

σT = σT (Wp)

(a)  Stress--strain
       response

(b)  Yield stress evolves as a
       function of plastic work

Figure 7.2. Calculation of plastic work in a work hardening material.

deformation. In the context of a simple tension test the plastic work may be
written as

Wp =
∫

σ1 dε
p
1 =

∫
σ1
(
dε1 − dεe

1

) = W − We (7.3)

where σ1 and ε1 are the axial stress and strain. The quantities W and We may be
visualised as shown in Figure 7.2(a). The elastic stored energy, We, corresponds
to the grey area of the triangle OAB. If E is the value of Young’s modulus
appropriate to the material, then εe

1 = σ1/E and We = σ 2
1 /2E . The total work

W is the larger cross-hatched area beneath the stress–strain curve. The difference
of the two areas gives the plastic work at that stage of the process. Note that
Wp is zero for an elastic response since W and We are identical. Wp begins to
grow after initial yield occurs. The function σT (Wp) is precisely the value of
the stress σ1 in simple tension mapped as a function of Wp as shown in Figure
7.2(b). The initial yield stress when Wp = 0 is denoted by σ 0

T .
An important issue comes up at this point. If we map the yield stress σT on

to the simple tension stress, then does this mean that the Tresca hexagon has
grown larger? The question may be put another way. If we cause the material
to yield by placing it in tension, then have we increased the yield stress in com-
pression? The question and two possible answers are sketched in Figure 7.3.
In the figure the plane strain Tresca hexagon is shown in the σ1–σ3 plane.
The dashed hexagon is the initial yield surface and the two solid hexagons are
possible subsequent surfaces after hardening has occurred. A simple tension
stress trajectory is the horizontal line beginning at o and ending at b. Point a is
the initial yield point and the space between a and b corresponds to hardening.
Part (a) of the figure shows one possible outcome. The yield surface has been
inflated by the hardening process so that if we were to reverse the stress after
this initial loading we would find that the yield point has been increased. Part (b)
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Figure 7.3. Comparison of isotropic and kinematic hardening.

shows a different possibility. The size of the yield surface has not changed and
hardening has simply translated the initial surface to the right by the amount
ab. A reversal of stress here would encounter the yield surface much earlier
than in case (a). The first possibility is called isotropic hardening, while the
second one is referred to as kinematic hardening. There are other possible ways
to accommodate hardening. For example, we could visualise the stress point
pushing out one side of the hexagon while the other side remains stationary,
but the two possibilities shown in Figure 7.3 are the ones most widely used.

Which of the two hardening possibilities, isotropic or kinematic, is better?
Generally the kinematic case is preferred. When most metals are tested in sim-
ple tension, post-yield hardening is observed. If the stress is then reversed, the
reverse yielding usually occurs near the point predicted by the kinematically
translated surface. This occurs despite the fact that the yield point in com-
pression for an unhardened specimen would be the same as that in tension.
The alteration of the yield point observed when a stress reversal occurs after
hardening is called the Bauschinger effect named after the German engineer
J. Bauschinger.

Figure 7.4 illustrates the Bauschinger effect. If we perform a simple tension
test, initial yield is found at a stress denoted by σ 0

T , at the point marked A on
the figure. A compression test on a similar unhardened sample would yield at
the compressive stress level σ 0

T , at point B. But if we reverse the stress after
some hardening has occurred in the tensile test, the new reverse yield point is
found at point C . The total stress reversal required to produce reverse yielding
is 2σ 0

T . A similar result would be observed if the compressive test loading were
reversed and a new tensile yield point determined.

Finally, we might wonder just how a kinematically hardened yield surface
would move if the loading were more complex than simple tension or compres-
sion. The usual answer is that the surface should translate as if the stress point
were a ‘frictionless roller’ pressing against the inside. The surface is guided to
translate freely in any direction but is not permitted to rotate. Clearly this con-
cept is applicable to the von Mises yield surface equally as well as to Tresca’s.
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Figure 7.4. The Bauschinger effect.

Despite the fact that kinematic hardening appears to better represent actual
test data, isotropic hardening is still widely used. The reason lies in the ease with
which isotropic hardening may be implemented mathematically. Of course, in
applications where stress reversals are not anticipated, the choice of model
makes little difference.

7.3 Cam Clay

The simple work hardening theories for metals are not sufficient to describe
in detail the complex behaviour exhibited by real soils. In the second half of
Chapter 2 we described some of the aspects of inelastic behaviour of soils
that are commonly observed. The reader is encouraged to return to Chapter 2 to
review the points raised there. In summary, we noted first that irreversible effects
may occur in the absence of shearing stress. Typical oedometer test results were
shown in Figure 2.6 where a yielding response is shown as the applied normal
stress is increased. Of course, there are shear stresses present in the oedometer
sample, but a similar response may be obtained under purely isotropic stress. It
is particle crushing and rearrangement due to normal stress increase that causes
the irreversible deformation. Second, we noted that shear stress may also result
in plastic effects, but these are complicated by interlocking. A densely packed
sample of a particular soil may behave very differently from a loosely packed
sample. Interlocking produces an increase in strength that may be broken down
as dilation occurs. The resulting stress–strain curve might look like that shown
in Figure 2.10 where a pronounced stress peak is apparent. Dilatancy leads to an
increase in sample volume. In contrast, a loosely packed sample may exhibit no
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stress peak. The stress–strain response may look more ‘conventional’ such as
that in Figure 7.1(b). The sample volume may decrease as loading progresses.
It seems clear that a chasm exists between the simple perfect plasticity theories
and the actual behaviour of real soils.

A reasonable question to ask at this point is should we worry about this
chasm or not? The solutions developed for a perfectly plastic response are
extremely powerful and have the virtue of simplicity. Perfect plasticity can
only roughly approximate the stress–strain behaviour of a real soil, but is that
rough approximation enough? The answer is yes and no. For many real ap-
plications, perfect plasticity will give reliable and robust results that may be
sufficiently accurate, especially in light of the natural variability of real soils.
But there are some applications where greater accuracy may be required. Parti-
cularly in sensitive projects where prediction errors may prove especially costly,
or in applications where a reasonable margin of safety cannot be incorporated
in the design process, the simple perfect plasticity answers may not be good
enough.

Given that there is a need in some applications for a more accurate prediction
of soil response, we must confront the complexities mentioned above. A theory
is needed that incorporates yielding under isotropic stress increase as well as
the complex behaviour observed in shearing. The theory of critical state soil
mechanics will provide the things we desire. When the material is sheared the
shape of the yield surface together with the normality condition will automati-
cally attract the stress point to the critical state. Thus dense soils will dilate and
loose soils will compress, and both will approach a state at which no further
volume change occurs. At the same time the stress will approach the ultimate
strength value. The very first critical state theory was called Cam Clay.

Cam Clay was originated by the Cambridge soil mechanics group in the
1960s. We have already described the Cam Clay yield surface in Chapter 3, but
at that point, without the benefit of a flow rule, it was impossible to appreciate its
versatility. Rather than beginning directly with the surface described in equation
(3.31), we will attempt to present an overview of the Cam Clay model using
the simplest possible loading geometry. By considering a very simple problem
we can avoid a number of minor complications that have no effect on the
fundamental model response. Later we can sketch out how to generalise the
simple problem to other possible loading situations.

The problem to be considered is simple shearing, illustrated in Figure 7.5.
A sample of soil is subjected to applied normal and shearing tractions, σ and
τ , on its upper surface. If the sample happens to be saturated, we consider σ to
be the effective stress. The soil is laterally constrained so that no extensional
deformation occurs in the horizontal direction. This can be accomplished using
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Figure 7.5. Schematic diagram showing a simple shear test.

a sort of ‘pancake’ container consisting of layers of rigid material that may slide
over each other, permitting shearing strain but no extensional strain. It is not a
simple device, but that is not our concern. The essential thing is that the only
extensional strain is the vertical strain, denoted by ε p. The only other non-zero
strain is the shear strain, denoted by γ p. We denote both strains as plastic. The
theory to be derived will overlook elastic strains for the moment, but they will
be considered later.

The simple shear test is an especially nice example for the purpose of de-
veloping our theory. We would expect to see all the complex effects discussed
above, but there are only two components of stress and two of strain to contend
with. The originators of the Cam Clay model used the triaxial test as their ex-
ample problem, and it also has only two stress and two strain components, but
those components are derived from invariants and are slightly more complex
than the simple stresses and strains considered here.

First, we want to establish a yield surface. In the context of our example
problem, this will be a function of the form f (σ, τ ). To begin, assume the soil
sample is in a yield state and write down the rate of plastic work:

Ẇp = σ ε̇ p + τ γ̇ p (7.4)

Wp represents plastic, irrecoverable work done by the applied tractions. An
approach to plasticity we have not yet mentioned takes (7.4) as its starting
point and then postulates that Ẇp must equal a specified function called the
dissipation function, Ḋ. It can be shown that the dissipation function should be
a homogeneous function of the plastic strain rates multiplied by coefficients that
depend upon the stresses. If we consider the case where σ is constant then it is
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reasonable to assume that the plastic extensional strain ε p is at most a function
of the plastic shear strain γ p. Then the dissipation function Ḋ can be written
as a function of γ̇ p only. Also, for a frictional material, the rate of dissipation
should depend on the normal stress σ . The Cambridge workers postulated a
dissipation function with the form

Ḋ = kσ γ̇ p (7.5)

where k is a material parameter that is constant for any particular soil. Setting
the right-hand sides of (7.4) and (7.5) equal and rearranging gives

ε̇ p

γ̇ p
= k − τ

σ
(7.6)

where we assume the shear strain rate γ̇ p to be strictly positive.
Next, return to (7.4) and consider what might happen if we were to slightly

alter the stresses σ and τ . Suppose we alter both stresses by small amounts δσ

and δτ . Then the rate of plastic work would also be altered by some amount δẆp.
Drucker’s postulate∗ states that, so long as the body remains in equilibrium, δẆp

should always be equal to or greater than zero. Therefore

δẆp = δσ ε̇ p + δτ γ̇ p ≥ 0 (7.7)

In the limiting case where the equality holds this expression embodies the
normality condition. If we take the equality, we may write

δτ

δσ
+ ε̇ p

γ̇ p
= dτ

dσ
+ k − τ

σ
= 0 (7.8)

where (7.6) has been used and δs have been replaced by ds. We can integrate
(7.8) to give

τ = σ (C1 − k ln σ ) (7.9)

where C1 is a constant of integration. This expression will become our Cam Clay
yield surface; however, an initial condition is still needed to find the constant
C1.

It is not immediately clear what initial condition is appropriate for (7.9), but
(7.6) offers a clue. Looking at (7.6) and assuming γ̇ p > 0, we see that there are
three possibilities for the extensional strain rate, ε̇ p. If σ > τ/k, then ε̇ p > 0
and compression is occurring. On the other hand, if σ < τ/k, then ε̇ p < 0 and
dilation is occurring. The first condition would correspond to a loosely packed

∗ See Appendix E. Drucker’s postulate is based on the idea that for a yielding body in equilibrium
under a system of loads any small change in loading should not cause the body to do work on its
surroundings. The postulate can be used to derive the normality condition.
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soil and the second to a densely packed soil. The third possibility is σ = τ
/

k.
If this is the case then ε̇ p = 0 and the sample volume is not changing. The
Cambridge researchers referred to the first possibility as ‘weak’ yielding. The
second possibility was called ‘strong’ yielding. Later the terms ‘wet’ and ‘dry’
were substituted for weak and strong, but the end result is the same. In the
first case the soil compacts, in the second it dilates. The two possibilities are
separated by the special case where no volume change occurs. This corresponds
to the state where the soil is neither loosely nor densely packed. Shear strains can
grow without any change in volume. We call this the critical state. Experimental
evidence shows that, regardless of the initial state of packing of a sample, there
is always a tendency to move toward the critical state. That is, the loose soil
compacts, the dense soil dilates, and both are changing their volume in such a
way as to move closer to the critical packing where no volume change occurs. If
sufficiently large amounts of shearing strain occur, then the critical condition can
be achieved. Recall Figure 2.10 where, at large axial strain, the rate of change
of volumetric strain approaches zero. At the same time the stress deviator q has
also reached its constant, ultimate value.

Now return to equation (7.9) and the constant C1. To establish C1 note that
equation (7.6) says that when σ = τ/k we are at the critical state. Suppose we
define a critical state stress, σc, which is equal to τ/k. In general, σ will be
different from σc, but if they do coincide the particle packing will be at its
critical state and there will be no further volume change. In that state, (7.9)
would read

kσc = σc(C1 − k ln σc) (7.10)

We can solve this equation for C1 and use the result in (7.9) to find the following
expression:

τ + kσ

[
ln

(
σ

σc

)
− 1

]
= 0 (7.11)

This equation relates the stresses σ and τ during yielding and hence represents
our Cam Clay yield surface. Comparing with (3.31), it is clear that (7.11) defines
a surface similar to that shown in Figure 3.18. In fact, we can look on τ and σ

as surrogates for q and p in the yield surface defined by (3.31). The parameter
M in (3.31) is replaced by k in (7.11). A graph of (7.11) is shown in Figure 7.6.

We have gone through the same procedure as the original Cambridge
researchers when the Cam Clay yield surface was first obtained, but our develop-
ment is more specialised in that we are concerned only with the example prob-
lem in Figure 7.5. The Cambridge group cast their results in terms of stress and
strain invariants and hence obtained a fully three-dimensional theory reflected
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Figure 7.6. Cam Clay yield surface in a simple shear test.

in the three-dimensional nature of Figure 3.19. Our equation (7.11) mimics their
result in all important details but is simpler. A number of modern textbooks re-
iterate the original Cam Clay derivation and there seems to be little reason to
reproduce it here once again. Our aim is to bring out the essential elements of
the theory in a physically intuitive way.

Suppose we now imagine the simple case where the normal stress σ is in-
creased but no shear stress is applied. The stress point will move along the hori-
zontal axis in Figure 7.6 until it arrives at the yield surface when σ = σc exp(1).
What happens next? Presumably there will be plastic compression and, some-
how, the surface must now expand to accommodate any further increase in σ . It
is unthinkable that the surface might not expand because in that case we could
never increase σ above the initial yield value, and we know that we should be
able to increase σ to any value we wish. If the surface expands then evidently
σc must increase, and we could make this happen by letting σc be a function
of the plastic extensional strain ε p. We will refer to this process as harden-
ing and σc = σc(ε p) becomes our hardening parameter. It is the parameter that
prescribes where the yield surface lies in (σ, τ ) space.

We must now decide how σc depends on the plastic extensional strain. This
will not be difficult since we can rely directly on experiment to tell us what
happens when σ is increased while keeping τ = 0. For a moment let σi =
σc × exp(1), i.e. the normal stress intercept of the yield surface (see Figure
7.6). Then keeping τ = 0, yielding will commence when σ first reaches σi . As
hardening occurs, σ and σi will move together towards the right in Figure 7.6.
At the same time the yield surface will grow larger. Since there is no shear
stress applied to the sample our simple experiment is exactly the same as an
oedometer test. Recall the oedometer test results sketched in Figure 2.6. Loading
the sample results in a decrease in the void ratio and there are usually two linear
portions in the relationship between the void ratio and the logarithm of stress.
The steeper portion is referred to as virgin compression or normal compression
and it corresponds to a plastic response. We also realise that the sample void ratio
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is related linearly to the compressive strain. Therefore, to be consistent with
this well-known behaviour, we need to make the plastic strain ε p a logarithmic
function of the stress σi ,

ε p = m ln
(
σi
/
σ 0

i

)
(7.12)

Here m is a material constant representing the slope of the ε p–log σi line. σ 0
i is

the initial value of σi . It defines the initial position of the yield surface. It also
corresponds to the upper point of the virgin compression curve, the so-called
preconsolidation stress. Now we can see one way in which the yield surface
can change. In the oedometer test the applied stress σ is first increased from
zero to σ 0

i . The stress point lies inside the yield surface and an elastic response
will occur. When σ equals σ 0

i , yielding commences, and a further increase in
σ pushes σi to the right. The yield surface is enlarged and, in terms of the void
ratio versus the logarithm of the stress curve, the sample state is moving down
the virgin compression curve. Finally, recall that σi = σc × exp(1). Thus (7.12)
may be rewritten as

ε p = m ln
(
σc
/
σ 0

c

)
(7.13)

where σ 0
c = σ 0

i × exp(−1) is the initial value of σc. Equation (7.13) provides
our relationship between ε p and the hardening parameter σc.

Taken together, (7.11), (7.13) and the associated flow rule fully describe the
plastic behaviour of our sample. Three material constants have been used, k,
m and σ 0

c . The constant m is determined directly from oedometer test data.
The constant σ 0

c defines the initial shape and the position of the yield surface.
It is related to σ 0

i , which is the preconsolidation stress, also determined from
the oedometer test. The last constant k represents the ratio τ/σc. How might
it be determined? Recall that for both densely and loosely packed samples,
laboratory test results show that there will be an ultimate shear strength. In
the case of a triaxial test, the stress deviator q approaches an ultimate strength
value as the strain grows large. The applied shear force in a direct shear test
does the same. The ultimate strength occurs at the same time as the sample
volume change approaches zero. We say that the sample is approaching the
critical state. In our simple shear test we would expect a similar response. Thus
τ/σ should approach a constant value as the shear strain becomes large. But
at the same time σ will approach σc. The value of τ/σc, and hence k, will be
the same as τ/σ at the ultimate state. We will use ϕc to denote the ultimate
or critical state friction angle for our soil, i.e. ϕc = tan−1 τ/σ at failure. Thus
k = tan ϕc, and we see that the three material constants are easily determined.

Now we are in a position to solve a simple problem. This will help to illustrate
the variety of responses that Cam Clay may produce. The problem envisioned
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Figure 7.7. Stress point trajectory and Cam Clay yield surface for a simple shear test.

is as follows. We assume the three constants m, σ 0
c and ϕc are known. Then

the normal stress σ is increased to some specified value, and is thereafter held
constant. Next, we increase the shear stress τ and take the sample to failure
(to the critical state). Our aim is to determine the stress–strain curve (τ versus
γ ) for the soil. The initial yield surface and the trajectory of the stress point in
the elastic region are shown in Figure 7.7. As yet we have not considered any
elastic strains, but it is a simple matter to set

γ e = τ

G
, εe = σ

E

[
(1 + ν)(1 − 2ν)

1 − ν

]
(7.14)

where G, E and ν are the elastic constants. So long as the stress point lies
within the yield surface the only strains will be given by (7.14). At some point
however, the stress point will arrive on the yield surface. At that point plastic
strains will commence and the associated flow rule tells us how they are related.

γ̇ p = λ
∂ f

∂τ
= λ

(7.15)

ε̇ p = λ
∂ f

∂σ
= λ k ln(σ/σc)

where f is the yield surface defined by (7.11). Differentiating (7.13) we also
have

ε̇ p = m
σ̇c

σc
(7.16)

Combining (7.15) and (7.16) to eliminate λ and ε̇ p gives

σ̇c

σc
= k

m
ln

(
σ

σc

)
γ̇ p (7.17)

and, since σ is constant, we can integrate to obtain

ln

(
ln

σ

σc

)
= − k

m
γ p + C2 (7.18)
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where C2 is the constant of integration. Our initial condition is σc = σ 0
c when

γ p = 0; that is, plastic strains will commence when the stress point touches
the initial yield surface. Using this to evaluate C2 we find (7.18) becomes

ln

(
σ

σc

)
= ln

(
σ

σ 0
c

)
exp

(
− k

m
γ p

)
(7.19)

Finally, return to (7.11). The stress point lies on the yield surface and we can
use (7.19) to replace ln(σ/σc). This gives

τ = kσ

[
1 − ln

(
σ

σ 0
c

)
exp

(
− k

m
γ p

)]
(7.20)

Equation (7.20) defines the shear stress–plastic shear strain response of Cam
Clay in simple shear. A typical shear stress response is shown in Figure 7.8.
For illustrative purposes parameter values of k = 1.0 and m = 0.025 have been
used. Two cases are considered. In case (a) the normal stress σ is greater than
the initial critical state stress σ 0

c . This would be the case illustrated in Figure
7.7, where the stress point first touches the yield surface to the right of σ 0

c . In
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Figure 7.8. Typical Cam Clay stress–strain response in a simple shear test.
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Figure 7.9. Typical extensional strain response for Cam Clay in a simple shear.

case (b) we have σ < σ 0
c and the stress point contacts the yield surface to the

left of σ 0
c . Elastic strains are incorporated in the figure using the first equation

of (7.14). Note the crucial role played by the ratio σ/σ 0
c in (7.20). If σ > σ 0

c

then ln(σ/σ 0
c ) will be positive and increasing plastic strain will be accompanied

by increasing shear stress. But if σ < σ 0
c , then ln(σ/σ 0

c ) will be negative and the
shear stress decreases during yielding. In both cases the shear stress approaches
kσ , the critical state, for large values of strain.

The two different classes of response shown in Figure 7.8 are precisely what
we expect of loosely packed and densely packed soils. The volumetric strains are
also as we expect. Figure 7.9 shows plots of ε p versus γ p for the two situations
in Figure 7.8. Note that when σ > σ 0

c , ε p is positive and the sample compresses.
Conversely, when σ < σ 0

c , ε p is negative, indicating dilation. Each type of
response reflects changes in the yield surface. When the sample compresses, the
yield surface grows and the soil hardens. When the sample dilates the surface
shrinks and we say the soil softens. Hardening and softening are characterised
by the two stress–strain curves shown in Figure 7.8.

