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Preface

Over the last 20 years or so, I have witnessed and grown to appreciate the 
difficulty undergraduate students sometimes have in grasping geotechnical 
courses. Geotechnical courses have many new concepts and indigestible 
expressions to initially be memorized. The expressions, which generally 
originate from advanced elastic mechanics, plastic mechanics, and numeri-
cal approaches, are technical and not easily accessible to students. These 
courses may leave the students largely with fragments of specifications. 
This naturally leads the students to have less confidence in their ability to 
learn geotechnical engineering. To resolve the problem, our research reso-
lution has been to minimize the number of methods and input parameters 
for each method and to resolve as many problems as possible. We believe 
this will allow easier access to learning, practice, and integration into fur-
ther research.

Piles, as a popular foundation type, are frequently used to transfer super-
structure load into subsoil and stiff-bearing layer and to transfer impact of 
surcharge owing to soil movement and/or lateral force into underlying lay-
ers. They are installed to cater for vertical, lateral, and/or torsional loading 
to certain specified capacity and deformation criteria without compromis-
ing structural integrity. They are conventionally made of steel, concrete, 
timber, and synthetic materials (Fleming et al. 2009) and have been used 
since the Neolithic Age (6,000~7,000 years ago) (Shi et al. 2006). Their use 
is rather extensive and diverse. For instance, in 2006, ~50 million piles were 
installed in China, ranging (in sequence of high to low proportion) from 
steel pipe piles, bored cast-in-place piles, hand-dug piles, precast reinforced 
concrete piles, pre-stressed concrete pipe piles, and driven cast-in-place 
piles to squeezed branch piles. These piles, although associated with vari-
ous degrees of soil displacement during installation, are generally designed 
using the same methods but with different parameters. It is critical that any 
method of design should allow reliable design parameters to be gained in a 
cost-effective manner. More parameters often mean more difficulty in war-
ranting a verified and expeditious design.
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We attempt to devise design methods that require fewer parameters 
but resolve more problems. This has yielded a systematic approach to 
model pile response in the context of load transfer models. This is sum-
marized in this book of 13 chapters. Chapter 1 presents an overview 
of estimating soil shear modulus and strength using the conventional 
standard penetration tests and cone penetration tests. Chapter 2 pro-
vides a succinct summary of typical methods for estimating bearing 
capacity (including negative skin friction) of single piles and pile groups. 
Chapter 3 recaptures pile–soil interaction models under vertical, lat-
eral, or torsional loading. Chapters 4 and 5 model the response of verti-
cally loaded piles under static and cyclic loading and time-dependent 
behavior, respectively. The model is developed to estimate settlement 
of large pile groups in Chapter 6. A variational approach is employed 
to deduce an elastic model of lateral piles in Chapter 7, incorporating 
typical base and head constraints. Plastic yield between pile and soil (pu-
based model) is subsequently introduced to the elastic model to capture 
a nonlinear response of rigid (Chapter 8) and flexible piles (Chapter 9) 
under static or cyclic loading. Plastic yield (hinge) of pile itself is fur-
ther incorporated into the model in Chapter 10. The pu-based model 
is further developed to mimic a nonlinear response of laterally loaded 
pile groups (see Chapter 11) and to design passive piles in Chapter 12. 
The mechanism about passive piles is revealed in Chapter 13 using 1-g 
model tests. Overall, Chapter 3 provides a time-dependent load trans-
fer model that captures pile–soil interaction under vertical loading in 
Chapters 4 through 6. Chapters 3 and 7 provide a framework of elastic 
modeling (e.g., the modulus of subgrade reaction) and pu-based model-
ing for lateral piles, which underpins nonlinear simulation in Chapters 
8 through 12 and simple solutions in Chapter 13 dealing with lateral 
loading. The pu-based model essentially employs a limiting force profile 
and slip depth to capture evolution of nonlinear response. A model for 
torsional loading is presented in Chapter 3, but the prediction of the 
piles is not discussed in the book.

The input parameters for various solutions in Chapters 3 through 13 
were gained extensively through study on measured data of 10 pile founda-
tions (vertical loading), ~70 laterally loaded single piles (static and/or cyclic 
loading), ~20 laterally loaded, structurally nonlinear piles, ~30 laterally 
loaded pile groups, ~10 passive (slope stabilizing) piles, and ~20 rigid pas-
sive piles. The contents of Chapters 3 through 9 were taught to postgradu-
ates successfully for five years and are updated herein. This book is aimed 
to facilitate prediction of nonlinear response of piles in an effective manner, 
an area of study that has largely been neglected.

I would like to express my gratitude to Professor Mark Randolph for 
his assistance over many years. My former students helped immensely 
in conducting model tests and case studies, including Dr. Bitang Zhu, 
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Dr. Enghow Ghee, and Dr. Hongyu Qin. Last but not least, my wife, Helen 
(Xiaochun) Tang, has always been supportive to this endeavor, otherwise 
this would not be possible.
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List of Symbols

The following symbols are used in this book:

Roman

A = a coefficient for estimating shaft load transfer factor
A(t) = time-dependent part of the shaft creep model
Ab, As = area of pile base and shaft, respectively
Ac = a parameter for the creep function of J(t)
Ag = constant for soil shear modulus distribution
Ah = a coefficient for estimating “A,” accounting for the 

effect of H/L
AL, ALi = coefficient for the LFP; AL for the ith layer [FL−1-ni]
An, Bn = coefficients for predicting excess pore pressure
Aoh = the value of Ah at a ratio of H/L = 4
Ap = cross-sectional area of an equivalent solid cylinder 

pile
Ar = coefficient for the LFP [FL-3]
As = 2(Bi + Li)L, perimeter area of pile group
Av = a constant for shaft limit stress distribution
B = a coefficient for estimating shaft load transfer factor
B(z) = sub-functions reflecting base effect due to lateral 

load
Bc = a parameter for the creep function of J(t)
Bc = width of block
c, c′ = cohesion [FL−2]
C, Cy = zru*/ug (constant k), used for post-tip yield state, and 

C at the tip-yield state
C(z) = subfunction reflecting base effect due to moment
CA, Cp = factors for relative density Dr
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CB, CR, Cs  = borehole diameter correction, rod length correction, 
and sample correction

CN = a modification factor for overburden stress
COCR = overconsolidation correction factor
cub = undrained cohesion at pile-base level [FL−2]
cv = coefficient of soil consolidation 
Cv(z) = a function for assessing pile stiffness at a depth of z, 

under vertical loading
Cvb = limiting value of the function for the ratio of base 

and head loads as z approaches zero
Cvo = limiting value of the function, Cv(z), as z approaches 

zero
Cλ = a coefficient for estimating “A,” accounting for the 

effect of λ
D = outside diameter of a cylindrical pile [L]
D50 = maximum size of the smallest 50% of the sample [L]
dmax = depth of maximum bending moment in the shaft [L]
d

o
= outside diameter of a pipe pile [L]

dr = reference width, 0.3 m
D

r
= relative density of sand

E = Young’s modulus of soil or rock mass [FL−2]
Ec = modulus of elasticity of concrete [FL−2]
EcIp = EI, initial flexural rigidity of the shaft [FL2]
Em = hammer efficiency
Em = deformation modulus of an isotropic rock mass 