In both the hardening and softening cases the sample is being attracted to-
wards the critical state. For case (a), where σ > σ 0

c , the yield surface grows
and the stress path trajectory moves vertically toward the point where σ and σc

will coincide as shown in Figure 7.10. This figure is drawn for the case where
σ = 2σ 0

c . The reason the yield surface does grow lies in the associated flow rule.
Figure 7.10 shows the stress path moving through a sequence of yield surfaces,
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Figure 7.10. Evolution of the yield surface for hardening of Cam Clay in a simple shear.
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Figure 7.11. Evolution of yield surface for softening of Cam Clay in a simple shear.

and the associated plastic strain rate vectors for each. Note how the normality
condition causes the vectors to gradually become more and more vertical as the
stress point approaches the critical state line. When the stress point reaches the
critical state line the plastic strain rate vector becomes exactly vertical. Recall
that the extensional strain rate ε̇ p is proportional to the horizontal component of
the strain rate vector. We see that the rate of plastic extensional strain is greatest
at the instant yield commences and diminishes thereafter until it becomes zero
when the critical state is reached. Finally, note that the size of the yield surface
depends directly on ε p through (7.13). Compressive plastic strain leads to in-
creasing σc and a larger yield surface. The process continues until the plastic
strain rate vector becomes vertical. A similar process occurs when σ is smaller
than σ 0

c , but in that case the plastic strain rate vectors slope to the left, the plastic
extensional strain is negative (indicating dilation), and the yield surface grows
smaller. Yielding begins when the stress point first touches the yield surface.
Then the stress is pulled down by the yield surface as illustrated in Figure 7.11.
In the figure the stress path is shown doing a U-turn but this is only to make
clear that the stress point moves both upward initially and downward (on the
same line) once yielding commences.
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It is now clear how the Cam Clay model produces the various types of
response we require. The critical state has an in-built attraction for the stress
point. Regardless of where the stress point first touches the yield surface, the
volumetric strain will cause the surface to convey the stress point toward the
critical state. Once there the volume remains constant and the shear stress is at
its ultimate strength value. This is the great achievement of critical state soil
mechanics.

The example of simple shearing presented above indicates all the important
aspects of soil behaviour. Rather than simple shear, however, the Cambridge
researchers developed Cam Clay from the perspective of a conventional triaxial
test. We will roughly sketch their development. Instead of (7.4) they set down
the following expression for the rate of plastic work:

Ẇp = q ξ̇ p + pėp (7.21)

Here q and p are the deviatoric and mean stresses, which, in the context of the
triaxial test, are given by

q = σ1 − σ3, p = 1

3
(σ1 + 2σ3) (7.22)

where σ1 is the axial stress and σ3 the radial stress. The plastic strain rates in
(7.21) are

ξ̇ p = 2

3

(
ε̇

p
1 − ε̇

p
3

)
, ė p = ε̇

p
1 + 2ε̇

p
3 (7.23)

The dissipation function is written as

Ḋ = Mpξ̇ p (7.24)

where M is a material constant that plays the same role as k in (7.5). The
development then parallels that given above. The yield surface given in (3.31)
follows. Equation (7.13) is replaced by the following:

ep = µ ln
(

pc
/

p0
c

)
(7.25)

where pc is the critical state mean stress and µ is a constant similar to (but
not the same as) m. The triaxial test model can be further generalised to any
three-dimensional stress state as shown in Exercise 7.4 at the end of the chapter.
Application of the associated flow rule is also considered in that exercise.

7.4 Beyond Cam Clay

Cam Clay revolutionised plasticity applications in soil mechanics. It produced
a new paradigm for the analysis of stress and deformation in soils. A natural
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process in any scientific revolution is the further development and refinement
of a new theory, taking it from what might be termed a state of infancy towards
a state of maturity. In a sense, a new theory is shaped and honed to produce
results that are closer and closer to the observed or expected response. This
happened with critical state soil mechanics in the decades following the 1960s.
The basic theory of a closed yield surface was exploited by many researchers in
a number of novel ways. It is beyond the scope of an introductory text such as
this to describe the various developments that have emerged. Only the briefest
summary will be given.

One problem was immediately evident in Cam Clay. The three-dimensional
yield surface illustrated in Figure 3.19 is marked by a sharp point at its inter-
section with the space diagonal. Corners and sharp vertices on yield surfaces
are usually viewed as being inconvenient due to the ambiguity they provoke
with regard to plastic strains. Two Cambridge researchers, K.H. Roscoe and
J.B. Burland, provided an answer called Modified Cam Clay. The yield function
was altered to produce an elliptical shape similar to that shown in Figure 3.20.
Together with the associated flow rule this new surface provided a slightly
more realistic response on the so-called ‘wet side’ of the critical state without
introducing any new parameters.

Another obvious problem with Cam Clay is the abrupt loss of strength when
the stress path touches the yield surface on the dry side of critical. This is il-
lustrated in curve (b) of Figure 7.8 where the stress decreases sharply at the
beginning of yield. A realistic stress–strain response usually displays a smooth
transition from increasing stress to decreasing, like that shown in Figure 2.10.
The volumetric strain response predicted by Cam Clay for the dry side of criti-
cal is also found to be somewhat inadequate when compared with experimental
results. These as well as other deficiencies motivated many researchers to pro-
pose new critical state models that were similar to Cam Clay but differed in
detail. Non-associated flow rules frequently featured in these efforts as did
so-called nested yield surfaces and bounding state models. In these latter
theories more than one yield surface could be employed in an effort to create
a smooth transition between an increasing and a decreasing stress response for
densely packed soils and to provoke a more realistic volumetric strain response.
Of course, the price of better predictive ability was usually a requirement for
greater numbers of material parameters.

It is interesting at this point to draw a comparison between the general features
of critical state soil mechanics and the mental picture we hold of the response
of a real soil. Recall from Chapter 2 how we considered plasticity effects with
regard to both increasing shearing stress and increasing isotropic stress. The two
situations were characterised by different microscopic effects. Under increasing
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isotropic stress, particles of soil fractured and crushed, permitting rearrange-
ment into a denser configuration. In contrast, shearing a densely packed soil led
to a looser particle configuration. Particle crushing probably did not occur, at
least not to a great extent; but shearing did tend to break corners and asperities
from particles and thus make particle rearrangement easier. These two mecha-
nisms, fracture and rearrangement, combine to produce the irreversible effects
we call plasticity. Moreover, they are ubiquitous in all soils: silts and clays as
well as sands and gravels. It is relatively easy to visualise a particle of sand
being fractured, but the same process may happen in clay. Clay particles are,
we realise, extremely small, but they tend to form agglomerates called peds. A
ped is like a loosely glued collection of individual particles combined to form
a virtual particle. The ‘glue’ is provided by minute electrical forces acting on
the particle surfaces. The virtual particle is generally still very small, but just
like the particle of sand it may fracture into smaller peds when subjected to
increasing stress. Fracture and rearrangement are fundamental processes in the
deformation of any soil.

Thinking again about critical state plasticity we see that the associated flow
rule combines with the closed yield surface to produce both shearing and volu-
metric plastic strains. It might seem reasonable to, in some way, subdivide the
shear and volume straining into portions associated with fracture and with re-
arrangement. This has in fact been done by H.W. Chandler. All the strains may be
considered. In place of the classic strain decomposition ε = εe + ε p, Chandler
writes an expression equivalent to ε = εe +εd +εr . Here εe denotes the usual
elastic strain matrix, εd denotes plastic strain due to fracture or damage and
εr denotes plastic strain due to rearrangement. Chandler’s theory represents
a partial break away from the critical state paradigm, yet many critical state
features are incorporated.

An even more complete break from conventional plasticity is possible with
theories based on micromechanics. Micromechanics is a general term used
to describe theories of material behaviour which, to some extent, avoid the
assumption that the material is a continuum. Some theories completely drop
the continuum assumption and attempt to consider soil explicitly as a collection
of individual particles. Spherical particles have been a popular choice in these
endeavours because of their ease of mathematical representation. Of course,
while spherical particles may deform and slip past each other, they preclude the
possibility of fracture since they would then no longer be spherical.

Theories that incorporate fracture rely on an amalgam of ideas related to me-
chanical properties of particles together with assumptions concerning statistics.
Their ultimate aim is to provide a continuum description for the behaviour of a
collection of particles, and individual particles in themselves are not considered.
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This type of theory has certain advantages over the individual particle theories.
Individual particle theories almost inevitably demand significant computational
power since large numbers of particles must be considered in order to obtain
realistic results. Statistical theories, on the other hand, may require little or no
computational resources. Also, the restrictions imposed by individual particle
theories on particle geometry (i.e. spherical particles) are completely avoided
in statistical theories. Statistical mechanics has a long and successful history
in physics, especially the physics of gases, but as yet is little used in soil
mechanics. To conclude this chapter we will outline a recent statistically based
theory for soil behaviour, one that has also emerged from the Cambridge soil
mechanics group.

The theory is the work of two engineers, G.R. McDowell and M.D. Bolton.
They set out to model soil behaviour in an oedometer test: the so-called virgin or
normal compression response. Recall from Chapter 2 that we expect the volu-
metric strain to be a linear function of the logarithm of the applied compressive
stress.∗ We will think of the applied stress as a characteristic stress and refer to
it as the ambient stress in the soil. As the ambient stress increases, we anticipate
that particle fracture and fragmentation will lead to volume compression.

We are aware that the collection of particles in a compressing soil will not all
be loaded equally. Some particles may support far more of the ambient stress
than do others. Depending on how intensely stressed the soil mass is, there may
be some regions of the particle matrix that support very little stress and other
regions that are heavily stressed and act effectively as an internal structure.
With this in mind it may appear that any attempt at deciding rationally whether
a particle fractures or not is predestined to fail, but in fact there are some general
rules that can be laid down. There appear to be two important components to
the question of whether a particle will fragment under a given ambient stress
or not. The first question is, how strong is our particle by itself? The second
question is, how well is our particle protected by other particles that surround
it?

With regard to the first question, there have been several experimental studies
of particle strength for different soils. Particles are crushed between rigid flat
platens. The force required to cause fragmentation is measured and the strength
is represented by the force divided by the square of the particle dimension δ.
Since the particle is irregular the exact definition of δ is a bit vague, but we can
think of it as the average diameter of the particle. A clear statistical conclusion
emerges from these experiments. For a given soil type, the strength of a particle

∗ Here we imply the effective stress wherever appropriate.
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is inversely related to its dimension δ. Roughly speaking, it is found that the
particle strength is proportional to δ

−1/2 . Thus larger particles are significantly
weaker. This fact is explained as follows. All particles will contain flaws in
the form of micro-fissures and cracks. When our particle is crushed, the initial
fracture is likely to originate in a pre-existing flaw. Larger particles will most
probably contain larger flaws and these will be more vulnerable. A well-defined
distribution of particle strength may be determined by carrying out sufficient
numbers of experiments. The experimental data is usually well represented by
a Weibull distribution.

The second question to be considered is this. How does our particle interact
with other surrounding particles? In the crushing tests just described there were
no other particles, just two hard plates moving together to ensure the particle
will be crushed. In a real soil there will be a number of surrounding particles
that make contact with our particle. The system of forces found at all the contact
points holds the particle in equilibrium and, in some way, represents part of
the ambient stress field in the soil. The number of neighboring particles that
actually contact our particle is called the co-ordination number. We expect the
co-ordination number will be equal to or greater then 2. Now consider two
cases. Suppose the co-ordination number takes the smallest value of 2. Then
the overall traction field acting on the entire surface of our particle is as non-
uniform as possible. Our particle is effectively in a situation similar to the platen
crushing test. In contrast, suppose the co-ordination number is large. Now our
particle is supported by many others and there will be a much more uniform
overall surface traction. Intuitively we would anticipate that our particle will
be much less likely to be crushed when the co-ordination number is high. A
low co-ordination number suggests greater stress concentrations and a higher
probability of fragmentation. A high co-ordination number suggests a smooth
stress field inside the particle and a smaller likelihood of fracture.

There are two important conclusions to be drawn from these thoughts, but
first we must realise that larger co-ordination numbers will be a feature of
larger particles. In a soil where a wide range of particle sizes are present, the
larger particles will be expected to be surrounded by a complex matrix of other
particles of lesser size. These smaller particles will cushion the large particle
from the effects of the ambient stress state. On the other hand, small particles
will generally have small co-ordination numbers. They will often be trapped
between two larger particles and their co-ordination numbers may be as small
as 2 or 3. So, there are competing influences at work inside the particle matrix.
Larger particles are intrinsically weaker, but they are protected by a cushion
of smaller particles. Smaller particles are intrinsically stronger, but they are
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more exposed to the ambient stress field. Which will win out? The answer is
that larger particles will generally survive, while smaller particles will generally
suffer more fragmentation. These are generalisations and we are well aware that
while they are statistically accurate, any individual particle may find itself in a
situation that differs from the norm and its behaviour may differ accordingly.
On balance, however, it is more likely that smaller particles will fracture more
often than larger ones. There is ample experimental evidence to support this
fact.

Now what are the two conclusions we draw from all this? First, the fact
that smaller particles suffer more breakage then larger particles implies that
soils will tend to have particle size distributions that cover a broad range of
particle dimensions. The process of normal compression sustained by a natu-
rally deposited soil will lead to the creation of more smaller particles and the
preservation of many larger particles, and the grain size distribution will expand
towards the smaller end of the size spectrum.∗ If the particle distribution of a
natural soil is examined in detail, it is usually found to be fractal. The term frac-
tal is used to represent natural phenomena that are scale-invariant. Frequently
the shape of the coastline of Britain is used as an example of a fractal quantity.
If one looks at the coastline in an atlas, it has a certain characteristic roughness.
If we then magnify a small part of the coast several times, it still looks about
as rough as it did on the original map. If we then magnify that small portion
again, the same roughness remains, right down to the scale of individual grains
of sand on a beach. The roughness of the coast line is independent of the scale
at which we are observing. A natural soil observed under a microscope will
give a similar impression. If we use a small magnification we will see a col-
lection of the larger particles, but the many other particles will be too small
for their images to be resolved. If we then increase the magnification we see
some medium-sized particles and their relative size distribution will be similar
to that observed for the larger particles. Increasing the magnification again we
see yet smaller particles, still having a similar relative distribution of sizes. A
consequence of this fractal quality of soil is a well-defined relationship between
the number of particles and the particle dimension. Observations of real soils
suggest

N (� > δ) = Aδ−E (7.26)

Here, N represents the number of particles, � denotes the random particle
dimension and A is a parameter that will depend on the smallest particle present.

∗ Other geologic processes such as transport may tend to sort the particles into more uniform
gradations but, for a static soil evolving under increasing ambient stress, we can expect to find
a wide range of particle sizes.
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Equation (7.26) states that the number of particles with dimension greater than
δ is proportional to δ raised to the power negative E . E is a constant called the
fractal dimension. For natural soils, E is usually found to be close to 2.5.

The second conclusion to be drawn from this discussion concerns the ambient
stress in the soil. Having discovered that the most likely particle to fracture is
the smallest particle, it is therefore reasonable to assume that, for normal or
virgin compression, the ambient stress in the soil will be close to the strength
of the smallest particle. Recall that particle strength in the platen test is found
to be proportional to δ

−1/2 . Therefore, if we let σ denote the ambient stress
and δs the dimension of the smallest particle, we expect to find that the product
σ
√

δs is a constant. A convenient reference stress is the value of particle strength
associated with the largest particle present in the soil. Letting the largest particle
dimension be δ0 and the corresponding particle strength be σ0, we have

σ
√

δs = σ0

√
δ0 (7.27)

In general, we expect δ0 to remain nearly constant as normal compression
occurs. Some of the larger particles will fracture but others will be preserved
and the size of the largest particle will not alter greatly as the soil compresses.
Equations (7.26) and (7.27) form the two important conclusions we draw from
this general discussion of particle fracture.

Now consider a typical oedometer test. A sample is placed in the loading
device and the load is increased. At some point the preconsolidation stress σ 0

i

is reached, particle crushing begins, and normal compression commences. We
can use (7.26) to calculate the number of particles in the size range δ to δ + dδ.
Let d N = N (� > δ) − N (� > δ + dδ) so that

d N = 5

2
Aδ

−7/2 dδ (7.28)

where E has been set equal to a typical value of 2.5. The mass of a particle
with dimension δ is given by ρsβνδ

3, where ρs denotes the solid density of the
particle and βν is a volume ‘shape factor’ that would depend on the typical
particle shape for our soil. The mass of all particles with dimensions between
δ and δ + dδ is then given by

d M = ρsβνδ
3 d N = 5

2
ρsβν Aδ

−1/2 dδ (7.29)

Let MS represent the total mass of particles in our sample. Integrating (7.29)
gives

MS =
δ0∫

δs

d M = 5ρsβν A(
√

δ0 −
√

δs) (7.30)
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Conservation of mass implies that MS is constant. Therefore we see that A must
depend upon the particle size range according to

A = MS

5ρsβν

(
1√

δ0 − √
δs

)
(7.31)

We will make use of this result below.
We are now drawing near the conclusion of McDowell and Bolton’s analysis.

The rate of plastic work in our oedometer test is given by (7.4) with τ = γ̇ p = 0.

McDowell and Bolton suggested a new dissipation function Ḋ to replace (7.5).

Ḋ = � ṠT (7.32)

Here ST is the surface area of all the particles in our sample and � is a material
constant called the surface energy. As new surface is formed during particle
breakage, energy is dissipated at the rate given by (7.32). We now want to set
the rate of plastic working equal to this dissipation rate, but care must be used.
In (7.32) we have the dissipation rate for the entire sample, while in (7.4) Ẇp

represents the rate of plastic work per unit volume. We must multiply the work
rate by the total volume V of the sample. Then setting the rate of plastic work
equal to the rate of dissipation gives

V σ ε̇ p = � ṠT (7.33)

We can determine the total surface area of our sample in a similar way to the
calculation of sample mass. The surface area of a particle of dimension δ will
be given by βsδ

2, where βs is a surface ‘shape factor’. Multiplying this area by
the number of particles d N from (7.28) and then integrating, we find the total
surface area to be

ST = 5βs A

(
1√
δs

− 1√
δ0

)
(7.34)

Using (7.31) to replace A gives

ST = βs MS

ρsβν

√
δsδ0

(7.35)

Now use (7.27) here. We find

ST = βs MS

ρsβνδ0

σ

σ0
(7.36)

Differentiating and using the result in (7.33) gives

ε̇ p = ρd

ρs

βs

βν

�

σ0δ0

σ̇

σ
(7.37)
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where ρd = MS/VT is the equivalent dry density for our sample, the total mass
of particles divided by the sample volume. If the sample is dry, ρd is the bulk
density. For a saturated sample, ρd represents the density the sample would
have if the pore fluid were absent.

Finally, note that in the oedometer test the strain ε is the only non-zero
compressional strain and hence is also the volumetric strain. If we ignore elastic
strains during normal compression, then the rate ε̇ p is related to the void ratio
ẽ through equation (2.31),

ε̇ p = −
˙̃e

1 + ẽ
(7.38)

Now equate the right-hand sides of (7.37) and (7.38) to find

˙̃e = −βs

βν

�

σ0δ0

σ̇

σ
(7.39)

where the identity ρs = (1 + ẽ)ρd has been used. Of course, (7.39) produces
a straight line graph of ẽ versus ln(σ ). McDowell and Bolton discuss realistic
values for the dimensionless ratios βs/βν and (�/σ0δ0) and they conclude that
the slope of the ẽ−ln σ line that emerges from their theory∗ has the correct order
of magnitude. Linear ẽ − ln σ response has been observed in the laboratory for
many years and has been used empirically in Cam Clay and all other critical
state models, but has not been explained rationally until McDowell and Bolton’s
analysis.

There are other interesting features of McDowell and Bolton’s model for
normal compression. We will investigate two before concluding this section. It
is possible to rewrite (7.26) in the following way:

N = MS

5ρsβν

δ
−5/2

√
δ0 − √

δs
(7.40)

= N0

1 − √
δs/δ0

(
δ0

δ

)5/2

where (7.31) has been used and N0 = MS/5ρsβνδ
3
0 is a dimensionless constant.

If we now use (7.27) to replace the ratio δs/δ0, we find

N

N0
= 1

1 − σ0/σ

(
δ0

δ

)5/2

(7.41)

∗ In fact, (7.39) is not identical to the result obtained by McDowell and Bolton. Note that the work
equation (7.33) assumes all dissipation occurs through particle fracture. McDowell and Bolton
include another term in their work equation to account for frictional dissipation as well. This
leads to a small difference in the final void ratio–stress relationship, but the essential aspects of
their argument are as presented.
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Figure 7.12. Evolution of the number distribution with increasing stress.

This gives a size distribution of number of particles that is always fractal,
although the graph moves slightly as σ increases. Letting σ = nσ0, results for
N/N0 plotted versus δ/δ0 for values of n between 2 and 16 are shown in Figure
7.12. As n grows larger, δs grows smaller and therefore the graph covers more
of the horizontal axis. For example, for n = 2 the smallest particle dimension is
0.25 times the largest, while for n = 16 the ratio is 0.0039. The individual graphs
move downward as n grows, but the lines quickly become so close together
that they merge into a single plot. In the limit as σ → ∞, (7.41) becomes
N/N0 = (δ0/δ)

5/2 , and this is the limiting line on the graph. We conclude
then that the number distribution is always fractal and nearly independent of
stress.

Next, consider the mass distribution. Change the limits of integration in (7.30)
to obtain the mass of particles with diameters smaller than δ,

M(� ≤ δ) =
δ∫

δs

d M = 5ρsβν A(
√

δ −
√

δs) (7.42)

Now use (7.31) to replace A, and let P = M(� ≤ δ)/MS be the fraction of
particles with diameters smaller than δ. Note that P is exactly the same quantity
usually used to plot the grain size distribution curve for a soil. Then, making
use of (7.27) and (7.31),

P =
√

δ/δ0 − √
δs/δ0

1 − √
δs/δ0

=
√

δ/δ0 − σ0/σ

1 − σ0/σ
(7.43)

Graphs of P versus δ/δ0 in semi-log and log–log forms are shown in Figure 7.13
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Figure 7.13. Evolution of the grain size distribution with increasing stress.

for values of n = σ/σ0 between 2 and 32. For small values of stress the mass
distribution is not fractal, but it evolves toward a fractal distribution as n in-
creases. In the limit as σ → ∞, P → √

δ/δ0 and the distribution is completely
fractal with a fractal dimension of 0.5. The form of equation (7.43) leads natu-
rally to this behaviour, which appears to agree with experimental results.

7.5 Last words

In this chapter we have considered a broad range of ideas concerned with mod-
elling plastic response. Most have emerged within the past 40 years and one, the
crushing model for normal compression, is both recent and novel. The entire
subject of plasticity of soil is clearly still evolving and the concepts given here
will no doubt be superceded in future years. Development of powerful, inex-
pensive desktop computers is the major impetus driving this change. Modern
theories for plastic behaviour are often far too complex to permit closed-form
solutions of even very simple boundary value problems. Finite-element and
finite-difference methods must be used generally, and computers are an essen-
tial tool. In a great many ways this is a positive development. More complex
material models may yield more accurate solutions, especially for sensitive
applications where errors may be very costly. Development of these models oc-
casionally leads to a new insight or understanding that might not have appeared
otherwise. But there is an unfortunate natural tendency to use these computa-
tional tools to solve all problems, not just sensitive ones, and excessive reliance
on computer solutions has a blinkering effect on the practitioner. Analytical so-
lutions are not simply elegant anarchisms. They are useful in a great many ways.
The study of analytical solutions enhances problem solving skills and gives in-
sight into a whole range of problems that have similar attributes to the problem
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being considered. In many cases analytical methods provide totally appropriate
solutions for the purposes of design. Their intrinsic accuracy may be less than
that of computer solutions, but the level of accuracy required may not be great
and analytic methods may be cheaper to employ. Often analytic solutions have
a degree of accuracy that is consistent with the degree of knowledge of material
properties or of the boundary conditions in a design problem. And analytic
solutions provide the only true check on numerical solution methods. It is our
hope that the methods of analysis described in this book will inspire an interest
in the use of simple solutions and lead to a further study of classical plasticity.

Further reading

See the reading list of Chapter 3 for references to the origins of Cam Clay and
critical state soil mechanics. Readers interested in the development of new
scientific theories might wish to consult this famous book:

T.S. Kuhn, The Structure of Scientific Revolutions, University of Chicago Press,
226pp., 1997.

The evolution of ideas behind kinematic hardening is described in

W. Prager, The theory of plasticity: a survey of recent achievements, Proc. Inst. Mech.
Eng., London, 169, 41–57 (1955).

Many of the difficulties associated with modern plasticity theories for soils are
discussed in this article by Spencer,

A.J.M. Spencer, Deformation of ideal granular materials, in Mechanics of Solids: the
Rodney Hill 60th Anniversary Volume (eds. H.G. Hopkins and M.J. Sewell)
pp. 607–652, Pergamon Press, Oxford, 1982.

A discussion of the mathematical aspects of dissipation functions in develop-
ment of plasticity theories may be found in

J.B. Martin, Plasticity: Fundamentals and General Results, MIT Press, Cambridge,
MA, 1975.

The work by Chandler using plastic damage and rearrangement strains is de-
scribed in

H.W. Chandler, Homogeneous and localised deformation in granular materials: a
mechanistic model, Int. J. Engng. Sci., 28, 719–734 (1990).

There are a number of micromechanical models based on collections of spher-
ical particles. Two papers of particular interest are

R.D. Mindlin and H. Deresiewicz, Elastic spheres in contact under varying oblique
forces. J. Appl. Mech. ASME, 20, 203–208 (1953).

P.A. Cundall and O.D.L. Strack. A distinct element model for granular assemblies.
Geotechnique, 29, 47–65 (1979).
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Development of the fractal void ratio–logarithm of stress model is summa-
rised in

G.R. McDowell and M.D. Bolton, On the micromechanics of crushable aggregates,
Geotechnique, 48, 667–679 (1998).

Exercises

7.1 A linear work hardening elastic–plastic material responds in simple ten-
sion following the bi-linear stress–strain curve sketched in Figure 7.14.
Derive expressions for the total, elastic and plastic works, W, We and Wp:
(i) in terms of stress σ and (ii) in terms of strain ε. Show that the current
yield stress may be written in terms of the plastic work as

σ 2
T = (σ 0

T

)2 + 2Wp

(
E E∗

E − E∗

)

where E and E∗ are the moduli shown in Figure 7.14.

E*

E

σT
0

σ

ε

Figure 7.14.

7.2 In an undrained test, a fully saturated soil sample is assumed to respond by
maintaining constant volume. In the context of the simple shear test shown
in Figure 7.5, an undrained test would imply ε = 0 and hence ε p = −εe.
Use this fact together with the properties of Cam Clay to show that the
effective normal stress σ at critical state in an undrained simple shear test
is given by the transcendental equation

σ − ln

(
σ

σ 0
c

)−m D

= 0

where D is used to represent the uniaxial compression elastic modulus
E(1 − ν)/(1 + ν)(1 − 2ν). What is the pore pressure in the sample at the
critical state? Discuss when the pore pressure will be positive and when
negative and explain why.



214 Work hardening and soil behaviour

7.3 Modified Cam Clay uses the yield surface described in (3.32). In the
context of the simple shear test described in this chapter, the equivalent
yield surface for Modified Cam Clay would be written as

τ − k
√

σ (2σc − σ ) = 0

Follow through the steps in equations (7.15)–(7.20) to show that for
Modified Cam Clay the simple shear stress–plastic strain response is given
by

tan−1
( τ

kσ

)
= kσ

4m
γ p + tan−1

( τ0

kσ

)
where τ0 = k

√
σ (2σ 0

c − σ ). Compare the Modified Cam Clay response
with that for Cam Clay.

7.4 For the fully three-dimensional response of Cam Clay we must replace the
mean and deviatoric stresses given in (7.22) by their three-dimensional
counterparts from Chapter 3,

p = 1

3
(σ1 + σ2 + σ3), q = 1√

2
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]

1/2

Use these definitions together with the yield function (3.31) and the as-
sociated flow rule to show that the principal plastic strain rates are given
by

ε̇
p
k = λ

∂ f

∂σk
= λ

[
3

2

σk − p

q
+ M

3
ln

(
p

pc

)]
, for k = 1, 2, or 3

Finally, use the above result to show that plastic volumetric and deviatoric
strain rates, defined as follows:

ė p = ε̇
p
1 + ε̇

p
2 + ε̇

p
3 , ξ̇ p =

√
2

3

[(
ε̇

p
1 − ε̇

p
2

)2 + (ε̇ p
2 − ε̇

p
3

)2 + (ε̇ p
3 − ε̇

p
1

)2]1/2

are given by the associated flow rule according to (cf. (7.15))

ė p = λ
∂ f

∂p
= λM ln

(
p

pc

)
and ξ̇ p = λ

∂ f

∂q
= λ

7.5 Investigate values for the ratio βs/βν for the geometric shapes that would
emerge from successively splitting a sphere into two similar parts. That is,
consider a sphere, hemisphere, half-hemisphere, quarter-hemisphere and
so on. In each case use the sphere radius for δ. Does βs/βν vary with the
angularity of the particle? What would be a typical value of βs/βν for a
beach sand? For a clay? (Is the radius the most appropriate value for δ?)



Appendix A
Non-Cartesian coordinate systems

The formulation of any specific boundary value problem in geomechanics is greatly
facilitated first by considering the specific attributes as they pertain to the geometry of
the domain of interest. Other aspects of the formulation and solution can also include
a consideration of features such as material symmetry and other geometrical features
of the loading and boundaries of the domain. For example, a two-dimensional plane
strain problem involving the surface loading of a halfspace region by a concentrated
line load (Figure A.1) is most conveniently formulated with reference to a plane polar
coordinate system, whereas the plane strain problem involving surface loading by a dis-
tributed loading (Figure A.2) is formulated most conveniently in reference to a Cartesian
coordinate system.

Also, referring to Figure A.3, the axisymmetric surface loading of a halfspace region
by a concentrated load is most conveniently described in relation to a system of spherical
polar coordinates, whereas the axisymmetric surface loading of a halfspace region is best
formulated in relation to a system of cylindrical polar coordinates (Figure A.4).

While in the examples just cited, the choice of the coordinate system is largely dictated
by the mode of loading, there are other situations where the geometrical boundaries
of the domain of interest have a decided influence on the choice of the coordinate
system. For example, the problem of a deeply embedded tunnel (Figure A.5) can be
most conveniently examined using a plane polar coordinate system, whereas that of a
shallow tunnel is most conveniently formulated with reference to a system of bi-polar
coordinates (Figure A.6).

The most commonly encountered coordinate systems in geomechanics are the rect-
angular Cartesian, plane polar and spherical polar coordinates. The objective of this
Appendix is to outline briefly the basic mathematical operations, which can be utilised
to express the various relationships between coordinate systems. These operations are
well documented in many standard texts in continuum mechanics and applied math-
ematics and the reader is referred to the references cited at the end of this Appendix
for further details. The primary aim here is to consider the appropriate expressions for
displacements, strains, stresses and equations of equilibrium referred to the rectangular
Cartesian coordinates as given and to develop a methodology whereby these results
can be expressed in an alternative orthogonal curvilinear coordinate system. Many such
orthogonal curvilinear coordinate systems are possible; here, however, purely for the
purposes of illustration, we shall select the cylindrical polar coordinate system as the
preferred choice.

215
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Figure A.1. Action of a line load on a halfspace – plane problem: polar coordinates.
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Figure A.2. Surface loading of a halfspace by a uniform strip load – plane problem:
Cartesian coordinates.
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Figure A.3. Concentrated surface loading of a halfspace.
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Figure A.4. Surface loading of a halfspace by a uniform circular load.
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Figure A.5. Deeply embedded cylindrical cavity in a geostatic stress field (γ = unit
weight of geomaterial; K0 = coefficient of earth pressure at rest).
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Figure A.6. Shallow tunnel in a halfspace region – bipolar coordinates.
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Figure A.7. Rectangular Cartesian and cylindrical polar coordinate systems.
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Figure A.8. Components of the displacement vector d in Cartesian and plane polar
coordinate systems.

We consider a system of rectangular Cartesian coordinates defined by (x, y, z) and the
associated cylindrical polar coordinate system (r, θ, z) (Figure A.7). The relationships
between the coordinates in the (x, y)-plane are as follows:

x = r cos θ ; y = r sin θ ; r 2 = x2 + y2 (A.1)

The displacements of a point referred to the rectangular Cartesian coordinate sys-
tem and referred to the coordinate axes x, y and z, are denoted by the components
u, v and w, respectively. The displacements of the same point but now referred
to the coordinate directions r, θ and z are denoted by ur , uθ and uz , respectively.
Furthermore, we assume that the displacements are considered to be positive in the
directions in which the coordinates increase. Consider a displacement vector d in
the (x, y)-plane, with components u and v in the x- and y-directions, respectively (Fig-
ure A.8). The same displacement vector d can be expressed in terms of ur and uθ referred
to the plane polar coordinates r and θ , respectively. From geometry, we have

ur = u cos θ + v sin θ ; uθ = −u sin θ + v cos θ (A.2)

with

uz = w (A.3)

We can combine (A.2) and (A.3) and represent these equations in the form of a matrix
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equation 


ur

uθ

uz


 =


 cos θ sin θ 0

−sin θ cos θ 0
0 0 1






u
v
w


 = [H]T




u
v
w


 (A.4)

This is the straightforward transformation rule for the displacement vector, where the
transformation matrix [H] is obtained by considering the ordered array of direction
cosines between the (x, y, z) and (r, θ, z) axes, i.e.

r θ z

[H] =
x
y
z


cos(x0r ) cos(x0θ ) cos(x0z)

cos(y0r ) cos(y0θ ) cos(y0z)
cos(z0r ) cos(z0θ) cos(z0z)


 (A.5)

It is quite important to note the ordering sequence and the positioning of the original
coordinate system and the new coordinate system, as indicated in (A.5), when con-
structing the transformation matrix, [H]. If the positioning of the coordinate systems is
interchanged for the construction of the transformation matrix (i.e. the (x, y, z) coordi-
nates are now positioned to occupy the column directions and the (r, θ, z) coordinates
are positioned to occupy the row directions), then we obtain a different matrix, say, [B]
and, of course, [H]T = [B] or [H] = [B]T . It is also important to note that the coordinate
systems under discussion are orthogonal coordinate systems and that

[H]T [H] = [B] [B]T = [I]; [H] [H]T = [B]T [B] = [I] (A.6)

where [I] is the identity or unit matrix. We have explained the transformation rule for the
displacement components by considering a specific coordinate system; the procedure
can, of course, be applied to any two sets of orthogonal coordinate systems, curvilinear
or otherwise.

The next step involves the kinematics of deformation as described by the infinitesimal
strains, the matrix of which referred to the Cartesian components is denoted by [ε]. We
have, from (1.5) and (1.7),

[ε] =

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz




=
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1
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∂v

∂z
+ ∂w
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= [ε]T (A.7)

The objective here is to express the components of strains at a point referred to the
rectangular Cartesian coordinate system in reference to the cylindrical polar coordinate
system, which not only makes use of the components of the displacement vector referred
to the cylindrical polar coordinate system, but also in terms of the coordinates (r, θ, z)
and the derivatives of these coordinates. There are many ways in which this can be
accomplished. One obvious possibility is to obtain a geometrical interpretation of the
strain components referred to the cylindrical polar coordinate system in terms of the
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Figure A.9. Geometric representation of small strain in polar coordinates.

displacement components (ur , uθ , uz), by considering the deformations of an element
in the shape of a segment of an annular region (Figure A.9). The visualization of these
deformations in their entirety is a difficult exercise. The customary approach is to treat
the deformations by considering the deformations of a sector that corresponds to an
element in the (r, θ )-plane and then to consider separately the deformations referred to
the (r, z)- and (θ, z)-planes. Even this is not a trivial exercise in both graphical visual-
ization and calculation. The description of the procedure applicable to the deformations
in the (r, θ )-plane is given in the references cited at the end of this Appendix.

An alternative but more expedient approach is to take full advantage of mathematical
methods available through consideration of operations in linear algebra and differential
calculus. To proceed with such manipulations it is necessary, at the outset, to identify
a matrix of strains, which are referred to the cylindrical polar coordinate system. Let



Non-Cartesian coordinate systems 221

us denote this strain matrix by [εcp], with the superscript indicating its appropriate
reference. Let us denote the components of this matrix as follows:

[εcp] =

εrr εrθ εr z

εθr εθθ εθ z

εzr εzθ εzz


 = [εcp]T (A.8)

The property of symmetry of the strain matrix in the cylindrical polar coordinate system
is a direct consequence of the symmetry of the strain matrix in the rectangular Cartesian
coordinate system, since we are describing the state of strain at the same location.
Now let us treat the problem of expressing the components of [εcp] in terms of the
components of [ε] purely as a matrix transformation where the [H] matrix is defined by
(A.5). Accordingly, we obtain the relationships

[εcp] = [H]T [ε] [H] or [εcp] = [B] [ε] [B]T (A.9)

We can evaluate the components of the matrix of strains referred to the cylindrical polar
coordinate system in terms of the components in the rectangular Cartesian coordinate
system. For the purposes of illustration we note that

εrr = εxx cos2 θ + εyy sin2 θ + 2εxy sin θ cos θ

εθθ = εxx sin2 θ + εyy cos2 θ − 2εxy sin θ cos θ

εrθ = (εyy − εxx ) sin θ cos θ + εxy(cos2 θ − sin2 θ )
...

(A.10)

etc., which could be identified as the Mohr transformation of the strains in the plane.
Now we need to express the expressions for strain components εxx , εyy , etc., in terms
of the displacement components ur , uθ , etc., and the derivatives with respect to the
variables r, θ and z. The procedure can be adequately illustrated by simply examining
the operations applicable to transform the result for εrr .

Considering the fact that x = x(r, θ ) and y = y(r, θ ), we have

∂

∂x
= ∂

∂r

∂r

∂x
+ ∂

∂θ

∂θ

∂x
;

∂

∂y
= ∂

∂r

∂r

∂y
+ ∂

∂θ

∂θ

∂y
(A.11)

From (A.1), we have

∂r

∂x
= x

r
= cos θ ;

∂r

∂y
= y

r
= sin θ

∂θ

∂x
= − y

r 2
= − sin θ

r
;

∂θ

∂y
= x

r 2
= cos θ

r
(A.12)

Combining (A.11) and (A.12) gives

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
;

∂

∂y
= sin θ

∂

∂r
+ cos θ

r

∂

∂θ
(A.13)

Also from (A.2) we obtain

u = ur cos θ − uθ sin θ ; v = ur sin θ + uθ cos θ (A.14)
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From the first equation of (A.10) we have

εrr = cos2 θ

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
(ur cos θ − uθ sin θ )

+ sin2 θ

(
sin θ

∂

∂r
+ cos θ

r

∂

∂θ

)
(ur sin θ + uθ cos θ)

+ sin θ cos θ

(
sin θ

∂

∂r
+ cos θ

r

∂

∂θ

)
(ur cos θ − uθ sin θ )

+ sin θ cos θ

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
(ur sin θ + uθ cos θ ) (A.15)

Evaluating this expression it can be shown that

εrr = ∂ur

∂r
(A.16)

This procedure can be repeated to determine the remaining components of the strain
matrix referred to the cylindrical polar coordinate system. The process is tedious,
but the effort and the drudgery can be reduced significantly by employing symbolic
mathematical manipulation techniques offered by codes such as MATHEMATICA®,
MAPLE® or MACSYMA®. We can now summarise the results generated by the
above procedures to develop the strain matrix, which is referred to the cylindrical polar
coordinate system, i.e.

[εcp] =
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∂uz
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∂uz
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= [εcp]T (A.17)

A further possibility is to develop the expressions for the strain components by making
use of the result given by (1.4), which is already in a form applicable to any coordinate
system. This is, of course, easy in principle but requires some familiarity with vector
calculus and associated operations applicable to generalized curvilinear coordinates. It
is instructive to briefly outline the salient aspects of this procedure and, again, the reader
is referred to the texts cited at the end of this Appendix for a more in-depth treatment.

Consider a point P with rectangular Cartesian coordinates (x, y, z) and any curvilinear
coordinate system (α1, α2, α3) that admits a representation

x = x(α1, α2, α3); y = y(α1, α2, α3); z = z(α1, α2, α3) (A.18)

If we hold α2 and α3 constant, then as P varies, the position vector � = x i + yj + zk
describes the curve called the α1 coordinate through P . Similarly, we can define the
coordinate curves α2 and α3 through P . The tangent vectors to the coordinate curves are
given by the partial derivatives ∂�/∂α1, ∂�/∂α2 and ∂�/∂α3. We can define the unit
tangent vectors e1, e2 and e3 applicable to the curves α1, α2 and α3 such that

∂�
∂α1

= h1e1;
∂�
∂α2

= h2e2;
∂�
∂α3

= h3e3 (A.19)
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where h1, h2 and h3 are defined as the scale factors

hn =
∣∣∣∣ ∂�
∂αn

∣∣∣∣ ; n = 1, 2, 3 (A.20)

If e1, e2 and e3 are orthogonal then the curvilinear coordinate system is said to be
orthogonal. The advantage of this formulation is that we can also define an element of
arc length ds in terms of these scale factors, such that

(ds)2 = d� · d� (A.21)

where

d� = ∂�
∂α1

dα1 + ∂�
∂α2

dα2 + ∂�
∂α3

dα3 = h1dα1e1 + h2dα2e2 + h3dα3e3 (A.22)

or

(ds)2 = h2
1(dα1)2 + h2

2(dα2)2 + h2
3(dα3)2 (A.23)

Avoiding details it can be shown that the gradient operator takes the form

∇ = 1

h1
e1

∂

∂α1
+ 1

h2
e2

∂

∂α2
+ 1

h3
e3

∂

∂α3
(A.24)

In the special case of the cylindrical polar coordinate system

hr = 1; hθ = r ; hz = 1

er = i r ; eθ = i θ ; ez = i z (A.25)

We need to observe the fact that there are also the derivatives of the unit base vectors;
for the cylindrical polar coordinate system the only non-zero ones are

∂er

∂θ
= eθ ;

∂eθ

∂θ
= −er (A.26)

Let us now consider the operation designated by ∇u with the understanding that this
now signifies the gradient of a vector which gives rise to a dyadic. The mathematical
physicist Josiah Willard Gibbs is credited with the introduction of the convention, which
can be used to display the elements of the operation in terms of components that have
two unit vectors associated with each component, i.e.

∇u = 1

hr
i r

∂

∂r
(ur i r + uθ i θ + uzi z) + 1

hθ

i θ

∂

∂θ
(ur i r + uθ i θ + uzi z)

+ 1

hz
i z

∂

∂z
(ur i r + uθ i θ + uzi z) (A.27)

Performing the operation, we obtain

∇u =
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∂uθ
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(
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)
i zi z (A.28)

The ordering of the unit vectors is quite important, and the conjugate dyadic (∇u)T can
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also be defined in the same way. We can now construct an array or matrix of physical
components of the gradient of the displacement in such a way that ∇u is signified by

∇u =
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) (
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) (
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(A.29)

with

u∇ = (∇u)T (A.30)

It can be easily verified that using the result (A.29) and the definition for the strain matrix
defined by

[εcp] = 1

2
[∇u + (∇u)T ] (A.31)

one obtains a result that exactly corresponds to the expression (A.17).
Let us now consider the equations of equilibrium. Take, for example, the first of

equations (1.33), where

∂σxx

∂x
+ ∂σxy

∂y
+ ∂σxz

∂z
− bx = 0 (A.32)

It is a relatively easy matter first to obtain the expressions for the stress components
σxx , σxy and σxz in terms of their cylindrical polar coordinate equivalents and to fol-
low this up by converting the partial derivatives of the stress components, which are
expressed in terms of their Cartesian components, to their cylindrical polar equivalents.
This is a perfectly valid operation, which will certainly give a mathematically correct
alternative result for the equation of equilibrium in the x-direction in terms of σrr ,
σrθ , σr z, etc., and r, θand z. In doing these operations we have, in fact, gained nothing.
This is of little value when dealing with problems associated with the cylindrical polar
coordinate system, where the expressions for traction boundary conditions and prob-
lem formulations in general are usually expressed in terms of radial, circumferential
and axial directions corresponding to coordinate directions r, θ and z, respectively. For
this reason, we have to resort to alternative procedures. The easiest is to consider the
variation of stresses over a segment of an annular region (Figure A.10). Considering the
equilibrium of forces in the radial direction we have[(

σrr + ∂σrr

∂r
dr

)
(r + dr ) − σrr r

]
dθ dz −

[
σθθ + ∂σθθ

∂θ
dθ + σθθ

]

× dr dz sin

(
dθ

2

)
+
[
σrθ + ∂σrθ

∂θ
dθ − σrθ

]
dr dz cos

(
dθ

2

)

+
[
σr z + ∂σr z

∂z
dz − σr z

]
r dr dθ − brr dr dθ dz = 0 (A.33)

By making the approximation, sin(dθ/2) ≈ dθ/2 and cos(dθ/2) ≈ 1, and noting that
since the elemental volume considered is arbitrary and non-zero, (A.33) reduces to

∂σrr

∂r
+ 1

r

∂σrθ

∂r
+ σrr − σθθ

r
+ ∂σr z

∂z
− br = 0 (A.34)
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Figure A.10. Stresses acting on an element referred to a cylindrical coordinate system.