[FL2]
Ep = Young’s modulus of an equivalent solid cylinder pile 

[FL−2]
Er = deformation modulus of intact rock mass [FL2]
e, eoi = eccentricity or free-length from the loading location 

to the mudline; or e = Mo/Ht; or distance from point 
O to incorporate dragging effect [L]

em, ep, ew = eccentricity of the location above the ground level 
for measuring the Mmax, applying the P(Pg), and 
measuring the wt

F(t) = the creep compliance derived from the visco-elastic 
model

FixH = fixed-head, allowing translation but not rotation at 
head level
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FreH = free head, allowing translation and rotation at head 
level

Fm = pile-pile interaction factor (passive pile tests)
′fc

= characteristic value of compressive strength of the 
concrete [FL−2]

′′fc = design value of concrete compressive strength 
[FL−2]

fr = Mcryr/Ig, modulus of rupture [FL−2]
fr = friction ratio computed using the point and sleeve 

friction (side friction), in percent
fy = yield strength of reinforcement [FL−2]
G, �G = (initial) elastic shear modulus, average of the G 

[FL−2]
G* = soil shear modulus, G* = (1 + 0.75νs)G [FL−2]
Gb, Gbj = shear modulus at just beneath pile base level; or ini-

tial Gb for spring j (= 1, 2) [FL−2]
Gb(t) = time-dependent initial shear modulus at just beneath 

pile base level [FL−2]
Gi, Gi

* = G, Gi
* for ith layer [FL−2]

Gj = the instantaneous and delayed initial shear modulus 
for spring j (j = 1, 3) [FL−2]

GL = (initial) shaft soil shear modulus at just above the 
pile base level [FL−2]

Gm = shear modulus of an isotropic rock mass [FL−2]
Gγj, G1%  = shear modulus at a strain level of γj for spring j 

(j = 1, 2) within the visco-elastic model, or shear 
modulus at a shear strain of 1% [FL−2]

gs = pu/(qu)1/n, a factor featuring the impact of rock 
roughness on the resistance pu

GSI = geology strength index
h = distance above pile-tip level
hd = the pile penetration into dense sand
H = the depth to the underlying rigid layer (Chapters 4 

and 6) [L], or horizontal load applied on pile-head 
(Chapter 7) [F]

H, Hmax = lateral load exerted on a single pile, and maximum 
imposed H [F]

H(z) = sub-function, due to lateral load (Chapter 7); lateral 
force induced in a pile at a depth of z [F]
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Hav, Hg = average load per pile in a group, and total load 
imposed on a group [F]

He = lateral load applied when the slip depth is just initi-
ated at mudline [F]

Ho = H at a defined (tip-yield or YRP) state [F]
H2 = lateral load applied at a distance of “eo2” above point 

O, and H1 = −H2 [L]
H = Hλn+1/AL, normalized pile-head load

H zi ( ) = normalized shear force induced in a pile at a normal-
ized depth of z for i = 1 (0 < z ≤ zo), 2 (zo < z ≤ z1), and 
3 (z1 < z ≤ l), respectively

i = subscripts 1 and 2 denoting the upper sliding and 
lower stable layer, respectively

I = settlement influence factor for single piles subjected 
to vertical loading

Icr = moment of inertia of cracked section [L4]
Ie = effective moment of inertia of the shaft after  cracking 

[L4]
Ig = moment of inertia of a gross section about  centroidal 

axis neglecting reinforcement [L4]
Ig = wgdEL/Pg, settlement influence factor for a pile 

group
Im, Im-1 = modified Bessel functions of the first kind of non-

integer order, m and m − 1 respectively
Ip = moment of inertia of an equivalent solid cylinder pile 

[L4]
Ip = the plasticity index
I(z) = sub-function due to moment
J = empirical factor lying between 0.5 and 3 for estimat-

ing Ng

Ji = Bessel functions of the first kinds and of order i 
(i = 0, 1)

J(t) = a creep function defined as ζc/G1

k = permeability of soil (Chapter 5)
k, ko = modulus of subgrade reaction [FL-3], k = kozm

,
 m = 0 

and 1 for constant and Gibson k, respectively; and 
ko, a parameter [FL-3-m]

ki, kj = parameters for estimating load transfer factor, i = 1, 
3 (lateral loading), or a factor representing soil non-
linearity of elastic spring j (vertical loading)
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ki = modulus of subgrade reaction for ith layer (passive 
piles)

kr = a constant for concrete rupture
ks = a factor representing pile–soil relative stiffness
ksg = ks for a pile in a two-pile group
kϕ = pile rotational (constraining) stiffness about the 

head
K = average coefficient of earth pressure on pile shaft 

with minimum and maximum values of Kmin and 
Kmax

Ka = tan2 (45° − ϕ′/2), the coefficient of active earth 
pressure

Kg = 0.6~1.5, group interaction factor, with higher values 
for dense cohesionless or stiff cohesive soils, other-
wise for loose or soft soils

Ki(γ) = modified Bessel function of second kind of i-th order
Km, Km-1 = modified Bessel functions of the second kind of non-

integer order m and order m − 1, respectively
Kp = tan2 (45° + ϕ′/2), the coefficient of passive earth 

pressure
L(l) = embedded pile length
Lc = length of block
Lc = critical embedded pile length beyond which the pile 

is classified as infinitely long
LFP = net limiting force profile per unit length [FL−1]
LR, MR, TR = leading row, middle row, and trailing row
L1 = the depth of transition from elastic to plastic phase, 

the slip part length of a pile under vertical loading
L2 = length of the elastic part of a pile under a given load
Lm = sliding depth during a passive soil test [L]
Ln = depth of neutral plane
m = 1/(2 + n), or number of rows of piles
m2 = ratio of shear moduli, Gγ1/Gγ2

M, M(x) = moment induced on a pile element, or M at a depth 
of “x” [FL]

MA(x), MB(z) = moment induced in a pile element, at depth x and z, 
respectively [FL]

MB = moment induced at pile-base level [FL]
Mcr = cracking moment [FL]
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Mmax, Mm  = maximum bending moment within a pile [FL]
Mn = nominal or calculated ultimate moment [FL]
Mo = moment applied on pile-head or at the mudline level 

[FL]
Moi = Hieoi, bending moment about point O [FL]
Mt = moment applied at the shaft at the groundline [FL]
M x( ) = M(x)λn+2/AL, normalized bending moment at 

depth x
M zi ( ) = bending moment induced in a pile at a normalized 

depth of z for i = 1 (0 <z ≤ zo), 2(zo <z ≤ z1), and 3 (z1 
<z ≤ l), respectively