We can repeat the procedure to develop the relevant equations of equilibrium appropriate
for the θ - and z-directions. This is left as an exercise for the reader.

The alternative to this procedure is to utilise the general vector equation for static
equilibrium

∇ · σ − b = 0 (A.35)

and to convert this to its counterpart applicable to the cylindrical polar coordinate system.
We note that, in (A.35), σ refers to the stress dyadic appropriate for the cylindrical polar
coordinate system, i.e.

σ = σrr i r i r + σrθ i r i θ + σr zi r i z + σθr i θ i r + σθθ i θ i θ + σθ zi θ i z

+ σzr i zi r + σzθ i zi θ + σzzi zi z (A.36)

with the matrix of physical components of σ satisfying the requirement σ = σT . We
can evaluate the divergence by noting that certain derivatives of the base vectors are
non-zero and that the divergence of a dyadic is a vector (see, e.g., (A.26)). This gives

∇ · σ − b =
[

∂σrr

∂r
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r
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∂θ
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r
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]
i r
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∂σθθ

∂θ
+ σrθ

r
+ ∂σθ z
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]
i θ

+
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∂σzz
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+ ∂σr z

∂r
+ σzr

r
+ 1

r

∂σθ z

∂θ

]
i z − b = 0 (A.37)

As can be seen, the three equations of equilibrium in the three orthogonal coordinate
directions r, θ and z are present in the form of the relevant vector components.

Other equations such as the constitutive equations applicable to elastic and plas-
tic behaviour of the material, compatibility equations and boundary conditions can be
obtained similarly by considering the general form of the equations applicable to the
cylindrical polar coordinate system. In most cases, the equations simply transform in a
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straightforward manner, because of the orthogonality of the coordinate systems. For
example, the equations of elasticity for an isotropic elastic solid, expressed in the cylin-
drical polar coordinate system take the form

Eεrr = σrr − ν(σθθ + σzz)

Eεθθ = σθθ − ν(σrr + σzz)

Eεzz = σzz − ν(σθθ + σrr )

2Gεrθ = σrθ ; 2Gεθ z = σθ z ; 2Gεr z = σr z

(A.38)

which is identical in form to the equations of elasticity in rectangular Cartesian coordi-
nates. With regard to yield criteria, the representation in terms of invariants assures their
development in terms of the appropriate components of the stresses, which are referred
to the cylindrical polar coordinate system. For example, for axial symmetry, the stress
matrix referred to the cylindrical polar coordinate system is

σ =

σrr 0 σr z

0 σθθ 0
σr z 0 σzz


 (A.39)

and the appropriate form of the Coulomb failure criterion for a purely granular material
where either σrr > σθθ > σzz or σzz > σθθ > σrr takes the form

f (σ) = (σrr − σzz)
2 + (σrr + σzz)

2 sin2 φ + 4σ 2
r z = 0 (A.40)

and the associative flow rule (4.12) gives the plastic strain rate components as

ε̇ p =




ε̇ p
rr 0 ε̇ p

rz

0 ε̇
p
θθ 0

ε̇ p
rz 0 ε̇ p

zz




= 2λ




{
σrr (1 + sin2 φ)

−σzz(1 − sin2 φ)

}
0 4σr z

0 0 0

4σr z 0

{
σzz(1 + sin2 φ)

−σrr (1 − sin2 φ)

}




(A.41)

Expressions similar to (A.41) can be obtained for other yield criteria with lesser con-
straints than those invoked in the above due to the assumptions of axial symmetry and
the consideration of a relatively simple form of a failure criterion applicable to purely
granular material with no dependence on the intermediate principal stress.
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Appendix B
Mohr circles

The graphical construction for the representation of the state of stress at a point within
a continuum region is generally attributed to the German engineer Otto Christian Mohr.
Although the use of graphical techniques in structural and solid mechanics has been
an important area of activity both for engineering calculations and stress analysis, par-
ticularly in the eighteenth and nineteenth centuries (see, e.g., Todhunter and Pearson
(1886, 1893) and Timoshenko (1953)), the contributions of Karl Culmann and Otto
Mohr to the development of this area are regarded as being particularly significant.
Despite the passage of time these graphical constructions have continued to serve
as efficient educational tools for the visualisation of difficult concepts related to the
representation of three-dimensional states of stress, particularly in relation to the de-
scription of failure states in materials. The fact that the techniques developed in rela-
tion to the stress state at a point that can be represented in terms of a stress matrix
of rank two or a second-order tensor implies that the procedures are equally appli-
cable to the description of other properties and states in continua, which can be de-
scribed in a similar manner. Examples include the description of moments of inertia of
solids, flexural characteristics of plates and the hydraulic conductivity characteristics
of porous media, etc. The purpose of this Appendix is to present a brief outline of the
significant features of Mohr circles and to develop the basic equations applicable to
the three-dimensional graphical representation of the stress state at a point. The nam-
ing of the graphical procedures for the representation of the state of stress at a point,
in honour of Otto Mohr is very much in recognition of his formal development of the
procedures through archival publications. There are earlier references to techniques re-
sembling a graphical method in the work of Karl Culmann, although they are in a form
that is perhaps less well developed than the presentations of Mohr.

As a prelude to the development of the relevant equations, we first consider Cauchy’s
relationship, which deals with the stress state at a point within the medium and the
traction vectors that act on an arbitrary plane either through or located at an infinitesi-
mal distance from the point. Before doing this it is worthwhile making some remarks
with regard to sign conventions that are used to identify particular stress states. From
an engineer’s perspective, sign conventions are crucial to identifying the ‘sense’ of
stress components accurately. This is clearly not the case if we were to treat the stress
state as a ‘matrix’ or a ‘tensor’, which is amenable to purely mathematical opera-
tions. In this context we are not concerned as to whether the normal stresses are
compressive or tensile or whether the shear stresses are positive or negative. These
are simply elements of a matrix or a tensor; we can transform the matrix, calculate
its eigenvalues and perform all the legitimate operations of linear algebra without ever
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worrying about the physical significance of the manipulations. Also, for example when
a stress transformation rule such as

[σcp] = [H]T [σ][H] (B.1)

which involves the transformation of the stress matrix from the Cartesian to the cylin-
drical polar equivalent, the sign convention adopted in the definition of the stress matrix
referred to the rectangular Cartesian coordinate system, [σ], simply translates to the
definition of the sign convention for the stress matrix �σcp� referred to the cylindrical
polar coordinate system. There are of course ‘bonuses’ that arise from these mathemat-
ical operations, such as the fact that the eigenvalues of a symmetric matrix must always
be real, which straight away translates to the deduction that the principal stresses must
always be real, but this is a secondary issue. From an engineering perspective, sign
conventions are crucial to the proper physical understanding of the ‘mechanics’ of the
manipulations.

Sign conventions for the description of the stresses are many and varied and they
are, at the same time, a vexation to expert and novice alike. There are many possible
sign conventions that are found in the literature. The fair advice is to suggest that if
a particular sign convention works for you, by all means use it. The purpose of this
commentary is to outline the limitations of some commonly adopted sign conventions
and to suggest a sign convention that will be user-friendly in most circumstances. First,
let us consider the sign convention normally associated with the axial stresses. In solid
mechanics in general, tensile stresses are usually considered to be positive whereas in
geomechanics, and in this text in particular, compressive stresses are considered to be
positive. This is not a major area of concern since we can associate some differences in
the physical actions that will result from the applications of either a tensile stress or a
compressive stress. Line elements can either extend or shorten depending on the nature
of the axial stress. What about the shear stresses? The usual procedure is to consider first
the shear stress acting on a surface of interest and to select a point just outside the region.
If the shear stresses cause clockwise moments then, in solid mechanics, the shear stresses
are considered to be positive. In geomechanics counterclockwise replaces clockwise in
their definition (Figure B.1a). (In doing this we have also, by deduction, introduced the
definition of a negative shear stress.) Performing a simple operation, however, unravels
this definition. Let us draw Figure B.1(a) on an acetate transparency and look at the figure
from the opposite side. The view will correspond to that shown in Figure B.1(b). We now
have the same shear stress but it appears to have a negative magnitude. Regrettably, this
definition of the shear stress becomes dependent on the point of view of the observer.
The previous definition is perfectly acceptable so long as you do not move outside of
the plane of the paper. This is obviously somewhat restrictive when three-dimensional

(a)                                    (b)

A

B

τ

α

A

B

τ

α

Figure B.1. Sign convention for shear stresses based on a clockwise and a counterclock-
wise sense of the moment induced by the shear stress about an exterior point.
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Figure B.2. Sign convention for normal stresses and shear stresses in association with
coordinate directions and alignment of unit normals.

states of stress are encountered, and the dependence on a change in the perspective only
compounds the problem. Naturally, there are means of overcoming this deficiency and
the simplest is to attach a frame of reference to the definition of the sign convention. For
example, consider the definition of tensile stresses as being positive in the context of
solid mechanics. The appropriate definition of a positive tensile stress is one in which
the traction vector acts in a positive (or negative) coordinate direction and on planes the
outward normal of which is also oriented in a positive (or negative) coordinate direction.
A similar definition can be adopted when defining a positive shear stress consistent with
this definition of a positive tensile stress. Referring to Figure B.2(a), all the stresses
shown there are positive stresses in the context of solid mechanics. We can draw Figure
B.2(a) on an acetate transparency and look through from the reverse side and still all the
stresses will be positive according to our definition. We have eliminated the observer
dependence by attaching a system of coordinates to the element, the positive directions
of which will remain observer invariant. In the same way, we can now proceed to define
a consistent set of definitions to account for the geomechanics convention of considering
compressive stresses as being positive. So, the definition of a positive compressive or
shear stress is one where the traction vector acts in the negative (or positive) coordinate
direction and on planes the outward normal to which acts in the positive (or negative)
direction. Referring to Figure B.2(b), all the stresses shown there are considered to be
positive stresses in the context of geomechanics. As has been demonstrated, a certain
consistency is necessary in assigning a sign convention for the stress components defining
the state of stress at a point. Several such possibilities exist and the prudent option is to
select one with the minimum number of limitations.

With the above comments in mind let us restrict our attention to a system of rectangular
Cartesian coordinates and a stress state defined by

[σ] =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


 (B.2)

where in the absence of body couples, [σ] = [σ]T , and the superscript refers to the
transpose.

The stress vectors on planes normal to the axes x, y and z (Figure B.3) are given by

Tx = σxx i x + σxyi y + σxzi z (B.3)

Ty = σyx i x + σyyi y + σyzi z (B.4)

Tz = σzx i x + σzyi y + σzzi z (B.5)
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Figure B.3. Traction vectors on a cuboidal element encompassing location P .
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Figure B.4. Traction vectors on a tetrahedral element located at an infinitesimal distance
from P .

where i x , i y and i z are the unit vectors in the x-, y- and z-directions, respectively. Let
us now consider an oblique plane S located at an infinitesimal distance from point P
(Figure B.4) such that the unit normal to the plane ñ is defined by

ñ = ñx i x + ñ yi y + ñzi z (B.6)

where the components of ñ in the x-, y- and z-directions are implied. We can consider
equilibrium of forces acting on the tetrahedral element with infinitesimal dimensions
and show that (see, e.g., Davis and Selvadurai 1996)

Tñ = ñx T x + ñ y T y + ñz T z (B.7)

Upon substituting (B.3)–(B.5) in (B.7) we have

Tñ = (ñxσxx + ñ yσyx + ñzσzx ) i x + (ñxσxy + ñ yσyy + ñzσzy) i y

+ (ñxσxz + ñ yσyz + ñzσzz) i z (B.8)

Note that, although the stress matrix is symmetric, we will retain the designations for the
components of the stress matrix defined by (B.2) primarily to illustrate the development
of a sequence. We can now define the stress vector Tñ on the oblique plane in terms of
projections along the x, y and z axes such that

Tñ = σñx i x + σñ yi y + σñzi z (B.9)
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where the following scalar definitions apply:

σñx = ñxσxx + ñ yσyx + ñzσzx = ñασαx (B.10)

σñ y = ñxσyx + ñ yσyy + ñzσyz = ñασαy (B.11)

σñz = ñxσxz + ñ yσyz + ñzσzz = ñασαz (B.12)

In these equations a summation takes place over the repeated α indices. Equations
(B.10)–(B.12) now define the components of the stress at the point P on an oblique plane
S passing through P , the normal of which is defined by ñ, using the six components of
the symmetric stress matrix [σ]. It is evident that when the plane S is located directly at
the point P , the relationships (B.10)–(B.12) are, in fact, the traction boundary conditions
given by

T̃ = ñ[σ] or, using the summation convention, T̃i = ñ jσi j (B.13)

There are two other results that can be deduced from expressions (B.10)–(B.12); we can
express the components of the traction as a resultant of a stress normal to the oblique
plane σññ and a shear stress tangent the oblique plane, σñt̃ . The normal stress to the plane
is given by

σññ = ñ · Tñ = ñ2
xσxx + ñ2

yσyy + ñ2
zσzz + 2ñx ñ yσxy + 2ñx ñzσxz + 2ñ y ñzσyz (B.14)

Similarly, we can evaluate the shear component of the resultant shear traction on the
oblique plane σñt̃ by considering its relationship between the Euclidean norm of the
vector Tñ and σññ , which takes the form

‖Tñ‖2 = σ 2
ññ + σ 2

ñt̃ (B.15)

Evaluating (B.15) we have

σ 2
ñt̃ = σ 2

ñx + σ 2
ñ y + σ 2

ñz − σ 2
ññ (B.16)

We can now proceed to discuss the graphical representations associated with Mohr
circles of stress. While several aspects of these graphical representations can be discussed
we shall restrict attention to the following: the first deals with the use of Mohr circles
as a graphical interpretation of the transformation rule applicable to stresses, strains
and other dependent variables encountered in geomechanics and the second deals with
the use of Mohr circles as a means of identifying admissible states of stress acting on
arbitrary planes located through a point at which the stress matrix is defined in terms
of the principal components. For the discussion of the first aspect of Mohr circles,
it is convenient to further restrict one’s attention to a two-dimensional state of stress
characterized by a state of plane stress defined by

[σ] =
[
σxx σxy 0
σyx σyy 0
0 0 0

]
(B.17)

We consider this particular state of stress, which may now be referred to a new set of
rectangular Cartesian coordinates (X, Y, Z ), obtained by rotating the (x, y, z) coordi-
nate system about the z-axis by an angle θ in the anticlockwise direction (Figure B.5).
Following developments given in Appendix A, the transformation matrix [H] is given
by

[H] =
[

cos θ −sin θ 0
sin θ cos θ 0

0 0 1

]
(B.18)
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Figure B.5. State of stress and rotation of the reference coordinate system.
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Figure B.6. Stresses on an oblique plane.

The stress matrix [Σ] referred to the rotated coordinate system is given by

[Σ] =
[
σX X σXY 0
σY X σY Y 0

0 0 0

]
= [H]T [σ][H] (B.19)

The non-zero components of (B.19) are given by

σX X = σxx cos2 θ + σyy sin2 θ + 2σxy sin θ cos θ (B.20)

σY Y = σxx sin2 θ + σyy cos2 θ − 2σxy sin θ cos θ (B.21)

σXY = (σyy − σxx ) sin θ cos θ + (cos2 θ − sin2 θ )σxy (B.22)

We can, for example, consider these expressions when θ = 0, which gives

σX X = σxx ; σY Y = σyy ; σXY = σxy (B.23)

Similarly when θ = π/2, (B.20)–(B.22) give

σX X = σyy ; σY Y = σxx ; σXY = −σxy (B.24)

the negative sign of the shear stress indicating that the positive shear stress acts in a
direction opposite to that indicated by σXY (see, e.g., Figure B.6).
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Mohr circles in two dimensions

Since the description of the state of stress referred to a coordinate system is dependent
on the orientation of that coordinate system, we can choose an orientation in the (x, y, z)
configuration such that the matrix [σ] corresponds to a principal state of stress with

[σ] =
[
σ1 0 0
0 σ2 0
0 0 0

]
(B.25)

where the convention that σ1 > σ2 is used and both stresses σ1 and σ2 are assumed to
be compressive. Using this result in (B.20)–(B.22) we obtain

σX X = 1

2
(σ1 + σ2) + 1

2
(σ1 − σ2) cos 2θ (B.26)

σY Y = 1

2
(σ1 + σ2) − 1

2
(σ1 − σ2) cos 2θ (B.27)

σXY = −1

2
(σ1 − σ2) sin 2θ (B.28)

If we interpret these transformed stress components in relation to the new set of axes
(X, Y, Z ), we note that the stress σX X is the normal stress acting along the X -direction
and σXY is the positive shear stress acting on the same plane. Similar interpretations
can be given to the stresses σY Y and σXY (Figure B.7). The negative sign for the shear
stress σXY is consistent with the fact that since σ1 > σ2, the actual direction of σXY

will be opposite to that indicated by the positive sign convention. The magnitudes of
the stresses σX X , σY Y and σXY will thus vary with the choice of the angle of orientation
θ . Therefore this variation in the magnitudes of the components of the stress matrix in
the transformed configuration can be illustrated graphically by constructing a diagram
in which either the set σX X and σXY or σY Y and σXY are taken as coordinates. To obtain
such a relationship we square (B.26) and (B.28); the addition of these gives[

σX X − 1

2
(σ1 + σ2)

]2

+ (σXY )2 = 1

2
(σ1 − σ2)2 (B.29)

This represents the equation of a circle in the σX X vs. σXY plane with its centre at
( 1

2 (σ1 + σ2), 0) and radius 1
2 (σ1 − σ2). This circle is referred to as the Mohr circle

(Figure B.8).
At this point we need to talk about sign conventions once again. There is no difficulty

with the normal stresses σX X and σY Y . Compressive normal stresses are taken as positive
in geomechanics. But another question arises concerning the shear stress σXY . In the

σ1 σ1
σ1 σ1σXY

σXY
σXX

σYY

σ2 σ2

σ2 σ2

θ θ
x x

y y

X X

Y Y

(a) (b)

Figure B.7. Transformation of stresses for the principal plane stress state; σ1 ≥ σ2.
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Figure B.8. The Mohr circle.

context of our user-friendly sign convention, σXY is positive when it acts in the negative
Y-direction on the surface whose outward normal points in the positive X -direction, as
shown in Figure B.6. The exact same stress acts on the surface with normal pointing in
the Y-direction as shown in the same figure. Nevertheless, when we look at the Mohr
circle in Figure B.8 it appears that the two shear stresses have opposite signs. This seems
to pose a serious contradiction. In fact, it is not serious; it is simply the result of the fact
that σXY enters (B.29) as a squared quantity. The equation cannot distinguish between
positive and negative shear stress and the resulting Mohr diagram cannot either.

It will still be useful, however, to be able to interpret the sign of the shear stress strictly
within the context of Mohr circles. We will see where the utility arises in a moment,
but we must first return to our original sign convention. Only for the purpose of Mohr
circles, we will interpret the sign of the shear stress as follows. If the shear stress induces
a counterclockwise moment about the point P in Figure B.1(a), then we will plot the
stress on the Mohr diagram as positive. If a clockwise moment is indicated then we plot
the stress as negative. Looking at Figure B.7(a) we see that σXY there would be plotted
as positive on a Mohr diagram. In Figure B.7(b), σXY would be plotted as negative. This
convention gives exactly the result shown in Figure B.8. Note that this applies only for
interpretation of the Mohr diagram.

In one sense this is all a storm in a teacup. The sign of the shear stress does not have a
physical significance similar to compressive and tensile normal stress. If a material fails
due to excessive shear stress it makes little difference whether that stress was positive
of negative; failure is just as inconvenient in either case. But there is one more feature
we can associate with the Mohr diagram that makes it useful for us to introduce our
special sign convention. That is the existence of a unique point on the circumference of
any Mohr circle called the pole. The concept of the pole, sometimes called the origin of
planes, is especially useful in developing a graphical understanding of any stress state,
and we must use a special sign convention to make it work.

To understand the concept of the pole we begin by noting from (B.26) and (B.28) that
the stress point (σX X , σXY ) makes a central angle of 2θ with the horizontal axis in Figure
B.8. If we alter θ the stress point moves around the circumference of the circle to some
new point. Let (σX X , σXY ) and (σ̄X X , σ̄XY ) be two stress states acting on two surfaces. If
the orientations of the surfaces differ by an angle α, then the central angle on the Mohr
circle between two stress points will be 2α as shown in Figure B.9. This doubling of
angle applies for any surfaces we wish to consider. Next, suppose we draw on the Mohr
diagram two lines: one line through the point (σX X , σXY ) oriented parallel to the surface
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Figure B.9. Location of the pole on the Mohr circle circumference.

on which those stresses act and the other through (σ̄X X , σ̄XY ) oriented parallel to the
surface on which the second stress state acts. It is a fact that the two lines will always
intersect at a point on the circumference of the circle. This follows from a theorem of
geometry stating that the central angle between any two points on a circle will always
be twice the corresponding inscribed angle. Note that the angle between our two lines
must be α since they were drawn parallel to the two surfaces. Then on the Mohr diagram
the two lines must intersect at some point on the circumference of the circle. We call
this point the pole, denoted by OP . These ideas are all summarised in Figure B.9.

Note that the pole is a unique point. The two surfaces used in the discussion above were
totally arbitrary and therefore every line drawn through the stress point corresponding to
any surface will intersect the circle at the pole. Conversely, any line drawn through the
pole must intersect the circle at the stress state which acts on the surface parallel to that
line. This is an extremely powerful tool for visualisation of the stresses associated with
any surface. Once the location of the pole is determined, the stress on any surface is
found by simply drawing a line parallel to that surface. We can find the pole so long as
we know the stresses acting on a surface of known orientation. In all of this the special
sign convention concerning shear stress applies. Stress points on the upper half of any
Mohr circle imply a positive shear stress producing a counterclockwise moment about
the point nearby the surface.