Mmax
= Mmaxλ2+n/AL, normalized M

max

n = number of piles enclosed by the square (NSF)
n = number of piles in each row
n = power of the shear modulus distribution, nonhomo-

geneity factor, or power for the LFP
nc = the safe cyclic load amplitude
nc

FreH, ns
FixH = power of the LFP for free-head and fixed-head 

respectively. The subscripts s and c refer to sand and 
clay, respectively

ne = equivalent nonhomogeneity factor
ng = number of piles in the pile group
nmax = maximum ratio of pile-head load and the ultimate 

shaft load
np = ratio of pile-head load and the ultimate shaft load
N = visco-elastic time factor, or blow count of the 

Standard Penetration Test
N′ = corrected blow counts of SPT
N60 = blow counts of SPT at a standard rod energy ratio of 

60%
Nc, Nq = bearing capacity factors
Nco = lateral capacity factor–correlated soil, undrained 

strength, with the limiting pile–soil pressure at 
mudline

Ng = gradient-correlated soil, undrained strength, with 
the limiting pile–soil pressure

N
g
FreH, N

g
FixH = gradient-correlated soil strength to the pu for free- 

and fixed-head piles, respectively
Nk = cone factor (a constant for each soil) ranging from 

5 to 75
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Np = a factor for limiting force per unit length (plastic 
zone)

Np = fictitious tension for a strecthed membrane tied 
together the springs around the pile shaft (elastic 
zone)

�Nc
= equivalent lateral capacity factor correlated average 

soil undrained strength with average net limiting 
force per unit length by � � �p s N du u c=

p = surcharge loading on ground surface
p, p

u
= force per unit length, and limiting value of the p 

[FL−1]
p′ = mean effective stress [FL−2]
P = vertical load on a pile head under passive tests [F]
pa = atmospheric pressure, ≈ 100 kPa
Pb(Pfb) = load of pile base (ultimate Pb) [F]
PBL = a total failure load of the group [F]
Pcap = the bearing capacity of the pile cap on the bearing 

stratum
Pe = axial load at the depth of transition (L1) from elastic 

to plastic phase [F]

P Pex
cap

in
cap, = components of capacity deduced from areas Aex

c  
(lying outside the block) and Ain

c  (inside block)
Pf(Pu) = ultimate pile bearing load [F]
Pfs = ultimate shaft load of a pile [F]
Pij = pile number ij in a group (i = 1–3, j = 1–2)
pm = p-multipliers used to reduce stiffness, and limiting 

force for individual piles in a group
Pns = total downdrag load [F]
Pt = vertical load acting on pile head [F]
Pug = ultimate capacity of the pile group
�pu

= average limiting force per unit length over the pile 
embedment [FL−1]

p(x), Q(x) = net force per unit length, and shear force at the nor-
malized depth x

P(z) = axial force of pile body at a depth of z [F]
q′ = stress on the top of the weaker layer [FL−2]
qb, ′qb = unit base resistance, net qb [FL−2]
qbmax = maximum end-bearing capacity [FL−2]
qc = cone resistance qc of a CPT test
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qu = uniaxial compressive strength of the weaker mate-
rial (rock or concrete) [FL−2]

qui = uniaxial compressive strength of intact rock [FL−2]
Q, QB = shear force induced on a pile cross-section, and the 

Q at pile-base level [F]
QA(x), QB(x) = shear force induced on a pile cross-section [F]
Qg = the perimeter of the pile group (equivalent large pile)
r = radial distance from pile axis [L]
r* = the radius at which the excess pore pressure, by the 

time it reaches here, is small and can be ignored [L]
rm = radius of zone of shaft shear influence [L]
rmg = a radius of influence of pile group [L]
ro = radius of a cylindrical pile [L]
R = the radius beyond which the excess pore pressure is 

initially zero [L]
R( �R) = ratio of Ng of a single pile in a group over that of the 

single pile (average of R)
RA, RB, RC, 
RD, RE

 = subratings for qui, RQD, spacing of discontinuities, 
conditions of discontinuities, and groundwater, 
respectively

Rb = ratio of settlement between that for pile and soil 
caused by Pb, base settlement ratio

Rfb, Rfj = a hyperbolic curve-fitting constant for pile base load 
settlement curve, or for the elastic element j within 
the creep models

RMR = rock mass rating
RQD = rock quality designation
Rmax = roughness of the concrete
Rs = group settlement ratio
s = argument of the Laplace transform (Chapter 5), or 

pile center to center spacing (Chapter 7)
sb = a loading distance between center of a pile (group) 

and loading block
sg = an integral factor to cater for all sorts of influence
su, �su

= undrained shear strength, an average su over the pile 
embedment [FL−2]

s
uL

= undrained shear strength at pile tip or footing base 
level [FL−2]

t (t*) = time elapsed
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t = wall thickness of a pipe pile or thickness of concrete 
cover [L]

t90 = time for (uo − u)/uo = 0.9
T = loading time
T = relaxation time, η/G2, or rate of consolidation
T50, T90 = time factor, T, for 50% and 90% degree of “consoli-

dation,” respectively
T2(T3) = relaxation time, ηγ2/Gγ2 (ηγ3/Gγ3)
Tmax = sliding force on a rigid pile
Tn(t) = the time for the solution of the reconsolidation the-

ory, also written as T(t)
TR = total resistance over the maximum slip depth xp 

obtained under Pmax [F]
Tult = ultimate Tmax

u = excess pore water pressure [FL−2] or radial displace-
ment [L]

u, ug = lateral displacement, and u at mudline level [L]
u* = local threshold u* above which pile–soil relative slip 

is initiated [L]
u(z) = axial pile displacement at a depth of z [L]
Uk = energy parameter for “y = 1” per unit pile length
Um = energy parameter for “dϕ/dr = 1” per unit radial 

length
UN = energy parameter for “dy/dz = 1” per unit pile length
Un = energy parameter for “ϕ = 1” per unit radial length
uo = initial pore water pressure [FL−2]
uo(r) = initial excess pore water pressure at radius r [FL−2]
uv = vertical displacement along depth [L]
v = circumferential displacement [L]
Vi = cylinder function of i-th order
w, wc = local shaft deformation, and creep part of w [L]
w(or y), w(x), 
w(z) 

= lateral deflection of a pile, w in the plastic, and w in 
elastic zone, respectively [L]

w(x), ′w x( ) = deflection [L] and rotation at the normalized depth x
w(z) = deformation of pile body at a depth of z for a given 

time [L]
w(z) = pile body displacement at depth z, or simply written 

as w [L]
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wA, wB = lateral deflection in the upper plastic zone and lower 
elastic zone, respectively [L] (Chapter 9)

wB = pile base displacement at the base level [L] (Chapter 7)
wA

IV, wA′′′, 
wA′′, wA′ 

= fourth, third, second, and first derivatives, respec-
tively, of deflection w with respect to the depth x

wB
IV, wB′′′, 

wB′′, wB′
= fourth, third, second, and first derivatives, respec-

tively, of deflection w with respect to the depth x
wb, wt = settlement of pile base and head, respectively [L]
we = settlement due to elastic compression of pile [L]
we

c = a reduced limiting shaft displacement deduced from 
the limiting shaft stress, τf

c

wf = frame (soil) movement during a shear test [L]
wg, wg′ = lateral pile deflection [L], and rotation angle (in 

radian) at mudline, respectively, or point O for pas-
sive piles

wg
= wgkλn/AL, normalized mudline deflection

wgi = a lateral pile deflection at point O (sliding level) [L]
wi = settlement or deformation of the i-th pile in a group 

of ng piles [L]
wi = initial frame movement during which pile response 

is negligible [L]
wp = PtL/(EpAp)
wp = pu/k, lateral deflection at the slip depth of xp [L]
wp