Mohr circles in three dimensions

We can extend Mohr circle construction to three dimensions. As with the two-
dimensional case the procedure is most conveniently demonstrated using the principal
stress state where σ1 is the maximum principal stress, σ2 is the intermediate principal
stress and σ3 is the minimum principal stress with the result, σ1 > σ2 > σ3. The result
(B.14) concerning the normal stress acting on an oblique plane and referred to a gen-
eralized state of stress is equally valid for the principal stress state. If we consider the
principal stress state shown in Figure B.10 and consider the obliquely oriented plane
with a unit normal having components

n = n1 i1 + n2 i2 + n3 i3 (B.30)

where the unit base vectors in the principal directions are implied, the normal stress
acting on the oblique plane is given by

σnn = n2
1σ1 + n2

2σ2 + n2
3σ3 (B.31)
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Figure B.10. Traction vectors on an oblique plane referred to the principal stress space.

We can also use the reduced version of the result (B.16) to define the shear stress that
acts on the oblique plane. This gives

σ 2
nt = (n1σ1)2 + (n2σ2)2 + (n3σ3)2 − (n2

1σ1 + n2
2σ2 + n2

3σ31

)2
(B.32)

Using both (B.31) and (B.32) we can obtain two equations

σ 2
nn + σ 2

nt = (n1σ1)2 + (n2σ2)2 + (n3σ3)2 (B.33)

(σnn)2 = (
n2

1σ1 + n2
2σ2 + n2

3σ3

)2
(B.34)

which can be combined with the consistency condition for the direction cosines,

n2
1 + n2

2 + n2
3 = 1 (B.35)

to give a set of equations for the squares of the three direction cosines. The set of
equations (B.33)–(B.35) has a non-trivial solution, which can be evaluated using sym-
bolic mathematical manipulation programs such as MATHEMATICA®, MACSYMA®

or MAPLE®. Imposing the constraints

n2
1 ≥ 0; n2

2 ≥ 0; n2
3 ≥ 0 (B.36)

The relevant solutions are

n2
1 = σ 2

nt + (σnn − σ2)(σnn − σ3)

(σ1 − σ2)(σ1 − σ3)
≥ 0 (B.37)

n2
2 = σ 2

nt + (σnn − σ1)(σnn − σ3)

(σ2 − σ3)(σ2 − σ1)
≥ 0 (B.38)

n2
3 = σ 2

nt + (σnn − σ1)(σnn − σ2)

(σ3 − σ1)(σ3 − σ2)
≥ 0 (B.39)

Since the principal stresses are in a ranked order, the equations (B.37)–(B.39) are equiv-
alent to

σ 2
nt + (σnn − σ2)(σnn − σ3) ≥ 0 (B.40)

σ 2
nt + (σnn − σ1)(σnn − σ3) ≤ 0 (B.41)

σ 2
nt + (σnn − σ1)(σnn − σ2) ≥ 0 (B.42)

and the different directions of the inequalities should be noted. We can rewrite
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(B.40)–(B.42) in the following forms:

σ 2
nt +

[
σnn − (σ2 + σ3)

2

]2

≥
[

1

2
(σ2 − σ3)

]2

(B.43)

σ 2
nt +

[
σnn − (σ1 + σ3)

2

]2

≤
[

1

2
(σ3 − σ1)

]2

(B.44)

σ 2
nt +

[
σnn − (σ1 + σ2)

2

]2

≥
[

1

2
(σ1 − σ2)

]2

(B.45)

The similarity between equation (B.29) and equations (B.43)–(B.45) is abundantly ev-
ident, the only difference being the inequalities that appear in the latter equations.
How can we interpret the result? We can do so graphically and assign σnn as the
axis corresponding to σX X and σnt as the axis corresponding to σXY used in the Mohr
circle plot shown in Figure B.8. For the sake of convenience let us restrict our attention
only to the region where both σnn and σnt are considered to be positive. We can plot
the circular boundaries defined by the three Mohr circles (B.43)–(B.45) and identify the
region to which the inequalities apply. This is shown in Figure B.11. Every combination
of σnn and σnt shown in the shaded area is an admissible state of stress in a general-
ized sense. This is a real bonus when it comes to identifying states of stress that are
responsible for failure of materials. For example, if failure of the material is governed
by the maximum shear stress, the three-dimensional stress state can be converted to its
principal components and the maximum shear stress is given by

τmax = 1

2
(σ1 − σ3) (B.46)

The relationship between the principal stresses can also be expressed in terms of Lode’s
parameter

µ = 2
(σ2 − σ3)

(σ1 − σ3)
− 1 (B.47)

which determines the position of the intermediate principal stress σ2 in relation to the
other principal stresses as µ varies from –1 to +1,

for pure compression: σ1 > 0; σ2 = σ3 = 0 and µ = −1

for pure tension: σ1 = σ2 = 0; σ3 < 0 and µ = +1

for pure shear: σ1 > 0; σ2 = 0; σ3 = −σ1 and µ = 0

The graphical illustration shown in Figure B.11 assumes that all the principal stresses are
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Figure B.12. Alternative admissible stress states.

compressive; this is not a requirement for the identification of the domain of admissible
stress states. Figure B.12 shows alternative representations.

This Appendix summarizes some basic attributes of the Mohr circle. Other features
associated with its development are covered within the context of the chapters in this
volume, which utilise such features extensively. Further valuable discussions can also
be found in the suggested reading.
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Appendix C
Principles of virtual work

The principles of virtual work, which bring together the concepts of equilibrium and
compatibility, or kinematics, are an important development in the mechanics of solids and
in applied mechanics in general. The fact that the principles do not rely on the constitutive
behaviour that pertains to the material is a major advantage in their applicability to elastic
as well as inelastic materials and to problems that deal with dynamic and stability effects.
There are, of course, various versions of the principle of virtual work, the forms of which
will depend on the manner in which mechanical and kinematic variables are defined and
presented. In the following we shall present a general statement of the principle of
virtual work, which is of particular relevance to applications to elastic as well as plastic
continua.

Let us consider a continuum region of finite extent V , which is bounded by the
surface S. The region is restrained against rigid motions by suitable boundary constraints
(Figure C.1). We now apply prescribed values of tractions and displacements T ∗

i and
u∗

i respectively, which act over separate regions of the boundary S. The displacement
and traction boundary conditions applicable to the boundary value problem can be
written as

ui = u∗
i ; xi ∈ Su (C.1)

Ti = σi j n j = T ∗
i ; xi ∈ ST (C.2)

where ni are the components of the outward unit normal to S. In general we assume
that S = ST ∪ Su . It must be noted that this presupposes that there are no regions
where both traction and displacement boundary conditions are prescribed simultane-
ously. There are situations where this is possible, an example being that of the contact
between a rigid footing with a smooth frictionless base and the surface of a contin-
uum region such as a halfspace. Here, the component of the normal displacement and
the tangential component of the tractions at the contact region are specified. In this
case the regions Su and ST will have to overlap to account for the mixed nature of
the boundary conditions applicable to the same region. For the purposes of the present
discussion it is sufficient to assume that the boundary conditions correspond to (C.1)
and (C.2), with the understanding that the discussion that follows can equally well
be extended to cover this class of mixed–mixed boundary conditions. In addition to
these prescribed displacements and tractions, we assume that the region V is also
subjected to a body force field defined by the vector bi and ignore the effects of
dynamics, thereby reducing the problem to a boundary value problem rather than
an initial boundary value problem. Let us assume that the applications of these bound-
ary displacements, boundary tractions and body forces gives rise to a kinematically

241
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Figure C.1. Undeformed and equilibrium configurations and the virtual displacement
field.

admissible set of displacements ui and stresses σi j that satisfy boundary conditions
(C.1) and (C.2) and the equations of equilibrium

σi j, j − bi = 0 (C.3)

where the subscript comma implies partial differentiation with respect to the appropri-
ate spatial variable. By definition, a kinematically admissible displacement field is one
that satisfies any external constraints, as defined by (C.1), any internal constraints (such
as either material incompressibility or inextensibility), and is continuous and piece-
wise continuously differentiable in the region V , which includes S. Also, we define a
stress field σi j that satisfies the traction boundary conditions (C.2) and the equations of
equilibrium (C.3) as being statically admissible.

Let us now consider a virtual displacement field as defined by the difference between
neighbouring kinematically admissible displacement fields. The term ‘neighbouring’
immediately introduces the notion of the infinitesimal into the definition. If we consider
ui to be one displacement state and ui + δ ui as the neighbouring displacement field
then, by definition, δ ui is also a kinematically admissible field with small deformation
gradients (i.e. |∂(δ ui )/∂x j | � 1), and the qualifier δ is intended to signify an incremental
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difference. We can also define the virtual strain field δεi j associated with the virtual
displacements δui as

δεi j = 1

2
(δui, j + δu j,i ) (C.4)

If we consider the variation of δui on S then by virtue of (C.1),

δ ui = 0; xi ∈ Su (C.5)

which satisfies the requirement of kinematic admissibility for the second displacement
state. We can now compute the work done by this virtual displacement field by
considering the body forces and the tractions T ∗

i . We can define this ‘external work’,
�Wext as†

�Wext = −
∫ ∫ ∫

V
biδui dV +

∫ ∫
ST

T ∗
i δui d S (C.6)

We can also consider the internal work �Wint, associated with the virtual strains, result-
ing from the virtual displacements, operating on the stresses σi j . We have

�Wint =
∫ ∫ ∫

V
σi jδεi j dV (C.7)

We note that, in the absence of body couples, the stress tensor is symmetric, i.e. σi j = σ j i .
Using this fact, we can write

σi jδεi j = σi j (δui ), j = [σi jδui ], j − σi j, jδui (C.8)

Using (C.8) in (C.7) and making use of Green’s theorem we have

�Wint =
∫ ∫

S
σi j n jδui d S −

∫ ∫ ∫
V

σi j, jδui dV (C.9)

In view of (C.5) the surface integral in (C.9) can be restricted to ST rather than S.
Combining (C.6) and (C.9) we have

�Wint − �Wext = −
∫ ∫ ∫

V
[σi j, j − bi ]δui dV +

∫ ∫
ST

[σi j n j − T ∗
i ]δui d S (C.10)

The integrals in (C.10) will vanish for every choice of the set of virtual displacements
δui , if and only if the terms in the bracketed quantities reduce exactly to zero. This
is ensured by the equations of equilibrium (C.3) and the traction boundary conditions
(C.2). Hence, a body is in equilibrium under the application of a system of applied forces
if and only if the ‘principle of virtual work’, defined by

�Wext = �Wint (C.11)

is satisfied identically.
At this point, a comment regarding the expression for the internal work �Wint, as

defined by (C.7), is in order. In the expression for �Wint, we have not specified the
nature of the internal work nor the agencies that would be responsible for generating
this internal work. It is only sufficient that such a measure exists. The only appar-
ent requirement is that the body should experience ‘virtual straining’, under the im-
posed virtual deformation. We have not even specified whether such internal work is

† Although it might appear that the negative sign preceding the first integral in (C.6) is in error, that
is not the case. The sign results from our convention that positive displacements act in negative
coordinate directions while positive body forces act in positive coordinate directions.
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either conservative or dissipative. This leaves room for choosing the measure of internal
work to conform to the dominant internal process associated with the generation of in-
ternal work. For example, with elastic materials, this internal work could be associated
with the elastic energy that is stored in the material during the virtual deformation, with
the assumption that for an elastic material the stored energy is indeed fully recoverable.
Alternatively, we can assume that the medium under consideration is an ideally plastic
solid, in which case the internal work �Wint, as defined by (C.7) will now correspond to
the plastic energy dissipation resulting from the virtual plastic straining, resulting from
the application of the virtual displacements δui . This ability to interpret the internal
work in a manner appropriate to the continuum under consideration makes virtual work
principles a powerful tool in mechanics.

Now we proceed to define the second principle of virtual work. The principle of
complementary virtual work is based on the concept of a virtual stress field as opposed
to a virtual displacement field. Again we assume two statically admissible stress fields,
such that their difference gives the symmetric virtual stress field δσi j . From (C.2) and
(C.3) we note that this virtual stress field should satisfy, respectively,

δσi j n j = 0; xi ∈ ST (C.12)

δσi j, j = 0; xi ∈ V (C.13)

In connection with the derivation of the above equations, let us note that the body force
field bi and the applied external tractions T ∗

i are exactly the same for two neighbour-
ing states. When we interpret a virtual stress field as the difference between the two
neighbouring states, these terms will naturally disappear from the equations governing
internal equilibrium in the region V and on the boundary S. We can now define the
external complementary virtual work �W

C
ext as

�W
C
ext =

∫ ∫
Su

u∗
i δσi j n j d S (C.14)

Similarly, we can define an internal complementary virtual work �W
C
int as

�W
C
int =

∫ ∫ ∫
V

εi jδσi j dV (C.15)

Again we can take the difference between these two measures and apply Green’s theorem
as well as (C.12) and (C.13) to arrive at the following the result:

�W
C
int − �W

C
ext =

∫ ∫
Su

(ui − u∗
i )δσi j n j d S +

∫ ∫ ∫
V

[
εi j − 1

2
(ui, j + u j,i )

]
δσi j dV

(C.16)

Again, the integrals occurring in (C.16) will vanish identically for every choice of the
virtual stress field δσi j provided the terms within the brackets vanish identically. For this
to be satisfied, the strain field εi j should be compatible with the kinematically admissible
displacement field ui . The principle of complementary virtual work thus gives

�W
C
int = �W

C
ext (C.17)

Here again, the comments made earlier in relation to the definition of the inter-
nal virtual work �Wint, are also applicable to the definition of the complementary
internal virtual work �W

C
int.

When dealing with the application of the principles of virtual work to problems arising
from the theory of plasticity, we are dealing with quantities such as virtual velocities δvi

and virtual stress rates δσ̇i j , as opposed to virtual displacements and virtual stresses, to
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indicate primarily the incremental nature of the problem formulation. In this case, the
definitions of the internal and external virtual work and their complementary counterparts
have to be identified as rates of virtual work. The result (C.11) for the principle of virtual
work can be restated as a principle of the rate of virtual work in the form

�Ẇext = �Ẇint (C.18)

and the result (C.17) for the principle of complementary virtual work can be restated as
a principle of the rate of complementary virtual work in the form

�Ẇ
C

int = �Ẇ
C

ext (C.19)

Both principles are used quite extensively in the development of governing equations,
specific solutions and the development of computational schemes for the numerical solu-
tion of problems in mechanics. In the context of the theory of plasticity of geomaterials,
the principle of the rate of virtual work is used quite extensively for the development of
proofs of the upper and lower bound theorems in plasticity and in the development of
associated solutions.
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Appendix D
Extremum principles

An extremum principle is basically a mathematical concept that relies on some phys-
ical law. In mechanics, extremum principles such as the principle of minimum total
potential energy and minimum total complementary energy form an important base
of knowledge that has provided the means for obtaining approximate solutions to a
variety of problems in engineering. This is particularly the case with the theory of
elasticity. The celebrated principles of least work attributed to Alberto Castigliano,
are also in the realm of extremum principles that have been used extensively in the
solution of problems in classical structural mechanics dealing with elastic materials.
In general, extremum principles and for that matter variational principles start with the
basic premise that the solution to a problem can be represented as a class of functions
that would satisfy some but not all of the equations governing the exact solution. It
is then shown that a certain functional expression, usually composed of scalar quanti-
ties such as the total potential energy, strain energy, energy dissipation rate, etc., that
have physical interpretations associated with them and are defined through the use of
this class of functions, will yield an extremum (i.e. either a maximum or a minimum)
for that function. Moreover, the extremum will satisfy the remaining equations required
for the complete solution. For example, the principle of minimum total potential en-
ergy states that of all the kinematically admissible displacement fields in an elastic
body, which also satisfy the governing constitutive equations, only those that satisfy the
equations of equilibrium will give rise to a total potential energy that has a stationary
value or an extremum. Furthermore, this stationary value will be a minimum for sys-
tems that are in stable equilibrium. The underlying power of extremum principles in
elasticity is clearly indicated in their earlier applications to structural mechanics and
the recent developments associated with numerical methods such as the Rayleigh–Ritz
method, the precursor to and the mathematical basis of the finite-element method. An
extremum principle is, however, a stronger principle than a variational one since it es-
tablishes the existence of an extremum by considering all admissible functions of a
certain class and not restricting it to those that are infinitesimal in the proximity of
the extremum. Also, in general, for a variational principle, the existence of even a lo-
cal extremum is not a requirement; it is only sufficient that the functional satisfying
the variational principle has a stationary value. Considering the success these princi-
ples have enjoyed in their applications to a wider class of problems in mechanics, it
is therefore entirely natural to enquire whether extremum principles can indeed be de-
veloped to facilitate the development of solutions for materials that exhibit plasticity
effects.

246
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The study of extremum principles and indeed the general area of variational methods
is quite a mathematically demanding subject. The purpose of this presentation is not to
indulge in rigorous mathematical proofs applicable to all types of elasto-plastic materials,
but to give a brief exposé of the basic facets of extremum principles since they constitute
the basic foundation upon which the theorems of limit analysis have been developed.
We can appreciate the power of the upper and lower bound solutions when we begin
to realize that the solution to a plasticity problem is provided with a set of ‘bounds’
without ever solving the complete set of partial differential equations governing the
problem. This is a distinct advantage since these equations are generally non-linear partial
differential equations. Excellent accounts of the developments concerning extremum
principles are given in the original articles by pioneers of this area of research, notably
G. Colonetti, L.M. Kachanov, M.A. Sadowsky, G.H. Handelman, A.A. Markov, H.J.
Greenberg, A. Nadai, R. Hill, W. Prager, D.C. Drucker and P.G. Hodge. The references
to the articles by these researchers and more complete accounts of developments of
extremum principles applicable to elastic–plastic media and those materials experiencing
large-strain phenomena can be found in the bibliography cited at the end of this Appendix.

As a prelude to the discussion of extremum principles for elastic–plastic solids it is
instructive to illustrate, as an example, the proof of the principle of minimum potential
energy, bearing in mind that the principle is applicable only to elastic solids. In a typical
boundary value problem in elasticity, displacements are usually prescribed on a part of the
boundary and tractions are prescribed on the remainder. It is also possible to generalise
this by considering a part of the boundary where in each of the three independent
directions we specify either a component of the displacement or a component of traction.
These are the so-called mixed–mixed boundary conditions. An example would be a body
in smooth contact with a rigid plane where a single displacement is prescribed and two
components of the traction are specified as zero. For the present purposes let us restrict
our attention to the specification of the conventional displacement boundary conditions
on Su in the form

ui = ûi on xi ∈ Su (D.1)

and traction boundary conditions on the remainder of the boundary such that

σi j n j = Ti = T̂i on xi ∈ ST (D.2)

where ûi and T̂i are specified functions and ni are the direction cosines of the outward
unit normal to ST . For the purposes of the discussions that follow, it is sufficient to assume
that the region S = Su ∪ ST , and during any deformation Su ∩ ST = 0. Considering
the elasticity problem, we assume that the solution to any well-posed boundary value
problem can be expressed in terms of the stresses σi j and strains εi j , that are required
to satisfy certain conditions. For example, any stress state σ 0

i j that satisfies both the
equations of internal equilibrium, which in the absence of body forces and dynamic
effects reduce to

σ 0
i j, j = 0 on xi ∈ V (D.3)

and the traction boundary conditions

σ 0
i j n j = T 0

i on xi ∈ S (D.4)

and where ni are the components of the outward unit normal to S, is considered to
be a statically admissible stress state. Also Cauchy’s condition (D.4) ensures that at
all boundary points where a vector T 0

i is specified, the internal stress field σ 0
i j satisfies

equilibrium between the applied tractions and the internal stresses.
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The strain field εi j , on the other hand, must be determined from a displacement vector
ui , such that given εi j , we should be able to determine ui , at least to within a set of rigid
body displacements. If we now consider a displacement field u∗

i , which satisfies all the
boundary conditions applicable to the displacements (i.e. of the type (D.1)) and ε∗

i j the
corresponding strains, then these strains are considered to be kinematically admissible.

In elasticity, the statically admissible stresses σ 0
i j and the corresponding strains ε0

i j are
related through Hooke’s law, as follows:

ε0
i j = Ci jklσ

0
kl (D.5)

where Ci jkl is the generalised elasticity matrix. The inversion of (D.5) is assured by the
positive definiteness of the generalized elasticity matrix. Similarly, the kinematically
admissible strains ε∗

i j and the stresses σ ∗
i j derived from these strains are also related

to each other through Hooke’s law as follows:

ε∗
i j = Ci jklσ

∗
kl (D.6)

In general, the strains ε0
i j cannot be integrated to obtain the displacements u0

i and the
stresses σ ∗

i j generally do not satisfy equilibrium.
Since we have a kinematically admissible set of displacements u∗

i and a statically
admissible set of stresses σ 0

i j applicable to the same region V with boundary S, we can
apply the principle of virtual work to the region; combining (C.6) and (C.7) and setting
bi = 0, we have ∫ ∫ ∫

V
σ 0

i jε
∗
i j dV =

∫ ∫
S

T 0
i u∗

i d S (D.7)

The internal energy per unit volume associated with any kinematically admissible state
is

U ∗ =
∫

σ ∗
i j dε∗

i j (D.8)

Since we are considering linear elastic behaviour (and isothermal or adiabatic deforma-
tions) we have from (D.6) and (D.8)

U ∗ = 1

2
Ci jklσ

∗
ikσ

∗
jl (D.9)

Hence the total potential energy for the kinematically admissible state of deformation is

�∗ = 1

2

∫ ∫ ∫
V

Ci jklσ
∗
ikσ

∗
jl dV −

∫ ∫
ST

Ti u
∗
i d S (D.10)

The equivalent expression for the total potential energy associated with the exact solution
takes the form

� = 1

2

∫ ∫ ∫
V

Ci jklσikσ jl dV −
∫ ∫

ST

Ti ui d S (D.11)

� � �

Theorem D1. The theorem of minimum total potential energy states that, of all the
kinematically admissible states of deformation in an elastic body, only the true one will
minimise the total potential energy.