IV, wp′′′, 
wp′′, wp′

= values of fourth, third, second, and first deriva-
tives, respectively, of deflection w with respect to the 
depth x at depth xp

ws = lateral (uniform) soil movement, or shaft displace-
ment [L]

wt = pile-head settlement, or lateral deflection [L]
wt1 = settlement of a single pile under unit head load [L]

x, xp, x, xp  = depth below ground level, slip depth of plastic zone, 
x = λx, xp = λ xp

xi = depth measured from point O on the sliding inter-
face [L]

xmax = depth at which maximum bending moment occurs 
(xmax = xp + zmax when ψ ( )xp  ≥ 0; xmax = xmax when 
ψ ( )xp  < 0) [L]

xmaxi = depth of maximum bending moment measured from 
point O in plastic zone [L]
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xp, xpi = slip depth from the elastic to the plastic state; or xp 
from the elastic-plastic boundary to point O [L]

xs = thickness of the zone, in which pile deflection 
exceeds soil movement [L]

y(z) = pile body displacement at depth z, or simply written 
as y [L]

Yi = Bessel functions of the second kinds and of order i 
(i = 0, 1)

YRP = yield at rotation point
yo = pile deflection at sand surface [L]
z = depth measured from the mudline [L]
z, z = x − xp, depth measured from the slip depth [L] and 

z = λz, respectively
zc = critical depth [L]
zi = xi − xpi, depth measured from the slip depth, xpi [L]
zm = depth of maximum bending moment [L]
z

max2
= depth of Mmax2 measured from the slip depth, xp2 [L]

z
maxi

= depth of Mmaxi measured from the sliding interface [L]
zo(z1) = slip depth initiated from mudline (pile-base) [L]
zr = depth of rotation point [L]
zt = an infinite small depth [L]
z* = slip depth zo at the moment of the tip-yield [L]

Greek
α = average pile–soil adhesion factor in terms of total 

stress
α, β = stiffness factors for elastic solutions (lateral piles) [L−1]
αc = nondimensional creep parameter for standard linear 

model, or ratio of the shear modulus over the und-
rained strength, G/su

αE = 0.0231RQD − 1.32 ≥ 0.15, and RQD in percentage
αg = shear modulus factor for ground surface
αij = pile-pile interaction factor between pile i and pile j 

(vertical loading)
αm = shaft friction factor
αn = consolidation factor
αN, βN = α/λ, and β/λ, normalized α and β by λ, respectively
αo(αo) = an equivalent depth to account for ground-level lim-

iting force with αo 
= αoλ

αr = a reduction factor (related to qu) for shaft friction
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αsi = a factor correlating maximum shear force to bend-
ing moment (i = 1, 2) of passive piles

αρP, αρM  = the interaction factor between the i-th pile and j-th 
pile, reflecting increase in deflection due to lateral 
load and moment loading, respectively

αθP, αθM = the interaction factor between the i-th pile and j-th 
pile, reflecting increase in rotation due to lateral load 
and moment loading, respectively

β = average pile–soil adhesion factor in terms of effec-
tive stress

βr = a factor correlated to the discontinuity spacing in the 
rock mass

γ (�γ) = shear strain (shear strain rate)
γb = load transfer factor
γj (γ

. j) = shear strain (shear strain rate) for elastic spring j
γm = effective unit weight of the rock mass [FL-3]
γrθ, γθz, γrz = shear strain within the r-θ plane, θ-z plane, and the 

r-z plane, respectively

γs( ′γ s) = unit weight of the overburdened soil (effective γs) 
[FL-3]

γw = the unit weight of water [FL-3]
δ = factor used for displacement prediction
δ = interface frictional angle, being consistent with that 

measured in simple shear tests
δθ = mean total stress

δσ′r (δσθ′) = increments of the effective stress during consolida-
tion in radial and circumferential directions

δσ′z = increments of the effective stress during consolida-
tion in depth direction

εij = strain components within the surrounding soil
εr, εθ, εz = strain in the radial, circumferential, and depth 

directions
εv = the volumetric strain
ζ, ζj = shaft load transfer factor, nonlinear measure of the 

influence of load transfer for spring j (j = 1, 2) within 
the creep models

ζc = a nondimensional creep function
ζg = shaft load transfer factor for a pile in a two-pile 

group
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η = group efficiency correlated to the ratio ρ of the shaft 
(skin) load, Pfs over the total capacity, Pu (i.e., ρ = 
Pfs/Pu)

ηs, ηb = the efficiency factors of shaft and base
ηs′ = geometric efficiency
ηγi(η) = shear viscosity for the dash at strain γi (i = 2, 3)
θ = power of the shear stress distribution, nonhomoge-

neity factor (Chapter 4)
θ = an angle between the interesting point and loading 

direction (Chapter 7)
θB = pile rotation angle at base level
θg, θt = rotational angle at groundline (or point O), the angle 

at pile-head level
θo = pile-head rotation angle, or differential angle between 

upper and lower layer at point O (Chapter 12)
θw = rotation angle of pile at the point of ew (Chapter 11)
λ = relative stiffness ratio between pile Young’s modulus 

and the initial soil shear modulus at just above the 
base level, Ep/GL (vertical loading)

λ, λi = reciprocal of characteristic length, λ = k E Ip p/ ( )44  
(lateral loading), λ for i-th layer [L−1]

λ = factor to correlate shaft friction to mean effective 
overburden pressure, and undrained cohesion

λn = the n-th root for the Bessel functions
λs = Lame’s parameter
μ = degree of pile–soil relative slip
νp(νs) = Poisson’s ratio of a pile (soil)
ξ = shaft stress softening factor, when w > we (Chapter 4)
ξ = outward radial displacement of the soil around a pile 

[L] (Chapter 5)
ξ = a factor to capture impact of pile-head constraints 

and soil resistance, etc., on the resistance zone of a 
passive pile (Chapter 12)

ξb = pile base shear modulus nonhomogeneous factor, 
GL/Gb

ξc = a yield stress ratio for cyclic loading
ξmax, ξmin = the maximum and minimum values of the factor ξ 

(Chapter 12)
π1, π1* = normalized pile displacement and local limiting of π1
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lii List of Symbols

π2 = normalized depth with pile length
π3 = normalized pile–soil relative stiffness factor
π4 = normalized pile–soil relative stiffness for plastic case
π2p = normalized depth with slip length
πv = pile–soil relative stiffness
ρ = pile-head deformation [L]
ρg = ratio of the average soil shear modulus over the pile 

embedded depth to the modulus at depth L
σho = horizontal stress [FL−2]
σr, σθ, σz = radial, circumferential, and vertical stress in the sur-

rounding soil, respectively [FL−2]
σ′v = effective overburden pressure [FL−2]
σ′vb = effective overburden pressure at the toe of the pile 

[FL−2]

σ′vs( ′σvs) = effective overburden pressure over the pile shaft 
(average σ′vs) [FL−2]

τ(τf) = local shear stress (limiting τ) [FL−2]

τ
.