Proof. Considering (D.10) and (D.11), the theorem is equivalent to the statement

�� = �∗ − � ≥ 0 (D.12)
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with the equality sign applicable when u∗
i ≡ ui . Using (D.10) and (D.11) we have

�� = 1

2

∫ ∫ ∫
V

Ci jkl (σ
∗
ikσ

∗
jl − σikσ jl ) dV −

∫ ∫
ST

Ti (u
∗
i − ui ) d S (D.13)

Since ui and u∗
i have to satisfy the same prescribed displacement boundary conditions

on Su of the type (D.1), we must have∫ ∫
Su

Ti (u
∗
i − ui ) d S = 0 (D.14)

Hence∫ ∫
ST

Ti (u
∗
i − ui ) d S =

∫ ∫
S

Ti (u
∗
i − ui ) d S =

∫ ∫
S
σi j n j (u∗

i − ui ) d S (D.15)

and applying Green’s theorem to the above, we can show that since σi j = σ j i∫ ∫
ST

Ti (u
∗
i − ui ) d S =

∫ ∫ ∫
V

σi j (ε
∗
i j − εi j ) dV =

∫ ∫ ∫
V

Ci jklσik(σ ∗
jl − σ jl ) dV

(D.16)

Combining (D.13) and (D.16) we have

�� = 1

2

∫ ∫ ∫
V

Ci jkl (σ
∗
ikσ

∗
jl − 2σikσ

∗
jl + σikσ jl ) dV (D.17)

Note that since Ci jkl is symmetric and, since the summation is carried out over the
complete set of indices to provide a scalar result, we can interchange the suffixes without
altering the final result. We can write (D.17) in the form

�� = 1

2

∫ ∫ ∫
V

Ci jkl (σ
∗
ik − σik)(σ ∗

jl − σ jl ) dV (D.18)

Since Ci jkl is positive definite, the integrand of (D.17) is positive definite at each xi ∈ V .
Hence �� ≥ 0 with the equality being applicable if and only if σ ∗

i j ≡ σi j . This latter
condition implies that ε∗

i j ≡ εi j and u∗
i = ui to within a rigid body displacement. This

proves the assertion that, of the kinematically admissible sets of displacement fields, the
exact one, which also satisfies the equations of equilibrium, renders the total potential
energy a minimum.

� � �

We can use the principle of minimum complementary energy to develop a similar
proof for any statically admissible stress field; i.e. of all the statically admissible stress
fields only the stress state that will also give compatible strain fields will render the
complementary energy a minimum. Both of these extremum principles and their mixed
versions feature prominently in aspects related to the development of procedures for
obtaining approximate computational solutions to problems in elasticity. These aspects
are discussed in detail in works cited in the bibliography at the end of this Appendix.

Let us now focus attention on the discussion of the extremum principles that are ap-
plicable to elastic–plastic materials. First, in keeping with the developments consistent
with the theory of plasticity, we will consider velocities, strain rates and stress rates as
opposed to displacements, strains and stresses, with the understanding that the specifica-
tion of the rate is to account for the incremental nature of the developments. Analogous
to (D.1), we can define a region Sν on which velocities are prescribed: i.e.

vi = v̂i on xi ∈ Sν (D.19)
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Similarly, for a surface on which the traction rate is defined we have

σ̇i j n j = Ṫ i = ˆ̇T i on xi ∈ ST (D.20)

The class of boundary value problems to be solved usually assumes that at a certain
time t , the displacements and stresses are known throughout V and the traction rates and
velocities are prescribed on S in relation to (D.19) and/or (D.20). The objective here is
to determine the stress rates and velocities within V . In keeping with the decomposition
rule applicable to small-strain rates, we now assume that the total strain rate ε̇i j consists
of the summation of the elastic and plastic strain rates ε̇

(el)
i j and ε̇

(pl)
i j , respectively. We

further assume that the elastic strain rates are derived from Hooke’s law and the plastic
strain rates are obtained through the specification of a yield criterion and a flow rule. We
shall restrict attention to only the class of materials that satisfy the associated flow rule.
We also assume that, given a yield criterion, ε̇(pl)

i j can be determined uniquely. This is, of
course, not the case with yield functions with edge surfaces such as those encountered
in the Tresca yield surface or even for that matter the vertex point in the Drucker–Prager
conical yield surface. This restriction can be removed from the presentation that follows
by adopting a discussion to include edges or points where, conventionally, the orientation
and magnitude of the plastic strain rate is undetermined. These aspects can be further
studied in references cited in the bibliography provided at the end of this Appendix.

We can write

ε̇i j = Ci jkl σ̇kl + λ
∂ f

∂σi j
(D.21)

where, at a plastic point

λ ≥ 0 if f = k; ḟ = 0 (D.22)

and at an elastic point

λ = 0 if either f < k or if f = k and ḟ < 0 (D.23)

We now define a statically admissible field of stress rates σ̇ 0
i j such that they satisfy the

equilibrium equations in V and boundary traction rates ˆ̇T i on the surface ST as defined
through (D.20), and do not violate the plasticity conditions (D.22). The requirement
concerning non-violation of the plasticity conditions (D.22) is automatically satisfied if
f < k, but imposes the additional constraint that if

f = k then ḟ 0 ≤ 0 (D.24)

Here, the superscript 0 refers to the quantity evaluated at the stress state corresponding
to the statically admissible state. The strain rates corresponding to (D.21) applicable to
the value of the statically admissible stress state are now given by

ε̇0
i j = Ci jkl σ̇

0
kl + λ0 ∂ f

∂σi j
(D.25)

Considering (D.23) and (D.24) , the above expression is subject to the following con-
straints:

λ0 ≥ 0 if f = k and ḟ 0 = 0, (D.26)

λ0 = 0 if either f < k or if f = k ḟ 0 < 0 (D.27)

A point to note here is that we have chosen a statically admissible stress state that will
specifically exclude yield in the material, which should be present if plastic strain rates
are to manifest. At the outset it would appear that the third condition of (D.26) implies
that there may be plastic energy dissipation. However the specification of the additional
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constraints (D.24) along with (D.26) and (D.27) safeguards the non-violation of the
yield condition which is necessary for any stress state σ 0

i j to be considered statically
admissible (see e.g. Hodge (1958) and Koiter (1960)).

The analogous kinematically admissible velocity field v∗
i is one that satisfies the

velocity boundary conditions of the type (D.19) on Sν . The strain rates ε̇∗
i j are derived

directly from the velocity vector v∗
i . The related stress rates are any solution satisfying

ε̇∗
i j = Ci jkl σ̇

∗
kl + λ∗ ∂ f

∂σi j
(D.28)

with the constraints

if f = k and ḟ ∗ = 0 then λ∗ ≥ 0 (D.29)

if f < k or ḟ ∗ < 0 then λ∗ = 0 (D.30)

In (D.24)–(D.30), it should be noted that quantities such as f and ∂ f /∂σi j depend only
on the stress rather than the stress rate and are evaluated for the actual given stress
state.

Since ε̇∗
i j represents any kinematically admissible strain rate derived from a velocity

field that satisfies the velocity boundary conditions, the corresponding analogy to the
energy per unit volume of the material is the energy production rate per unit volume of
the material, which is given by

Ẇ ∗ =
∫

σ̇ ∗
i j d ε̇∗

i j =
∫ (

Ci jkl σ̇
∗
ik dσ̇ ∗

jl + σ̇ ∗
i j

∂ f

∂σi j
dλ∗
)

(D.31)

With regard to the last term on the right-hand side of (D.31), the differential of
∂ f /∂σi j depends solely on the stresses and not the stress rates. Also considering (D.28)–
(D.30) it follows that since either ḟ ∗ or λ∗ is identically zero, we have(

∂ f

∂σi j
σ̇ ∗

i j

)
dλ∗ = ḟ ∗ dλ∗ = 0 (D.32)

Therefore

Ẇ ∗ = 1

2
Ci jkl σ̇

∗
ik σ̇ ∗

jl (D.33)

and the total energy rate is given by

̇∗ = 1

2

∫ ∫ ∫
V

Ci jkl σ̇
∗
ik σ̇

∗
jl dV −

∫ ∫
ST

Ṫiv
∗
i d S (D.34)

We can now use this functional to develop the first of two extremum principles applicable
to elastic–plastic materials.

� � �

Theorem D2. The first minimum principle states that, of all the kinematically admissible
velocity fields in an elastic plastic material, the true velocity field will minimise ̇∗.

Proof. The procedure for developing the proof is similar to that outlined in connection
with the principle of minimum total potential energy for an elastic material. We consider
the total energy rate associated with the exact result, which is given by

̇ = 1

2

∫ ∫ ∫
V

Ci jkl σ̇ik σ̇ jl dV −
∫ ∫

ST

Ṫivi d S (D.35)
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and construct the difference between the total energy rate (D.34) associated with the
assumed kinematically admissible velocity field v∗

i and the result (D.35). This gives
(after converting the resulting surface integral in the expression to a volume integral)

�̇ = ̇∗ − ̇ = 1

2

∫ ∫ ∫
V

Ci jkl (σ̇
∗
ik − σ̇ik)(σ̇ ∗

jl − σ̇ jl ) dV +
∫ ∫ ∫

V

∂ f

σi j
σ̇i j (λ − λ∗) dV

(D.36)

We need to prove that �̇ is positive definite. The integrand of the first integral in (D.36)
is always positive in view of the fact that Ci jkl is positive definite and the remaining term
is in a quadratic form. Considering (D.34), the integrand in the second term can be
written as ḟ (λ − λ∗) and, in view of (D.22), this term will vanish at every plastic point.
If, on the other hand, the material is elastic it follows from (D.23) that λ = 0 with the
result that the integrand is equal to − ḟ λ∗. Now if f < k, then no finite stress rates can
make the neighbourhood of a stress state immediately plastic, so that from (D.30) we
have λ∗ = 0; if, on the other hand, f = k, then we require from (D.23), ḟ < 0 and from
(D.29) we have λ∗ ≥ 0. Hence − ḟ λ∗ is always positive and the integrand of the second
integral is also positive. Consequently, �̇ is positive definite. Implicit in this positive
definiteness assumption is the requirement that the material is elastic–perfectly plastic
and is non-softening, in order to satisfy the constraint.

� � �

The analysis can be extended to the consideration of the total complementary energy
rate defined by

̇0
c = 1

2

∫ ∫ ∫
V

Ci jklσ
0
ikσ

0
jl dV −

∫ ∫
Sv

Ṫ 0
i vi d S (D.37)

where the superscripts 0 are associated with the statically admissible stress states, to
develop a second extremum principle.

� � �

Theorem D3. The second minimum principle states that among all the statically admis-
sible states of stress rates, the true one will minimise ̇0

c .

Proof. Again by considering the difference between the integral expressions for the
complementary energy rate applicable to a statically admissible state of stress rate and
the complementary energy rate applicable to the exact solution we obtain

�̇0
c = ̇0

c − ̇c = 1

2

∫ ∫ ∫
V

Ci jkl

(
σ̇ 0

ik − σ̇ik

)(
σ̇ 0

jl − σ̇ jl

)
dV

+
∫ ∫ ∫

V
λ

∂ f

σi j

(
σ̇i j − σ̇ 0

i j

)
dV (D.38)

and we need to prove that �̇0
c is positive definite. Since the integrand of the first integral

in (D.38) is positive definite, attention can be directed to proving that the integrand of
the second integral is always positive definite. We can rewrite the second integrand as
λ( ḟ − ḟ 0). In the case of elastic behaviour, in view of (D.23), this quantity will be zero.
For plastic behaviour, from (D.22), λ ≥ 0 and ḟ = 0 and from (D.27) and (D.28),
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ḟ 0 ≤ 0. As a consequence λ( ḟ − ḟ 0) ≥ 0, and the integrand is positive definite, which
proves the second extremum principle.

� � �

The two theorems presented here can be combined to give upper and lower bounds
on either ̇ or ̇c as follows:

−̇0
c ≤ −̇c = ̇ ≤ ̇∗ (D.39)

This represents the basis for the development of a number of important relationships
associated with not only the upper and lower bound theorems but also to address the
question of uniqueness of solution. Let us also not overlook the fact that the extremum
principles for elastic–plastic materials, experiencing small strains presented here, have
as their basis the requirement concerning the applicability of the associated flow rule
for the determination of the plastic strain increments. This indirectly provides the proof
for the necessity of the associated flow rule and the normality condition as minimum
requirements for the valid application of limit analysis techniques in the development
of approximate solutions to problems in soil plasticity.
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Appendix E
Drucker’s stability postulate

An approach to the development of the constitutive equations of plasticity involves the
consideration of plastic energy dissipation in an irreversible process. This is somewhat
analogous to the determination of the constitutive equations for an elastic material by
considering the energy stored during deformation. The notion of material stability is an
important aspect of the development of any self-consistent theory of plasticity, which not
only includes the constitutive equations governing plastic behaviour but also appropriate
uniqueness theorems and procedures for the solution of boundary value problems.

The concept of material stability implies the existence of a one-to-one correspondence
in the constitutive equations in the range of small strains. The notion of material stability
in the small can be illustrated by appeal to the behaviour of a material in uniaxial straining.
Figure E.1 shows non-linear stress–strain behaviour where σ is the uniaxial Cauchy
stress, ε is the corresponding small strain and ε̇ is the strain rate. Let us consider the
situation where the specimen is subjected to an arbitrary stress σ and �σ is the increment
in stress, which produces a corresponding increment in strain �ε. The material is said
to stable if

�σ�ε > 0 (E.1)

The result (E.1) implies that in a stable material, strain increments result in positive
work from the stresses. We can generalize (E.1) to the following form involving all
components of the strain tensor and the stress tensor to give the following requirement
for a stable material:

�σi j�εi j > 0 (E.2)

The notion of material stability and plastic energy dissipation during yielding is central to
Drucker’s stability postulate, which applies to geomaterials that exhibit strain hardening
phenomena and as a special case can also apply to perfectly plastic materials.

The plastic energy dissipation during a closed cycle of loading can be demonstrated
by appeal to the closed path shown in Figure E.2. If the loading that induces a strain
increment �εi j commences from a reference stress state σ 0

i j , the inequality (E.2) can be
written as (

σi j − σ 0
i j

)
�ε

p
i j > 0 (E.3)

and the incremental irreversible plastic strains �ε
p
i j are those that occur subsequent to

the application of the reference stress σ 0
i j .

Drucker’s postulate hinges on this concept of a stable material. Let us consider a stable
state in a material, which can experience plastic energy dissipation. We subject the body
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∆ε

∆σ

σ
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Figure E.1. The uniaxial stress–strain behaviour for a stable material.

∆εij

σ ij  + ∆σij

εij

σ ij

0

0

σ ij

p

Figure E.2. Schematic representation of a loading cycle in a stable material.

to tractions, body forces and displacements, which result in the stress state σ 0
i j . We now

slowly alter the tractions, body forces, etc., such that the new stress state is σi j . Finally,
we return slowly to the original reference stress state σ 0

i j . If plastic strains develop during
this stress cycle then the work done by the stresses is non-negative. Drucker’s postulate
therefore states that, for any stable material, the rate of work done by the stresses during
plastic deformation at a point in the medium, over a closed cycle involving loading and
unloading, is non-negative. If we denote this plastic work rate by ẆP , we have

WP =
∫ t

0

(
σi j − σ 0

i j

)
ε̇i j dt ≥ 0 (E.4)

We can use a schematic geometric representation shown in Figure E.3 to illustrate
stress cycling in relation to the yield surface f (σi j ) = 0. Considering the closed stress
cycle (i.e. the stress cycle commences from σ 0

i j and returns to σ 0
i j ), the rate of work done

by the stresses on the elastic strain rates ε̇e
i j is fully recoverable. Therefore we can focus

on the representation of the stability postulate in terms of the total work of the stresses
done on the plastic strain rates, Wp , over the history of the stress cycle where t ∈ (t1 , t2),
and for which the stresses satisfy the yield condition. Therefore in terms of the plastic
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1
2

0 σij

σij
σij

0

Yield surface
f (σij) = 0

Figure E.3. Closed stress cycle 0–1–2–0 in a generalised stress space.

strain rate, (E.4) can be written as

Wp =
∫ t2

t1

(
σi j − σ 0

i j

)
ε̇

p
i j dt ≥ 0 (E.5)

Since plastic strains materialise only at t = t1, we can expand Wp as a Taylor series
about the neighbourhood of σi j (t1); this gives

Wp (t) = (t − t1)
(
σi j − σ 0

i j

)
ε̇

p
i j + (t − t1)2

2!

[
σ̇i j ε̇

p
i j + (σi j − σ 0

i j

)
ε̈

p
i j

]+ · · · . (E.6)

Then, considering the leading terms on the right-hand side of (E.6), if the plastic work
rate is to satisfy Drucker’s postulate we must require (since (t − t1) > 0)(

σi j − σ 0
i j

)
ε̇

p
i j ≥ 0 if σi j �= σ 0

i j
(E.7)

σ̇i j ε̇
p
i j ≥ 0 if σi j = σ 0

i j

The first requirement of (E.7) is associated with the energy dissipation and the second
requirement refers to the stability of the material since, if σ̇i j ε̇

p
i j ≥ 0 and ε̇

p
i j �= 0,

material stability is assured. The stability postulate is a key feature in the development
of associated flow rules in the theory of plasticity and in the development of uniqueness
theorems for perfectly plastic behaviour. Several investigators including H. Ziegler,
A.E. Green and P.M. Naghdi have discussed the stability postulate in the context of
thermodynamics of continua. Ziegler’s work shows that Drucker’s stability postulate is
a special case of maximum entropy production. Green and Naghdi’s work has shown
that the postulate implies constraints on the flow rule that do not necessarily follow from
laws of thermodynamics. This makes the concept of stability as constitutive assumption
valid for certain classes of materials.

Further reading

The key works of Drucker, which introduce the concept of stability postulate
as applied to plastic materials, can be found in:

D.C. Drucker, The definition of a stable inelastic material, J. Appl. Mech., Trans
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D.C. Drucker, Plasticity, In Structural Mechanics (eds. J.N. Goodier and N.J. Hoff)
Pergamon Press, Oxford, pp. 407–455, 1960.

D.C. Drucker, On the postulate of stability of material in the mechanics of continua,
J. Mecanique, 3, 235–249 (1964).
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Appendix F
The associated flow rule

In Appendix E we have examined Drucker’s postulate for the stability of the material
undergoing plastic deformations. To develop the plastic constitutive equations or the
associated flow rule it is necessary to assume that a yield function exists, i.e.

f (σi j ) = k (F.1)

As discussed in Chapter 3, when referred to the multi-dimensional stress space, the
convex yield function with a unique normal at each point identifies the boundary between
elastic states in the material for which f (σi j ) < k and plastic states for which f (σi j ) = k.
For the present purposes we shall restrict attention to non-strain hardening materials.
Consider the inequalities given by (E.7) in relation to a vector space consisting of the
stress tensor and the strain rate vector. The expression related to plastic energy dissipation
rate can be visualised as the scalar product of two vectors (σi j − σ 0

i j ) and ε̇
p
i j . In order

for the first inequality of (E.7) to be satisfied, the included angle between the vectors
(σi j − σ 0

i j ) and the plastic strain rate vector ε̇
p
i j should be acute. This condition will hold

for any σ 0
i j located either within the yield surface or on the yield surface itself.

Consider the point B in Figure F.1, which is located on the yield surface f (σi j ) = k,
and assume that the associated flow rule with the governing normality condition gives
the plastic strain rate vector, which will therefore be normal to the yield surface. Now
consider the tangent plane to the yield surface at this point. We are assured, by the
convexity of the yield surface, that any stress point σi j will lie to one side of this tangent
plane. The line of action of the vector (σi j − σ 0

i j ) must therefore make an acute angle
with ε̇

p
i j . Therefore for the rate of plastic energy dissipation to be positive definite we

must have (
σi j − σ 0

i j

) ∂ f

∂σi j
≥ 0 (F.2)

We can also restate these operations in the following way. Consider a material for which
the yield surface in the generalized stress space is convex and possesses a unique normal
at each point. If plastic deformations are to occur such that material stability is preserved,
then the plastic strain rate should satisfy the normality condition or the plastic strain rate
must always be normal to the yield surface, i.e.

ε̇
p
i j = λ

∂ f

∂σi j
(F.3)

where λ is an undetermined scalar multiplier which is non-negative. This associated
form of the flow rule was first postulated by R. von Mises without any formal proof.
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Figure F.1. Geometrical representation of the stability postulate.

Other arguments for this form of the associated flow rule are also given by R. Hill and
T.Y. Thomas.

The second inequality of (E.7) dealing with the requirement for material stability can
be written as

σ̇i j ε̇
p
i j = λ

∂ f

∂σi j
σ̇i j ≥ 0 (F.4)

The state of either loading, neutral loading or unloading of the plastic medium can be
defined in relation to the direction of the stress increments in the following manner:

∂ f

∂σi j
σ̇i j




> 0; loading
= 0; neutral loading
< 0; unloading

(F.5)

In the case of neutral loading, the loading path follows the yield surface itself and the
unloading process results in no plastic deformation. The condition (F.4) implies that for
plastic deformations to occur the scalar multiplier must be non-negative; i.e.

λ ≥ 0 (F.6)

If the stress state satisfies the yield condition but with λ = 0, then there is no plastic
deformation. Also for a perfectly plastic material, there is no essential difference between
the processes of loading and neutral loading since in the stress space (∂ f/∂σi j )σ̇i j = 0,
whenever σ̇i j lies on the yield surface.