= shear stress rate for spring 1 in the creep model

τf
c = new limiting shaft stress under cyclic loading [FL−2]

τj(τfj) = local shear stress on elastic spring j with j = 1, 3 
(maximum τj) [FL−2]

τo,τo(t*) = shear stress on pile–soil interface, and τo at the time 
of t*[FL−2]

(τo)ave = average shear stress on a pile–soil interface over all 
the entire pile length [FL−2]

τoj = shear stress on pile–soil interface at elastic spring j 
(j = 1, 2) [FL−2]

τs = (average) shaft friction along a pile shaft [FL−2]

τultj = ultimate (soil) shear stress for spring j (j = 1, 3), 
respectively [FL−2]

ϕ(ϕ′) = angle of friction of soil (effective ϕ)
ϕ = ultimate moment reduction factor (Chapter 10)
ϕ(r) = attenuation of soil displacement at r from the pile 

axis
ϕ′1 = undisturbed friction angle at the pile toe before pile 

installation
ϕ′cv = critical frictional angle at constant volume

ϕp = frictional angle under plane strain conditions

ϕr = residual angle of friction of soil
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List of Symbols liii

ϕtr = frictional angle under axisymmetric conditions

χv = a ratio of shaft and base stiffness factors for vertical 
loading

ψ = factor to correlate adhesion factor α to unconfined 
compressive strength qu

ψj = (τojRfj/τultj), nonlinear stress level on pile–soil inter-
face for spring j (j = 1, 2)

ω = water content (Chapter 1)
ω = a pile-base shape and depth factor (Chapters 4 and 5)
ω = a rotation angle (in radian) of a lateral pile
ωg = base shape and depth factor for a pile in a two-pile 

group
ωh, ωoh = a coefficient for estimating “ω”, accounting for the 

effect of H/L and the value of ωh at a ratio of H/L = 4

ων, ωoν = a coefficient for estimating “ω”, accounting for the 
effect of νs and the value of ων at a ratio of νs = 0.4

Principal Subscript (Piles Only)
A = upper plastic zone (lateral piles)
B = lower elastic zone (lateral piles)
b = pile-base
max, m = maximum
p = pile
t = pile-head
u = ultimate
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Chapter 1

Strength and stiffness 
from in situ tests

In the design of pile foundations, two critical soil parameters of shear mod-
ulus and limiting friction along pile–soil interface are generally required. 
Because they vary from site to site, they must be determined for each loca-
tion. This can be very costly if done through laboratory and/or in situ tests. 
In practice, these parameters may be gained through some correlations 
with in situ tests. Typical correlations are reviewed here concerning two 
common types of Standard Penetration Tests (SPT) and Cone Penetration 
Tests (CPT).

1.1 STANDARD PENETRATION TESTS (SPT)

The Standard Penetration Test was developed in the late 1920s, but the 
test procedure was not standardized until 1958 (see ASTM D1586), with 
periodic revisions to date. The test consists of the following procedures: 
(a) driving the standard split-barrel sampler a distance of 460 mm into the 
soil at the bottom of the boring, (b) counting the number of the blows to 
drive the sampler for the last two 150 mm distance (total = 305 mm) to 
obtain the blow counts number N, (c) using a 63.5-kg driving mass (or ham-
mer) falling “free” from a height of 760 mm onto the top of the boring rods. 
The SPT test is normally halted if (a) 50 blows are required for any 150 mm 
increment, (b) 100 blows are obtained (to drive the required 300 mm), 
and (c) 10 successive blows produce no advance. The raw SPT data must 
be  corrected to yield the real (corrected) value of SPT, as outlined next.

1.1.1 Modification of raw SPT values

Skempton (1986) conducted an extensive review about the impact of some 
key factors on efficiency of SPT tests. The review provides the

•	 Values of hammer efficiency for four typical methods of releasing the 
hammer
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2 Theory and practice of pile foundations

•	 Values of rod energy ratio, which is defined as the ratio of the actual 
hammer energy to sampler and the input (free-fall) energy

•	 Correction factor of less than unity for a rod length less than 10 m, as 
a result of loss in delivered energy

•	 Tentative correction factors of 1.05 and 1.15 for 150 mm and 200 mm 
boreholes, respectively, as lower N values are normally gained using 
the boreholes than those from 115 mm boreholes

•	 Impact of overburden stress associated with sand density

In particular, the energy ratio is equal to 0.3 to 1.0 (Kovacs and Salmone 
1982; Riggs 1983). A standard rod energy ratio of 60% is recommended 
to normalize all measured blow account N values, by simple proportion 
of energy ratios, to this standard, and the normalized values are denoted 
as N60. Note standard penetration resistance is sometimes normalized 
to a rod energy ratio of 70% (Er70 = 70). The associated standard below 
counts of N70 (the subscript of “70” refers to Er70 = 70) is estimated using
E N E Nr r70 70 60 60= . The blow counts, N60 of SPT data using the energy E60 
is equal to another blow counts, N70, of the energy E70. For instance, given 
N70 = 20, the value of N60 with Er60 = 60 is calculated as 23.3. The effi-
ciency, the ratio, and correction factors may be multiplied directly with a 
measured blow count N to gain a corrected N value, as detailed next.

1.1.1.1 Method A

In light of these influence factors listed, the N60 may be revised as (Skempton 
1986):

 
N

E C C Cm B S R
60 0 6

=
N

.
 (1.1)

where N60 = SPT N value corrected for field procedures; Em = hammer effi-
ciency; CB = borehole diameter correction; Cs = sample correction; CR = 
rod length correction; and N = measured SPT N value. In addition, the SPT 
data should be adjusted to accommodate the effect of effective stress and 
field procedures. This leads to a corrected SPT ′N60 value of

 ′ =N C NN60 60 (1.2)

where CN is a modification factor for overburden stress (see Figure 1.1) with 
CN = 2/( )1+ ′σv ap/  (normally consolidated fine sands), CN = 3/( )2 + ′σν /pa  
(normally consolidated coarse sands), and CN = 1.7/( . )0 7 + ′σv ap/  (overcon-
solidated fine sands) (Skempton 1986); pa = 100 kPa, atmospheric pressure; 
and ′σv = vertical effective stress at the test location (see Figure 1.1).
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Strength and stiffness from in situ tests 3

1.1.1.2 Method B

When the SPT test is carried out in very fine sand or silty sand below the 
water table, the measured N value, if greater than 15, should be corrected 
for the increased resistance due to negative excess pore water pressure set 
up during driving. In this circumstance, the resulting SPT blow counts N′ 
is given by (Terzaghi and Peck 1948)

 ′ = + −N N15 0 5 15. ( ) (1.3)

Generally, the standard penetration resistance (N), relative density (Dr) 
may be related to effective overburden pressure ( ′σv) by (Meyerhof 1957)

 
N

D
a b

r
2
= + ′σν (1.4)

Values of the parameters a and b for more than 50 field tests in sand have 
been determined (Skempton 1986), with typical examples being provided 
in Figure 1.2 (and σ′ν in units of kPa).

1.1.2 Relative density

The SPT value has been used to classify the consistency or relative density 
of a soil. Skempton (1986) added appropriate values of N ′60 to Terzaghi and 
Peck’s (1948) classification of relative density, as shown in Table 1.1.
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Figure 1.1  SPT N correction factor for overburden pressure. (After Skempton, A. W., 
Geotechnique 36, 3, 1986.)

www.engbasics.com



4 Theory and practice of pile foundations

The value of Dr can be assessed in terms of SPT values (Kulhawy and 
Mayne 1990):

 
D

N

C C Cr
p A OCR

=
′
60  (1.5)

where C D C tp A= + = +60 25 1 2 0 05 0 0150log , . . log( . ) and COCR = OCR0.18; 
Dr = relative density (in decimal form); Cp = grain-size correction factor; 
CA = aging correction factor; COCR = overconsolidation correction factor; 
D50 = grain size at which 50% of the soil is finer (mm); t = age of soil (time 
since deposition)(years); and OCR = overconsolidation ratio.
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Figure 1.2  Effect of overburden pressure. (After Skempton, A. W., Geotechnique 36, 3, 
1986.)

Table 1.1 Soil relative density description

N′60 (Terzaghi 
et al. 1996)

Relative 
density (%) Descriptive term

Penetration resistance 
N (Blows/305 mm) 

(BSI 1981)

0–3 0–15 Very loose 0–4
3–8 15–35 Loose 4–10
8–25 35–65 Medium 10–30
25–42 65–85 Dense 30–50
42–58 85–100 Very dense >50
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Strength and stiffness from in situ tests 5

1.1.3 Undrained soil strength vs. SPT N

It is useful to have a correlation between SPT values and soil strength. 
Many empirical expressions were proposed and are dependent of plasticity 
index (Ip). The Ip is normally used to describe the state of clay and silt, both 
alone and in mixtures with coarser material. The soil plasticity is normally 
classified in terms of liquid limit (LL) (BSI 1981), as low (LL < 35%), inter-
mediate (LL = 35~50%), high (LL = 50~70%), very high (LL = 70~90%), or 
extremely high (LL > 90%)

Stroud (1974) presented the variation of N value with undrained shear 
strength (su) for London clay. As replotted in Figure 1.3, the su is about (4–5)
N kPa for clays of medium plasticity and (6–7)N kPa or more for soil with 
a plasticity index (IP) less than 20. Tezaghi and Peck (1967) reported a high 
value of su = 12.8N. Sower (1979) attributed the variations to clay plastic-
ity, and su = 7.2N (low plasticity), 14.2N (medium), and 24N (high plasticity), 
respectively. The high ratio is also noted as su = 29N0.27 (Hara et al. 1974). On 
the other hand, low strength of su = (1~4)N kPa is commonly adopted in 
Southeast Asia region: an average su = ~4N kPa for the weathered Kenny 
Hill Formation from eight test sites within Kuala Lumpur (Wong and Singh 
1996); and a strength su ≈ N for clayey silt, and su ≈ (2~3)N for silty clay in 
Malaysia (Ting and Wong 1987). The Chinese hydraulic engineering code 
(SD 128-86) recommends a cohesion of (5.5~7)N (N = 3~13), and (3.5~5.2)
N (N = 17~31) for alluvial and diluvial clay, as detailed in Table 1.2.
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Stroud (1974):
 London Clay
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 Laminated Clay
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 Keuper Marl
 Flinz
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 Oxford Clay
 Kimmeridg Clay
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 Upper Lias Clay

su/N60 = 12.3[Ip] 0.27
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U
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m
)/N
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Plasticity index, Ip ( )

Figure 1.3  Plasticity versus ratio of undrained shear strength over N60. (Data from 
Stroud, M. A., Proc European Symp on Penetration Testing, Stockholm, 1974.)
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6 Theory and practice of pile foundations

Vane shear strength for normally consolidated clay was correlated to the 
overburden stress ′σv and the plasticity index Ip by (Skempton 1957)

 s Iu p/ . .′ = +σν 0 11 0 0037  (1.6)

This expression agrees with that observed from Marine clays, but for a 
reverse trend of decrease in su/ ′σv with plasticity index Ip of 0~350 for soils 
with thixotropic behavior (dilate during shear) (Osterman 1959). Most of 
remolded clays have a su/ ′σν ratio of 0.3 ± 0.1.

It must be emphasized that the ratio of su/N depends on stress level 
to a large extent. In design of slope, dam, lateral piles, or predicting 
foundation response owing to liquefaction of sand, the clay or sand may 
“flow” around these structures or foundations. The associated und-
rained shear strength has been correlated with the N values, as illus-
trated in Figure 1.4. Indeed the observed ratio of su/N is much lower 
than those mentioned above in relation to foundation design at “pre-
failure” stress level.

1.1.4 Friction angle vs. SPT N, Dr, and Ip

The angle of friction of soil has been correlated empirically with SPT 
blow counts by various investigators. Peck et al. (1953) suggested the 
curve in Figure 1.5, which is well represented with ϕ′ = 0.3N60 + 26° to a 
N value of 40. The impact of effective overburden stress ′σν on the angle 
has been incorporated into the estimation (e.g., the Japan railway). JSCE 
(1986) suggests

 ′ =
+ ′









 +φ

σ
1 85

0 7
26

0 6

.
. ( )

.

o oN
pv a/

 (1.7)

This expression offers essentially similar values to those obtained from the 
Peck’s expression to a N of 50 (Peck et al. 1953) at a ′σv < 100 kPa, and other-
wise results in an angle ~7 degrees smaller. The former prediction is close 
to the “extended” curve of the Chinese code (SD 128-86) of 0.3N + 19° 

Table 1.2 Correlation between N value and friction angle or cohesion 

N63.5 (manual) 3 5 7 9 11 13 15
Friction angle, ϕ (°) 17.7 19.8 21.2 22.2 23.0 23.8 24.3
Cohesion, c (kPa) 17 49 59 66 72 78
N63.5 (manual) 17 19 21 25 29 31
Friction angle, ϕ (°) 24.8 25.3 25.7 26.4 27.0 27.3
Cohesion, c (kPa) 83 87 91 98 103 107

Source: Chinese Hydaulic Engineering Code (SD128-86), Manual for Soil Testing, 2nd 
ed., Chinese Hydraulic-Electric Press, Bejing, 1987.
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Figure 1.4  Undrained shear strength versus N60 (clean sand). (Data from Wride, C. E., E. C. 
McRoberts, and P. K. Robertson, Can. Geotech. J. 36, 1999.)
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Figure 1.5 SPT blow counts versus angle of internal friction.
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8 Theory and practice of pile foundations

(see Figure 1.4), for example, at N = 100, Equation 1.7 offers ϕ′ = 42.2° 
( ′σv = 200 kPa) and 39.4° ( ′σv = 300 kPa). The low angle (for clay), in fact, 
characterizes the impact of high plasticity in comparison with the Peck’s 
suggestion for low “plasticity” sand.