In the preceding we have focused on the application of Drucker’s stability postulate
to the development of the associated flow rule for failure surfaces that have a unique
normal at each point on the surface. Let us now focus attention on situations where the
failure surface can have either edges or corners along which the orientation of the unit
normal is not determined uniquely. Examples of such failure surfaces can include the
Tresca and Coulomb failure criteria. We can extend the definition of the associated flow
rule to cover such non-singular boundaries (Figure F.2). When considering non-singular
failure surfaces, the associative flow rule should be modified to include several (say n)
intersecting surfaces at a point. In such a case, the associated flow rule can be written as

ε̇
p
i j =

n∑
α=1,

λα

∂ fα
∂σi j

with λα > 0 (F.7)

where the derivatives ∂ fα/∂σi j are linearly independent in view of the fact that the failure
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Figure F.2. Convex failure surface with non-singular points.

surfaces themselves are independent. The complete plastic strain rate is found according
to (F.7) and the resultant of these plastic strain rates will be contained within the region
obtained by surfaces spanning the unit normals to the segments of the yield surfaces,
which intersect at the singular points. For example, referring to Figure F.2, where n = 2,
the plastic strain rate at the corner C is given by

ε̇
p
i j = λ1

∂ f1

∂σi j
+ λ2

∂ f2

∂σi j
= λ

[
φ

∂ f1

∂σi j
+ (1 − φ)

∂ f2

∂σi j

]
(F.8)

where 0 ≤ φ ≤ 1. It should be noted that although the direction of the plastic strain rate
is not unique, the energy dissipation rate is uniquely determined, since for a given plastic
strain rate the corresponding stress is unique. For example, considering a perfectly plastic
material, which obeys the associated flow rule, the energy dissipation rate is given by

Ḋ = σi j ε̇
p
i j (F.9)

If we realize that, at failure, the stresses are uniquely determined by the failure criterion,
then the dissipation function can be expressed solely in terms of the plastic strain rate,
i.e. Ḋ = Ḋ(ε̇ p

i j ), and such a representation can be used to present an inverse form of the
associated flow rule (F.3), where now the stresses can be expressed in terms of the strain
rates.

Further reading
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1965.



262 Appendices

L.E. Malvern, Introduction to the Mechanics of a Continuous Medium, Prentice-Hall,
Englewood Cliffs, NJ, 1969.

J.B. Martin, Plasticity: Fundamentals and General Results, MIT Press, Cambridge,
MA, 1975.

T.Y. Thomas, Interdependence of the yield condition and the stress–strain relations for
plastic flow, Proc. U.S. Nat. Acad. Sci., 40: 593–597 (1954).

R. von Mises, Mechanik der plastischen Formaenderung von Kristallen, Zeit. Angew.
Math. Mech., 8: 161–185 (1928).



Appendix G
A uniqueness theorem for elastic–plastic

deformation

The concept of the uniqueness of a solution is an essential requirement to the well-posed
nature of a boundary value problem. A uniqueness theorem assures us that there is only
one solution possible for the governing set of equations subject to appropriate boundary
conditions. In EG we have discussed a uniqueness theorem in the context of the linear
theory of elasticity. With linear theories in mechanics and physics, the development of a
proof of uniqueness of solutions to boundary value problems and initial boundary value
problems is well established. Comprehensive discussions of these topics are given in
many texts on mathematical physics and on the theory of partial differential equations
and also discussed in recent volumes by Selvadurai (2000a,b). The question that arises
in the context of plasticity focuses on the development of a uniqueness theorem for
what is basically a non-linear problem. This is not a straightforward issue, even with
regard to certain situations involving non-linear behaviour of linear elastic materials.
Examples that illustrate the concept of non-uniqueness of elasticity solutions can be
readily found in problems dealing with elastic buckling of structural elements such as
beam-columns and shallow shells under lateral loads. In these categories of problem
the structure can exhibit multiple equilibrium states corresponding to the same level
of loading. The purpose of the discussion given below is then to address the basic
question of what constraints should be imposed, specifically regarding plastic stress–
strain relations, in order that the solution to a particular boundary value problem is
unique.

Theorem G1. In keeping with the formulation of many approaches to proof of unique-
ness, let us consider a finite region V of an elastic–plastic material that is bounded by
a surface S. The region is subjected to tractions, displacements and body forces as
follows:

Ti = T 0
i ; xi ∈ ST (G.1)

ui = u0
i ; xi ∈ Su (G.2)

bi = b0
i ; xi ∈ V (G.3)

where ST and Su are complementary subsets of S; i.e. ST ∪ Su = S and ST ∩ Su = 0,
and T 0

i , u0
i and b0

i are prescribed functions (Figure G.1a). The state of stress and strain in
the medium due to the application of the prescribed tractions, displacements and body
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Figure G.1. Initial and final states of stress and strain in an elasto-plastic body.

forces in the respective regions is given by

σi j = σ 0
i j ; xi ∈ V (G.4)

εi j = ε0
i j ; xi ∈ V (G.5)

We now alter the boundary tractions, boundary displacements and body forces by their
corresponding incremental values as follows:

Ti = T 0
i + dTi ; xi ∈ ST (G.6)

ui = u0
i + dui ; xi ∈ Su (G.7)

bi = b0
i + dbi ; xi ∈ V (G.8)

We assume that the corresponding states of stress and strain in the body (Figure G.1b)
can be expressed in the forms

σi j = σ 0
i j + dσi j ; xi ∈ V (G.9)

εi j = ε0
i j + dεi j ; xi ∈ V (G.10)

where the incremental values of the stresses and strains are implied. The examination of
the question of uniqueness of the solution reduces to the assessment of whether the stress
increments dσi j and the strain increments dεi j are uniquely determined by the increments
of change in the surface tractions dTi , the increment in the surface displacements dui

and the increment in the body forces dbi . In this connection we hope to prove that the
associated flow rule is both necessary and sufficient for the condition for uniqueness of
the stress increments dσi j and the strain increments dεi j .

Proof. As in many proofs of this kind we adopt an approach, based on ‘proof by contra-
diction’. Let us assume that the state of stress and strain resulting from the application
of the tractions, displacements and body forces defined by (G.6)–(G.8) results in two
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states of stress and strain in the following forms:

σi j = σ 0
i j + dσ

(1)
i j ; xi ∈ V (G.11)

εi j = ε0
i j + dε

(1)
i j ; xi ∈ V (G.12)

and

σi j = σ 0
i j + dσ

(2)
i j ; xi ∈ V (G.13)

εi j = ε0
i j + dε

(2)
i j ; xi ∈ V (G.14)

Now we make use of the principle of virtual work described in Appendix C. Assuming
that the displacement field is continuous throughout V , such that incremental tractions
dT̃i are defined through equilibrium considerations and incremental displacements dui

satisfy kinematic or compatibility constraints we have∫ ∫
ST

dT̃ i dui d S +
∫ ∫

Su

dT̃i dui d S −
∫ ∫ ∫

V
dbi dui dV =

∫ ∫ ∫
V

dσ̃i j dεi j dV

(G.15)

There is, of course, no requirement for the two solutions mentioned above to be in any
way related. The difference between the two states given by (G.11)–(G14) gives

�(dσi j ) = dσ
(2)
i j − dσ

(1)
i j ; xi ∈ V (G.16)

�(dεi j ) = dε
(2)
i j − dε

(1)
i j ; xi ∈ V (G.17)

and with

dT̃i = dT (2)
i − dT (1)

i = 0; xi ∈ ST (G.18)

dui = du(2)
i − du(1)

i = 0; xi ∈ Su (G.19)

Substituting (G.16)–(G.19) in (G.15) we obtain the result∫ ∫ ∫
V

�(dσi j ) �(dεi j ) dV = 0 (G.20)

Since V is finite we obtain, from the Dubois–Reymond lemma, that the integrand of
(G.20) must vanish everywhere in V , i.e.

d I = �(dσi j )�(dεi j ) ≡ 0 (G.21)

If we could now show that, for a particular elastic–plastic constitutive relation, the
quantity d I is positive definite, then we obtain the contradiction we seek. We could then
satisfy (G.21) if and only if �(dεi j ) were identically zero. So how can we proceed to
show that �(dσi j )�(dεi j ) is positive definite? To begin, assume that the difference in the
incremental strains can be represented as a linear combination of the elastic and plastic
components as follows:

�(dεi j ) = �
(
dεe

i j

)+ �
(
dε

p
i j

)
(G.22)

Using (G.22) we can rewrite (G.21) in the form

d I = �(dσi j )
[
�
(
dεe

i j

)+ �
(
dε

p
i j

)] ≡ 0 (G.23)

Considering the elastic behaviour of the material we have for every state of incremental
stresses

�(dσi j )�
(
dεe

i j

) ≥ 0 (G.24)
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Figure G.2. Schematic representation of loading and unloading paths in relation to the
failure surface of an elastic–perfectly plastic solid.

Therefore the problem is reduced to the examination of the conditions under which
the scalar product �(dσi j ) �(dε

p
i j ) is positive definite. In order to examine this we need

to consider separately three possible states, relating to loading and unloading (Figure G.2)
associated with dσ

(1)
i j , dσ

(2)
i j and �(dσi j ).

Case 1. Consider the case when both increments dσ
(1)
i j and dσ

(2)
i j correspond to loading

paths. In this instance, both dσ
(1)
i j and dσ

(2)
i j lie on the tangent plane at the stress point on

the failure surface and by virtue of (G.16), �(dσi j ) also lies on the tangent plane. It is
evident that for the scalar product �(dσi j ) �(dε

p
i j ) to be positive definite for all vector

increments �(dσi j ) that are tangent to the failure surface, the plastic strain vectors
dε

p(1)
i j and dε

p(2)
i j , and consequently �(dε

p
i j ), must be normal to the failure surface. So

the associated flow rule ensures uniqueness in this case.

Case 2. Consider the situation where both loading increments correspond to unloading.
In this case by definition (see also Appendix F) �(dε

p
i j ) = 0. Hence by virtue of (G.24),

d I is positive definite and uniqueness is a trivial consequence.

Case 3. The remaining possibility deals with the situation when one stress increment
corresponds to loading and the other corresponds to unloading. It is immaterial which
one we would choose as loading and which as unloading. For purposes of analysis,
let us assume that dσ

(1)
i j is an unloading path and dσ

(2)
i j corresponds to a loading path.
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Owing to this assumption we have dε
p(1)
i j ≡ 0 and the part of d I whose positive defi-

niteness needs to be investigated is

d I =
(

dσ
(2)
i j − dσ

(1)
i j

)
dε

p(2)
i j = dσ

(2)
i j dε

p(2)
i j − dσ

(1)
i j dε

p(2)
i j (G.25)

Since dσ
(2)
i j corresponds to a loading path, this stress increment is located on the tangent

plane through the stress point. By virtue of the associated flow rule the plastic strain
increment vector dε

p(2)
i j is orthogonal to dσ

(2)
i j . Hence the scalar product dσ

(2)
i j dε

p(2)
i j is

identically equal to zero.

Let us now focus on the second term on the right-hand side of (G.25). By defini-
tion dσ

(1)
i j is an unloading path and the vector is directed to the interior of the failure

surface (Figure G.2c), commencing from the stress point. The plastic strain increment
vector dε

p(2)
i j , for the loading path, is on the other hand directed away from the failure

surface normal to the tangent plane at the stress point. This means that so long as the
increment dσ

(1)
i j is an unloading path and the increment dσ

(2)
i j is a loading path, the in-

cluded angle between dσ
(1)
i j and dε

p(2)
i j will be an obtuse angle. Hence the scalar product,

−dσ
(1)
i j dε

p(2)
i j , will always be positive definite, for any convex failure surface. Therefore

the positive definiteness of the integral is assured and we can conclude that uniqueness
of the boundary value problem is assured, provided the failure surface is convex and the
plastic strains are determined through the associated flow rule.
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1950.
L.M. Kachanov, Foundations of the Theory of Plasticity, North-Holland, Amsterdam,

1971.
W.T. Koiter, Stress–strain relations, uniqueness and variational theorems for

elastic–plastic materials with a singular yield surface, Quart. Appl. Math., 11,
350–354 (1953).

J.B. Martin, Plasticity: Fundamentals and General Results, MIT Press, Cambridge,
MA, 1975.
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Appendix H
Theorems of limit analysis

When a continuum region consists of either a rigid strain hardening or an elastic strain
hardening material, the strains and displacements of the region for a given history of
loading can be determined. If, on the other hand, the continuum region is made of either a
rigid perfectly plastic or an elastic perfectly plastic material the situation is quite different.
A qualitative picture of the behaviour of such a material was discussed at the very start
of this volume. For example, at sufficiently small loads the region can either remain
rigid or experience small elastic deformations. As the loading increases parts of the
continuum region can become plastic, but the region as a whole can withstand collapse
due to the restraining effect of elastic regions. As the loads increase, larger regions of the
continuum can experience plastic yield and eventually the continuum region can undergo
‘indefinite’ plastic deformations leading to what we term ‘collapse’ of the region. Two
interesting examples that illustrate the definition of a ‘collapse’ state in the context of
limit analysis are given by Drucker et al. (1952). In this process we implicitly assume
that the deformations experienced by the continuum region are small enough so that
changes in the geometry of the region may be neglected and that all the deformations
take place in a quasi-static fashion so that any dynamic effects can be ignored. The study
of the behaviour of continua that exhibit ‘collapse’ marks an important milestone in the
development of the theory of plasticity. The availability of procedures for the calculation
of collapse loads for elastic plastic and rigid plastic solids provided a valuable design
tool, which could be utilised to calculate the loads required either to initiate collapse or
to prevent collapse of the structure or a component made of an elastic–perfectly plastic
material. The availability of limit analysis techniques also shifted the attention from the
mathematical solution of the governing non-linear partial differential equations. These
partial differential equations are difficult to solve through analytical procedures except in
the simplest of situations involving elementary states of deformation. Often recourse is
made to methods involving numerical computations. The development of the theorems
of limit analysis for rigid plastic materials is attributed to A.A. Gvozdev and to
R. Hill. The generalization of these concepts to include elastic–plastic solids was given
in benchmark papers by D.C. Drucker, W. Prager and H.J. Greenberg (1952, 1957).
The formulation of the limit theorems within the context of extremum principles
(Appendix D) added a new dimension to the mathematical theory underlying the cal-
culation of ‘collapse’ and to the development of the theorems necessary to ensure the
accuracy of the calculations. In Chapter 5 we applied the limit theorems to develop
upper and lower bound solutions to several problems of interest to geomechanics. The
purpose of this Appendix is to provide certain proofs that will establish the validity of the
limit theorems. The presentation is not meant to be mathematically all encompassing;
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the interested reader is encouraged to consult the bibliography presented at the end of
this Appendix.

The development of the proofs of the limit theorems is facilitated by first considering
the following Lemma:

In the case of elastic–perfectly plastic materials, upon attainment of the limit load, the stress state
experiences no change and the increments of strain are only due to the development of plastic
strains in the medium. As a result, the application of elastic–perfectly plastic relations is formally
similar to the application of rigid perfectly plastic relations. With continued plastic deformations,
the elastic deformations can be neglected from the analysis.

To prove the lemma, let us consider a finite region V of an elastic–perfectly plastic
material with surface S. Also, ST and Sν are, respectively, subsets of S on which tractions
and velocities can be prescribed. The tractions Ti act on the surface ST and body forces
act in V and satisfy the conditions for static equilibrium

σi j n j = Ti ; xi ∈ ST (H.1)

σi j, j − bi = 0; xi ∈ V (H.2)

the comma denotes the partial derivative with respect to the spatial variable and ni are the
direction cosines to the outward unit normal to S. In addition to this statically admissible
set of stresses, v∗

i represents the kinematically admissible velocity field in the region V
and ε̇∗

i j the corresponding strain rates that satisfy the kinematic relations

2ε̇∗
i j = v∗

i, j + v∗
j,i (H.3)

Neither the equilibrium set Ti , bi and σi j nor the kinematically admissible set v∗
i and ε̇∗

i j
need be the actual state nor in any way related to each other. We shall proceed to develop
the rate form of the virtual work equation where we have

Ẇ ext = −
∫ ∫ ∫

V
biv

∗
i dV +

∫ ∫
ST

Tiv
∗
i d S +

∫ ∫
Sν

Tiv
∗
i d S (H.4)

and

Ẇint =
∫ ∫ ∫

V
σi j ε̇

∗
i j dV (H.5)

The result (H.5) can also be extended to cover the rate of work of internal forces associ-
ated with discontinuities that are encountered in plastically deforming materials; this is
not, however, central to the discussion that pertains to the proofs of the limit theorems.
The rate form of the equation of virtual work gives

−
∫ ∫ ∫

V
biv

∗
i dV +

∫ ∫
ST

Tiv
∗
i d S +

∫ ∫
Sν

Tiv
∗
i d S =

∫ ∫ ∫
V

σi j ε̇
∗
i j dV (H.6)

This result is applicable to any equilibrium set of tractions, body forces and stresses.
Therefore we can choose the set as increments of tractions, body forces and stresses.
Substituting the increments or rates of the equilibrium set we obtain from (H.6)

−
∫ ∫ ∫

V
ḃiv

∗
i dV +

∫ ∫
ST

Ṫ iv
∗
i d S +

∫ ∫
Sν

Ṫ iv
∗
i d S =

∫ ∫ ∫
V

σ̇i j ε̇
∗
i j dV (H.7)

We can now utilise (H.7) to prove the Lemma. Let Ṫ c
i , ḃc

i and σ̇ c
i j be the rates or increments
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of the body forces, surface tractions and stresses and vc
i and ε̇c

i j the corresponding velocity
and strain rates associated with a collapse state, such that, analogously to (H.7), we obtain

−
∫ ∫ ∫

V
ḃc

i v
c
i dV +

∫ ∫
ST

Ṫ c
i vc

i d S +
∫ ∫

Sν

Ṫ c
i vc

i d S =
∫ ∫ ∫

V
σ̇ c

i j ε̇
c
i j dV (H.8)

and the superscript ( )c is intended to signify the fact that all the quantities are associated
with the collapse state. Let us note that in the development of the proof of this Lemma,
we will be considering only elastic–perfectly plastic materials. For such a material, at
limiting or collapse conditions, the peak values of all the forces, tractions (either applied
over ST or induced at Sν) and stresses have been reached giving rise to the requirements

ḃc
i ≡ 0; xi ∈ V (H.9)

Ṫ c
i ≡ 0; xi ∈ S (H.10)

In view of (H.9) and (H.10), the entire left-hand side of equation (H.8) is zero. If we
further assume that the strain rates ε̇c

i j admit an additive decomposition of the form

ε̇c
i j = ε̇

c(el)
i j + ε̇

c(pl)
i j (H.11)

where the superscripts (el) and (pl) refer, respectively, to the elastic and plastic strain
rates, (H.8) gives ∫ ∫ ∫

V

(
ε̇

c(el)
i j + ε̇

c(pl)
i j

)
σ̇ c

i j dV = 0 (H.12)

From considerations of the stability postulate of Drucker (Appendix E) that
utilises the concepts of the convexity of the yield surface, the associated flow rule
(Appendix F) and the normality condition, it can be shown that at collapse the increment
of the plastic energy dissipation rate is zero: i.e. the plastic strain increment vector is
orthogonal to the stress increment vector. This gives∫ ∫ ∫

V
ε̇

c(pl)
i j σ̇ c

i j dV = 0 (H.13)

which reduces (H.12) to ∫ ∫ ∫
V

ε̇
c(el)
i j σ̇ c

i j dV = 0 (H.14)

Since, for any elastic material, the integrand of (H.14) is positive definite for σ̇ c
i j �= 0,

the vanishing of the integral in (H.14) implies that

σ̇ c
i j = 0; xi ∈ V (H.15)

This leads to the conclusion that, at collapse, there is no incremental change in the stress
and accordingly there is no incremental change in the elastic strain during deformations
occurring at the collapse load. In other words, the elastic deformations play no role in
defining the collapse load. With this important result we can proceed to provide proofs
of the limit theorems as originally postulated in the classic papers by D.C. Drucker, W.
Prager and H.J. Greenberg.

Theorem H1. Consider a region V of a perfectly plastic material with surface S. If an
equilibrium distribution of stress denoted by σ E

i j applicable to V can be found such that
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σ E
i j satisfies the traction boundary conditions

σ E
i j n j = Ti for xi ∈ ST (H.16)

and is everywhere below yield, i.e.

f
(
σ E

i j

)
< k for xi ∈ V (H.17)

then collapse will not occur under the action of the loads.

Proof. The basic approach to proving this theorem involves a proof by contradiction,
which makes the assumption that the theorem is false and that such an assumption
will lead to a contradiction. Let us consider the finite region V with surface S that is
subjected to tractions Ti on ST a subset of S and body forces bi in V . At some values
of these loads we assume that collapse of the body occurs, resulting in an actual state
of stress σ E

i j , strain rates ε̇E
i j and corresponding velocities vE

i . This state of collapse will
obviously correspond to tractions

σ E
i j n j = Ti on xi ∈ ST (H.18)

and body forces bi that satisfy

σ E
i j, j − bi = 0 in xi ∈ V (H.19)

but with the requirement that, at collapse, the region under consideration is suitably
constrained to eliminate any undetermined rigid body movement.

There are two equilibrium states; one corresponding to {Ti , bi , σ
E

i j } and the second
corresponding to the assumed state of collapse {Ti , bi , σ

c
i j }. We can apply the virtual rate

of work equation to each of these states. Using (H.6) we can write

−
∫ ∫ ∫

V
biv

c
i dV +

∫ ∫
ST

Tiv
c
i d S +

∫ ∫
Sν

Tiv
c
i d S =

∫ ∫ ∫
V

σ c
i j ε̇

c
i j dV (H.20)

and

−
∫ ∫ ∫

V
biv

c
i dV +

∫ ∫
ST

Tiv
c
i d S +

∫ ∫
Sν

Tiv
c
i d S =

∫ ∫ ∫
V

σ E
i j ε̇

c
i j dV (H.21)

Subtracting (H.21) from (H.20) and noting that at collapse the influence of elastic de-
formations can be neglected, we obtain the result∫ ∫ ∫

V

(
σ c

i j − σ E
i j

)
ε̇

c(pl)
i j dV = 0 (H.22)

From assumptions of convexity of the yield surface the normality of the plastic strain
increment vector to the yield surface implied by the associated flow rule, we require(

σ c
i j − σ E

i j

)
ε̇

c(pl)
i j > 0 if f

(
σ E

i j

)
< k (H.23)

and the resulting sum of positive terms cannot be zero. As a result (H.22) must be false
and the lower bound theorem is proved. That is, if

f
(
σ E

i j

)
< k (H.24)

collapse is not possible and if

f
(
σ E

i j

) = k (H.25)
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then the body may be in an imminent state of collapse. The result (H.25) can then be
used to compute the external loads that are necessary just to initiate collapse in the body,
which provides the lower bound of the capacity of the body. In terms of the extrema,
this is the absolute minimum carrying capacity of the body, and the real collapse load
is expected to be greater than the lower bound.