Using the relative density of Equation 1.5, the frictional angle of soil may 
also be obtained by (Meyerhof 1959)

 φ = +28 0 15. D Dr r( = %) (1.8)

In design of retaining structures in clay soils, in the absence of reliable 
laboratory test data, the conservative values (Table 1.3) of the constant vol-
ume (critical) angle of shearing resistance, ϕcv may be used with cohesion 
c = 0 (BSI 1994). The friction angle reduces by 10 degrees as the plasticity 
index Ip increases from 15% to 50%. The suggestion works well for later-
ally loaded piles (see Chapter 9, this book). On the other hand, some typi-
cal test data (Kenney 1959; Terzaghi et al. 1996) are plotted in Figure 1.6, 
which indicate the angle of friction (degrees) may be well correlated with 
plasticity index Ip by

 ′ = −φ 56 2 0 223. ( ) .Ip  (1.9)

1.1.5 Parameters affecting strength

Some correlations among overburden pressure, soil strength (density), 
and SPT blow counts are reported previously: (a) The ′σv ~ ϕ ~ N60 plots 
(Schmertmann 1975), which provide a rough estimate of the angle ϕ (not 
suitable to a depth less than <2 m); (b) The ′σv~Dr~N60 plots (Holtz and 
Gibbs 1979), which offer the relative density Dr; (c) Gradation and maxi-
mum particle size on the angle ϕ (Lambe and Whitman 1979).

The impact of relative density Dr on friction angle ϕ of a soil is presented 
in Figure 1.7 (Bolton 1986), and that of plasticity index Ip against clay frac-
tion was previously provided (Skempton 1964). The friction angle is also 
appreciably affected by initial void ratio and test (stress) conditions (e.g., 
intermediate principle stress). For instance, the angle of internal friction 
from a triaxial test (ϕtr) is 1~5 degrees smaller than the angle ϕp gained from 
a plane strain test. A higher difference is noted for dense specimens, which 
gradually diminishes for “loose” specimens, depending on the critical state 
friction angle (Bolton 1986). Figure 1.8 shows the measured friction angles 
of ϕtr and ϕp (Schanz and Vermeer 1996), which may be correlated by

Table 1.3 Effective friction angle (ϕ′cv) for clay soils 

Plasticity Index (%) 15 30 50 80
ϕ′cv (degrees) 30 25 20 15

Source: BSI, BS 8002, BSI Standards, 1994.
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Figure 1.6  Variations of friction angle with plasticity index data. (Data from Terzaghi, 
K., B. P. Ralph and G. Mesri, Soil mechanics in engineering practice, John Wiley 
& Sons, New York, 1996; Kenney, T. C., Proceedings, ASCE 85, SM3, 1959.)
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10 Theory and practice of pile foundations

 φ φ φ φtr p
o

tr tr p tr= + > ° =0 708 9 3. . (for 30 ) and (for <φ φ 30 )°  (1.10)

where ϕp = frictional angle under plane strain conditions, as would occur 
beneath a very long spread footing or a long wall leaning forward under 
later soil pressure; ϕtr = frictional angle under axisymmetric conditions (the 
intermediate principal stress = minor principal stress), as would occur at 
the tip of a pile or beneath a square footing. The adjustment of test condi-
tions should be limited to no more than 5°.

1.2 CONE PENETRATION TESTS

A cone penetration test (CPT) is carried out by pushing the standard cone 
into ground at a rate of 10 to 20 mm/s, and recording the side friction resis-
tance, qs, and point resistance, qc, at desired depths. CPT is suitable for fine 
to medium sand deposits, but not well adapted to gravel deposits or to stiff/
hard cohesive deposits. Normally, friction ratio, fr, is computed using the 
point and sleeve friction (side friction):

 f q qr s c= / (%) (1.11)

The soil sensitivity St may be estimated by (Robertson and Campanella 
1983)
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Figure 1.8  Results of regular and plane-strain triaxial tests. (Data from Schanz, T. and 
P. A. Vermeer, Geotechnique 46, 1, 1996.)
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 S ft r= 10  (1.12)

where fr is a percentage. The point resistance [also called cone tip (bearing) 
resistance] qc is a very useful parameter. It has been adopted widely to indi-
rectly determine soil strength, frictional angle, and SPT value.

1.2.1 Undrained shear strength

Undrained shear strength su may be correlated with the cone bearing resis-
tance qc by

 
s

q

Nu
c

k

=
− σν  (1.13)

where σv = γsz = overburden pressure at the depth z at which qc is measured, 
and σv and qc are of an identical unit. Nk = cone factor (a constant for each 
soil) ranging from 5 to 75, and largely between 15 and 20 (Mesri 2001) 
depending on values of plasticity index (Powell and Quarterman 1988).

Soil internal friction angle may be estimated using the cone bearing pres-
sure qc (MPa) by

 φ = °+ ° − °29 qc (+5 for gravel; 5 for silty sand) (1.14)

The frictional angle is affected by the effective overburden pressure 
(Robertson and Campanella 1983) and was presented in charts of qc ~ ′σv∼ϕ.

1.2.2 SPT blow counts using qc

The cone resistance qc of a CPT test may be linearly correlated to a SPT 
N-blow count in both cohesive and cohesionless materials by

 q kNc =  (1.15)

where qc is in units of MPa and the coefficient k varies from 0.1 to 1.0, as 
detailed in Table 1.4 (Sutherland 1974; Ramaswamy 1982), in which the 
N is ′N60.

The relationship between mean grain size (D50 or D10) and qc/N ratio has 
been widely reported. Typical results against D50 are as plotted in Figure 
1.9. The qc/N ratio relies significantly on soil particle size, compared to an 
early simple ratio qc/N55 of 0.4 (MPa) (Meyerhof 1956).

1.3 SOIL STIFFNESS

Many empirical expressions are proposed to obtain soil shear modulus 
from in situ tests including SPT blow counts and cone resistance from CPT 
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12 Theory and practice of pile foundations

tests. To assess settlement of bored piles, Poulos (1993) summarized some 
empirical equations for estimating the modulus (low strain level). They 
are extended and presented in Table 1.5. Values of modulus were deduced 
using closed-form solutions against loading tests of laterally loaded piles 
in clay in Chapter 9, this book. They are plotted in Figure 1.10 against the 
uniaxial compressive strength.