� � �

We can now proceed to provide, in a similar manner, a theorem concerning the upper
limit of the carrying capacity of an elastic–perfectly plastic body.

Theorem H2. Collapse must occur for any compatible mechanism of plastic deformation
for which the rate of working of the external forces either equals or exceeds the rate
of internal energy dissipation. The collapse load which is obtained by considering the
balance between the rate of working of the external forces and the rate of internal energy
dissipation will either be greater than or equal to the true collapse load.

Proof. The procedure for the proof is again to assume that the theorem is false and to
show that the assumption leads to a contradiction. Consider the region V of an elastic–
rigid plastic material with surface S, which is under the action of surface tractions Ti

acting on ST and body forces bi in the volume. Suppose the loads computed by equating
the rate of working of the tractions and body forces to the rate of internal dissipation
are less than the actual collapse load. Then the body will not experience collapse at this
load and we can obtain an equilibrium state of stress σ E

i j such that

σ E
i j n j = Ti ; xi ∈ ST (H.26)

σ E
i j, j − bi = 0; xi ∈ V (H.27)

and

f
(
σ E

i j

)
< k; xi ∈ VE (H.28)

f
(
σ E

i j

) = k; xi ∈ VF (H.29)

where VF ∪ VE = V . At this point we should clarify the conditions implied by (H.28)
and (H.29) in the light of comments made both at the beginning of this Appendix and
in the introductory paragraphs of Chapter 5. It is implicitly assumed that failure may
occur in restricted regions within V , without attainment of collapse conditions in the
body.

Let us now consider a compatible mechanism of plastic deformation corresponding
to a collapse mechanism, which is defined by a plastic component of the velocity v

c(pl)
i

in the region Sν , a resulting plastic strain rate ε̇
c(pl)
i j and a corresponding stress state σ

c(pl)
i j

in the region V . Considering the stress state at collapse and the velocity field at collapse,
the rate form of the virtual work equation (H.6) can be written as

−
∫ ∫ ∫

V
biv

c(pl)
i dV +

∫ ∫
ST

Tiv
c(pl)
i d S +

∫ ∫
Sv

Tiv
c(pl)
i d S =

∫ ∫ ∫
V

σ
c(pl)
i j ε̇

c(pl)
i j dV

(H.30)
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Similarly, considering the equilibrium stress state and the velocity field at collapse we
can write

−
∫ ∫ ∫

V
biv

c(pl)
i dV +

∫ ∫
ST

Tiv
c(pl)
i d S +

∫ ∫
Sν

Tiv
c(pl)
i d S =

∫ ∫ ∫
V

σ E
i j ε̇

c(pl)
i j dV

(H.31)
Subtracting (H.31) from (H.30) we obtain∫ ∫ ∫

V

(
σ

c(pl)
i j − σ E

i j

)
ε̇

c(pl)
i j dV = 0 (H.32)

Considering (H.28) and (H.29), we can rewrite (H.32) as∫ ∫ ∫
VF

(
σ

c(pl)
i j − σ E

i j

)
ε̇

c(pl)
i j dV +

∫ ∫ ∫
VE

(
σ

c(pl)
i j − σ E

i j

)
ε̇

c(pl)
i j dV = 0 (H.33)

We are aware from Appendices E and F that, for a convex yield surface and an associated
flow rule obeying the normality condition, the quantity (σ c(pl)

i j − σ E
i j )ε̇c(pl)

i j can be no
smaller than zero. Moreover, if σ E

i j is not a yield state (as is the case in the region VE ),
then (σ c(pl)

i j − σ E
i j )ε̇c(pl)

i j must be strictly positive. Therefore the first integral in (H.33)
is non-negative and the second integral is positive definite. This contradicts our initial
assumption and we conclude that the theorem must be true. The upper bound theorem
assures us of the fact that the true collapse load must either be less than or at most equal to
the collapse load obtained by equating the rate working of the external loading with the
rate of internal energy dissipation for a compatible mechanism of plastic deformation.

� � �

In the preceding sections we have presented the two basic limit theorems that provide
distinct upper and lower limits to the actual collapse loads, which could be obtained
by solving the complete set of partial differential equations governing a problem in the
theory of perfectly plastic solids. Furthermore, if the upper and lower bounds coincide
then this would also correspond to the exact solution of the problem. There are also
several corollaries that arise from the classical lower bound theorem, since the original
state of stress is also applicable in the modified situation. These extensions are described
in detail by Drucker et al. (1952) and in the text by Chen (1975).

It is also worth re-iterating the important role that requirements such as convexity of
the yield surface and the associated flow rule play in the developments of the theorems
of limit equilibrium. Indeed the theorems cannot be proved in a general sense without
the aid of the convexity and associativity arguments. Despite these advantages, it is
worth recognising the fact that the flow laws for many geomaterials point specifically to
their non-associated character. The uniqueness of solutions and the validity of the upper
and lower bound theorems do not, in a general sense, extend to such materials. Several
investigators have examined the conditions under which the bounding techniques can be
applied to geomaterials, which obey non-associated flow rules. Examples of these are
given, among others, by A.D. Cox, Z. Mroz, G. de Josselin de Jong, A.C. Palmer, G.
Maier, E.H. Davis, T. Hueckel, J.L. Dais, I.F. Collins and J. Salencon. Other approximate
procedures for the calculation of limit loads for geomaterials exhibiting non-associated
flow laws have also been proposed recently by A. Drescher and E. Detournay and R.L.
Michalowski.
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Appendix I
Limit analysis and limiting equilibrium

Coulomb’s retaining wall analysis was based on equilibrium of forces acting upon a
wedge of soil isolated behind the retaining wall. His method is generally referred to as
a limiting equilibrium analysis. It gives exactly the same result as the energy balance
method used in the upper bound theorem for any translational collapse mechanism.∗

Moreover the equivalence of the two methods holds regardless of what material model
we choose, particularly the choice of flow rule. To see why this is so consider the rigid
triangular soil element with area A shown in Figure I.1.

The soil element in Figure I.1 could have more than three sides, but a triangle will
be the most simple geometry for our purposes. The element itself is numbered 1 while
the surrounding elements are numbered 2, 3 and 4. The velocities of each element
with respect to some common stationary point 0 are denoted v0k, k = 1, . . . , 4. Relative
velocities are shown on the hodograph and are denoted v1k, k = 2, 3, 4. Let the three
sides of element 1 be numbered L12, L13, L14 and let the traction vectors which act on
those sides be T12, T13, T14. Then we can write out the external rate of work R associated
with our element as follows:

R = v02 ·
∫

L12

T12 d L + v03 ·
∫

L13

T13 d L + v04 ·
∫

L14

T14 d L − v01 ·
∫ ∫

A

b d A (I.1)

Here b denotes the body force vector. Equation (I.1) would apply to a unit thickness of
soil measured perpendicular to the plane of the Figure I.1. We can also write out the
corresponding expression for the rate of dissipation D.

D = v12 ·
∫

L12

T12 d L + v13 ·
∫

L13

T13 d L + v14 ·
∫

L14

T14 d L (I.2)

When we use the upper bound theorem we set D equal to R.
Note from the velocity hodograph in Figure I.1 how the relative velocity vectors are

associated with the element velocities.

v02 = v01 + v12, v03 = v01 + v13, v04 = v01 + v14 (I.3)

∗ By a translational collapse mechanism we mean a plane system of rigid soil blocks separated by
thin shear bands exactly as used throughout Chapter 5.
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Figure I.1. A triangular material element with velocities of surrounding elements.

Using these relationships in (I.1) and setting R = D shows that (I.1) reduces to

0 = v01 ·
∫

L12

T12 d L + v01 ·
∫

L13

T13 d L + v01 ·
∫

L14

T14 d L − v01 ·
∫ ∫

A

b d A (I.4)

Note that the vector v01 can be factored from this expression. Then since v01 is arbitrary
we conclude that ∫

L12

T12 d L +
∫

L13

T13 d L +
∫

L14

T14 d L =
∫ ∫

A

b d A (I.5)

Equation (I.5) is a statement of equilibrium of forces for the triangular element. Thus
we see that, for a translational collapse mechanism, the energy balance equation from
the upper bound theorem is equivalent to the equations of equilibrium. Note that no
reference has made to the material that composes the triangular element.

Further reading

I.F. Collins, A note on the interpretation of Coulomb’s analysis of the thrust on a rough
retaining wall in terms of the limit theorems of plasticity theory, Geotechnique,
24, 442–447 (1973).

A. Drescher and E. Detournay, Limit load in translational failure mechanisms for
associative and non-associative materials, Geotechnique, 43, 443–456 (1993).

J. Heyman, Coulomb’s Memoir on Statics – an Essay in the History of Civil
Engineering, Cambridge University Press, Cambridge, 1972.
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Cam Clay model, 70, 71, 94, 190, 194
dissipation function, 201

simple shear behaviour, 200
stress–strain responses, 198

Cam Clay yield surface, 192, 195, 197
in principal stress space, 71
in (q, p)-space, 70

Cambridge Models, 68
Capped yield surface, 69
Castigliano, A., 246
Cauchy, A., 12
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discontinuous deformation field, 114
dislocations, 60
displacement boundaries, 34
displacement boundary conditions, 247
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pressuremeter problem, 105
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effective stress principle, 20
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eigenvalues, 15

of stress matrix, 229
elastic behaviour, 2, 27
elastic constants, 31

thermodynamic restrictions, 31
elastic deformations and collapse load, 271
elastic energy, during virtual deformation, 244
elastic halfspace, 36
elastic incompressibility, 32
elastic limits, 28
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vector, 97
elastic strains, 203
elasticity matrix, 30, 97, 99
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elastic–perfectly plastic material, 271
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pressuremeter problem, 103
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uniqueness theorem, 263
elastic–plastic material
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elastic–plastic stiffness matrix, 98
energy dissipation

due to slip, 112
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energy dissipation rate, 115, 138, 261, 277
non-associativity, 146
plastic, 259

energy production rate, 251
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extensional strain rate, plastic, 115
extensional strain, 4, 7

plastic, 195
extensional strains

Cam Clay in simple shear, 199
extremum principles, 246
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failure modes, 1
for slope, 42
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failure surface, non-singular, 260
failure without collapse, 273

finite-difference method, 211
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first minimum principle

for elastic plastic material, 251
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flow rule

associated, 90, 93, 197, 199, 226, 250, 253,
259, 264, 266, 271, 274

non-associated, 90, 94, 97, 202, 274
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fragmentation, 40, 43, 45, 204, 206
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Koiter, W.T., 251
Kötter, F., 176
Kötter’s equations, 176

Lade, P.V., 66
Lade–Duncan yield criterion, 66, 75

comparison with Mohr–Coulomb, 66
Lagrange, J.-L., 88
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localization, 42
locked in stresses, 41
Lode angle, 57
Lode, W., 57, 238
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lower bound analysis,
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Mohr transformation, 221
Mohr, O.C., 228
Mroz, Z., 274
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Nadai, A., 247
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neutral loading, 260
non-associated analysis,
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202, 274
non-associated flow, 94

upper bound, 144
non-Cartesian coordinates, 215
non-cohesive soil

upper bound estimate, 130
non-frictional Coulomb material, 153
non-negative work,

during plastic deformation, 256
non-singular failure surface, 260
normal stress on oblique plane, 236
normality condition, 84, 90, 109, 193, 253,

259, 271, 274
normality of slip vector, 86
normality, plastic strain rate vector, 93

oblique plane, normal stress on, 236
oedometer test, 44, 190, 195

for particulates, 207
for granular material, 209

one-dimensional compression, 40, 68
orientation of surface element, 11
overburden stresses, 39

packing
volumetric strains for dense, 199
volumetric strains for loose, 199

Palmer, A.C., 274
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evolution, fractal aspects, 210
fragmentation, 41
interlocking, 43
rearrangement, plastic strains, 203

particles, cracks in, 205
particles, micro-fissures in, 205
particulate behaviour, 3
particulate material, statistical theories, 204
particulates, oedometer test, 207
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peds, 203

fracture of, 203
perfect plasticity, 91
π -plane, 55, 58, 60, 62, 65, 67, 70, 73, 85
planar failure mechanism, vertical cut, 146
planar shear band, 42
planar slip surface, 114
plane elasticity, 34
plane plastic flow, 152
plane strain behaviour, 92
plane strain of cohesionless element, 75
plane strain problem, 92, 215
plane strain, 34

cavity expansion, 99
plane stress, 34
plane translational collapse mechanism, 145
plastic collapse, 269
plastic component

of strain rate, 273
of velocity, 273

plastic deformation, 83
associated flow rule, 145
non-negative work, 256

plastic energy dissipation rate, 144, 255, 259
during virtual deformation, 244

plastic extensional
strain, 195
strain rate, 115

plastic failure, friction block model, 85
plastic flow, 2, 83

by slip, 86
contained, 105
velocity field, 177

plastic materials,
constitutive equations, 259

plastic multiplier, 90
plastic potential function, 94, 98, 101
plastic shear strain rate, 115
plastic strain, due to particle rearrangement,

203
plastic strain increment, 84
plastic strain rate, 83, 201, 226, 250
plastic strain rate matrix, 85
plastic strain rate vector, 115

normality, 93
plastic volumetric strain rate, 95
plastic work rate, 86, 192, 201, 256
plastic work, 187

work hardening materials, 188
plasticity matrix, 99
plasticity

perfect, 91
work hardening, 91

Poisson, S.D., 29
Poisson’s ratio, 29, 32
pole, in Mohr circle, 235
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173
preconsolidation
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principal planes, 14
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245
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of virtual work, 241, 243, 248
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P-waves, 33
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logarithmic spiral, 135
strip footing, 134

rate form of virtual work equation, 270,
273

rate of complementary virtual work,
principle of, 245

rate of energy dissipation, 261, 277
rate of internal energy dissipation, 273
rate of plastic work, 86, 192, 201, 256
rate of virtual work, principle of, 245
rate of work of external loads, 119, 274
Rayleigh, Lord, 246
rearrangement strain, 203
reference configuration, 6
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retaining wall, 137
collapse mechanism, 137
passive pressure force, 139
roughness, 140

retaining wall analysis, 277
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rigid translation, 6
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Saint Venant’s hypothesis, 84, 148
Salencon, J., 274
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second minimum principle

for elastic plastic material, 252
self-boring pressuremeter, 100
Selvadurai, A.P.S., 231, 263
shallow foundation, 133

dilatancy effects, 131
Hencky’s solution, 173
lower bound, 120
upper bound analysis, 127

shallow strip footing
Prandtl’s solution, 173

shear band, 43
shear flow, 180
shear modulus, 29
shear strain rate, plastic, 115
shear strains, 8
shear stress, maximum, 238
shear stress–plastic shear strain response, 198
shear traction, resultant, 232
shear wave speed, 33
shrink-fit problem, 41
sign convention, 4

for stresses, 24, 229, 234, 235
normal stresses, 230
shear stresses, 230

simple shear test, 192
Cam Clay response, 198, 199
Cam Clay yield surface, 195

simple shear, evolution of yield surface, 200
simple shearing, 191
slip direction, 89
slip line analysis, 152
slip line directions,

components of velocity, 179
slip line field,

centred fan, 165
circular tunnel, 166
frictional materials, 169
strip load problem, 166
tunnel problem, 168

slip line fields, 186
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slip line geometries, 157
tunnel problem, 174

slip line orientation, effect of friction, 169
slip line solution,

non-planar boundary, 162
strip load problem, 164
surface with uniform traction, 162
traction-free surface, 160

slip lines, 155
frictional material, 172

slip plane, energy dissipation, 119
slip surface, 115

planar, 114
slip vector, normality, 86
slope failures, 41
small-strain approximation, 9
small-strain matrix, 9
softening, 199
soil behaviour, work hardening theories, 185
soil fabric, 28

evolution, 46
soil mechanics, 3

critical state, 186
soil plasticity, 43
Sokolovskii, V.V., 175
space diagonal, 54, 63, 71
Spencer, A.J.M., 178
stability postulate, Drucker’s, 255, 260, 271

geometrical representation, 260
stability problems, 41
stable material, 255, 260
static equilibrium, 22
statically admissible

stress, 270
stress field, 111, 242, 244, 249
stress rates, 250
stress state, 247
stress state, in halfspace, 113

stationary value, 246
statistical mechanics, 204
statistical theories of particulate materials, 204
step load problem, frictional Coulomb

material, 172
stiffness matrix, elastic–plastic, 98
stored energy function, positive definiteness,

31
strain compatibility, 10
strain dyadic, 224
strain field, kinematically admissible, 248
strain hardening, 187
strain increment

decomposition, 97
plastic, 84

strain matrix, 7, 10, 219, 224
strain rate

additive decomposition, 271
elastic, 97, 250

kinematically admissible, 251
plastic, 83, 250
plastic component, 273

strain softening, 49
strain state at collapse, 272
strain,

decompression, 84
kinematically admissible, 270

strain–displacement equations, 25, 101
strains,

damage, 203
elastic, 203
kinematically admissible, 248
rearrangement, 203
transformation, 221

stress
sign convention, 229, 234, 235
statically admissible, 111, 270

stress deviator, 47, 196
stress discontinuities, 112
stress dyadic, 225
stress field

kinematically admissible, 242
statically admissible, 111, 244, 249
virtual, 244

stress matrix, 12, 25
symmetry of, 13
transformation, 233
transpose, 23

stress point, 53
stress point trajectory, 197
stress rates statically admissible field, 250
stress state

at collapse, 272, 273
in triaxial test, 47
statically admissible, 247
virtual, 244

stress vectors
on oblique plane, 231
on plane, 230

stress–strain relationship, 97
stress–strain responses

for Cam Clay, 198
work hardening materials, 187

stresses
locked in, 41
principal, 14, 232

strip footing, 35
lower bound analysis, 122
radial shear zone, 134
slip line field, 166
upper bound analysis, 128
upper bound collapse load, 130

strip load problem, 216
method of characteristics, 163
slip line field, 166
slip line solution, 164
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strip load, slip line geometry gravity effects,
176

submerged density, 37
surface area, 208
surface energy, 208
surface shape factor, 208
surface traction vector, 11
S-waves, 33

tangent vectors, 222
Taylor, Brook, 257
Terzaghi, K., 20, 136
tetrahedral element, forces on, 231
theorem

collapse load, 109, 152, 186
Green’s, 243, 249
lower bound, 109, 111, 269, 271
of minimum total potential energy, 248
uniqueness for elastic–plastic deformation,

263
upper bound, 109, 112, 269, 273

theorems of limit analysis, 269
theorems, uniqueness, 255
thin shear band, 116
Thomas, T.Y., 260
Timoshenko, S.P., 228
Todhunter, I., 228
total body forces, 23
total complementary energy rate, 252
total energy rate functional, 251
total potential energy,

exact solutions, 248
kinematically admissible state, 248

total stress, 21
trace of a matrix, 9
traction boundaries, 34
traction boundary condition, 232, 247, 250
traction vector, 12
transformation

of strains, 221
of stress matrix, 233
of stresses, 229

transformation matrix, 219, 232
Tresca yield criterion, 58

two-dimensional, 72
Tresca yield surface, 59, 72
Tresca, H., 58
triaxial compression, 46
triaxial extension tests, 63
triaxial test, 46, 48
true collapse load, 112
tunnel problem,

frictional material, 174
slip line field, 168
slip line geometry, 174
stress state for frictional material, 174

two-dimensional
Coulomb yield surface, 77
Drucker–Prager yield surface, 74
stress state, 153
yield locus, 72, 76

undrained behaviour, 9, 33
unique normal to yield surface, 259
uniqueness theorems, 255

for elastic–plastic deformation, 263
unit base vectors, 7
unit matrix, 219
unit normal vector, 18
unit vectors, 56
unloading, 260
unloading path, 266
upper bound

critical height of vertical cut, 120
for strip footing, cohesive soil, 130
non-associated flow, 144, 146
strip footing with gravity effects, 132

upper bound analysis,
collapse mechanism, 119, 128, 133
compatibility of mechanism, 128
non-associated flow, 144, 146
shallow foundation, 127
strip footing, 128
strip footing with gravity effects, 132

upper bound solution,
passive force on retaining wall, 139
retaining wall, 137
vertical cut, 146

upper bound theorem, 109, 112, 269,
273

variational principle, 246
vector equation of equilibrium, 24,

225
velocities, virtual, 244
velocity,

kinematically admissible, 270
plastic component, 273

velocity field in plastic flow, 177
velocity hodograph, 129
vertex point in yield surface, 250
vertical cut solution with non-associativity,

147
vertical cut, 116

critical height upper bound, 120
critical height, lower bound, 119
lower bound estimate, 117
lower bound solution, 118
planar failure mechanism, 146
upper bound analysis, 119
upper bound solution, 146

vertical effective stress, 45
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virgin compression, 196
virtual deformation,

plastic energy dissipation, 244
stored elastic energy, 244

virtual displacement
field, 242
internal work of, 243

virtual rate of work equation, 272
virtual straining, 243
virtual stress field, 244
virtual stress state, 244
virtual velocities, 244
virtual work

complementary, 244
principle of, 241, 243, 248

virtual work equation, rate form, 270,
273

void ratio, 44
volumetric strain, 9, 45

compressive, 9
dense packing, 199
extensional, 9
loose packing, 199
oedometer test, 209

volumetric strain rate, plastic, 95
von Mises yield condition, 59
von Mises yield surface in two dimensions, 73
von Mises, R., 59, 259

wall roughness, 140
Weibull distribution, 205
work hardening

plasticity, 91
theories of, 185, 187

yield condition, Coulomb, 96
yield criteria, cohesionless soils, 67
yield criterion, 52

Coulomb, 60, 96, 101, 226
Drucker–Prager, 65
Lade–Duncan, 66
Matsuoka–Nakai, 67
Cam Clay, 70

yield ellipse, 88
yield function, convex, 259
yield function, Coulomb, 101
yield locus, see yield surfaces
yield surfaces, 54

Cam Clay, 192 197
capped, 69
comparisons, 67
convex, 274
convexity, 90, 271, 272
Coulomb, 73, 77
Drucker–Prager, 74, 250
for metals, 58
initial, 200
Tresca, 72
unique normal, 259
vertex point, 250
von Mises, 73

yield, 52
yielding, 2

drier than critical, 194
wetter than critical, 194

Young, T., 29
Young’s modulus, 29

Ziegler, H., 257
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