Table 1.4 Relationship between CPT and SPT results

Soil type qc/N60(MPa)

Silts, sandy silts, and slightly 
cohesive silt-sand mixtures

0.1~0.2 (Ramaswamy 1982)

Clean fine to medium sands and 
slightly silty sands

0.3~0.4

Coarse sands and sands with 
little gravel

0.5~0.7

Sandy gravel and gravel 0.8~1.0
Sandy silts 0.25 (Sutherland 1974)
Fine sand and silty fine sand 0.4
Fine to medium sand 0.48
Sand with some gravel 0.8
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Figure 1.9  Cone penetration resistance qc over standard penetration resistance N60 
 versus particle size D50 of sand. (Extended from Terzaghi, K., B. P. Ralph and 
G. Mesri, Soil mechanics in engineering practice, John Wiley & Sons, New York, 
1995.)
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1.4 STIFFNESS AND STRENGTH OF ROCK

1.4.1 Strength of rock

The engineering properties of rock pertinent to design are controlled by the 
extent and orientation of the bedding planes and joints within the rock mass 

Table 1.5 Near–pile drained soil modulus, E 

Soil type Correlations Remarks

Clay E = 1.4N MPa Hirayama (1991)
Clay E = (150–400) su Hirayama (1991), Poulos and Davis (1980)
Clay E = 7.3N0.72 MPa Hara et al. (1974), using Es = 250su

Clay E = 10 qc Christoulas and Frank (1991)
Silica sand E = (2.5–3.5)qc Half the value for driven piles
Residual E = 3N MPa Decourt et al. (1989)
Various E = 0.75N (N < 14) MPa Christoulas and Frank (1991)

E = 7.5N–94.5 MPa (N ≥ 14)
G p Na/ =12 0 8. USA Naval Facilities Engineering 

Command
G p Na/ = 40 0 77. Fleming et al. (1992)

G p Na/ =10  Randolph (1981)
G p Na/ = 8 25. Kenny Hill formation (Singapore)

Source: Revised from Poulos, H. G., Proc., BAP II, Ghent, Balkema, Rotterdam, 103–117, 1993. 
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Figure 1.10  Moduli deduced from shafts in rock and piles in clay (qu, E in MPa). (After 
Guo, W. D., J Geotech Geoenviron Engrg, ASCE, 2012a. With permission.)
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14 Theory and practice of pile foundations

together with the water pressures on the discontinuity planes. Rock mass strength 
(cohesion c and frictional angle ϕ) can be related to the unconfined compression 
strength qu and the RQD (rock quality designation) value, as shown in Table 1.6.

The values of frictional angle for intact rock (Wyllie 1999) may be deter-
mined from Table 1.7, and higher values may be utilized for design of retain-
ing structure as per Equation 1.10. The angles may be slightly conservative 
compared to those shown in Table 1.8, recommended by the British Standard. 
The rocks can be conservatively treated as composed of granular fragments. 
In other words, the rocks are closely and randomly jointed or otherwise frac-
tured, having a RQD value close to zero. For instance, Guo and Wong (1987) 
reported clay-like shale materials with a residual shear strength of cr = 0, ϕr = 
21~24°. It was classified as clayey silt (based on grain analysis). During slaking 

Table 1.6 Strength of rock

RQD (%) qu c ϕ

0–70 0.33 qui
a 0.1 qui 30°

70–100 0.33–0.8 qui 0.1 qui 30 –60°

Source: Kulhawy, F. H., and R. E. Goodman, Design of foundations on 
discontinuous rock. Proceedings of the International Conference on 
Structural Foundations on Rock, Sydney, Australia, 1980.
a Unconfined compressive strength of intact rock

Table 1.7 Friction angle values for intact rock

Classification Type Friction angle (degrees)

Low friction Schists (high mica content) 20–27
Shale, Marl

Medium friction Sandstone, Siltstone 27–34
Chalk, Gneiss

High friction Basalt, Granite, Limestone, 
Conglomerate

34–40

Source: Wyllie, D. C., Foundation on Rock. E & FN Spon, London and New York, 
1999.

Table 1.8 Effective friction angle for rock

Stratum ϕ′ (degrees) Notes

Chalk 35 •	The presence of a preferred orientation of joints, 
bedding or cleavage in a direction near that of a 
possible failure plane may require a reduction in 
all values, especially if the discontinuities are filled 
with weaker materials.

•	Chalk is defined here as weathered medium to 
hard, rubbly to blocky chalk, grade III

Clayey marl 28

Sandy marl 33

Weak sandstone 42
Weak siltstone 35
Weak mudstone 28

Source: BSI, BS 8002, Clause 2.2.6, BSI Standards, 1994.
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tests, it disintegrates quickly when contacted with water. The bond strength 
between grout and the fractured shale is ~340 kPa, and between grout and 
interbedded sandstone shale is 380 kPa. Both strength values are only frac-
tions of the uniaxial compression strengths of sandstone (qui = 10 ~ 70 MPa) 
and shale (qui = 0.1 ~ 10 MPa). It should be stressed that the rock strength is 
generally dependent on moisture content, see Figures 1.11a and 1.12a (Clayton 
1978; Dobereiner and Freitas 1986), and dry density (see Figure 1.11b).

1.4.2 Shear modulus of rock

The shear modulus Gm of an isotropic rock mass can be calculated from 
deformation modulus Em and Poisson’s ratio, vm by Gm = Em/2(1 + vm). 
For most rock masses, the Poisson’s ratio vm may be taken as 0.25 with 
vm = 0.10 ~ 0.35 (U.S. Army Corps of Engineers 1994). The value of Em 
is difficult, if not impossible, to determine in the laboratory as it is highly 
dependent on sample size.

Practically, the value of Em is obtained by empirical correlations with rock 
mass classification or property indices including Rock Mass Rating (RMR), 
uniaxial compressive strength of intact rock (qui), Geology Strength Index 
(GSI), Rock Quality Designation (RQD), joint conditions, and modulus of 
intact rock, Er. Five typical methods are listed in Table 1.9 as M1 ~ M4 
and in Table 1.10 as M5. The RMR and GSI may be estimated as follows:

•	 The rock mass rating RMR (Bieniawski 1989), referred to as RMR89 
hereafter, may be calculated by RMR89 = RA + RB + RC + RD + RE − 
Adj, where RA, RB, RC, RD, RE = subratings for qui, RQD, spacing 
of discontinuities, conditions of discontinuities, and groundwater, 
respectively; and Adj = adjustment for orientation of discontinuities.

•	 The GSI may be roughly evaluated using GSI = RMR89 – 5, assum-
ing completely dry conditions and a very favorable joint orientation 
(Hoek et al. 1995). 

Figure 1.10 also provides the deduced Young’s modulus versus undrained shear 
strength qu from lateral pile tests (see Chapter 10, this book). They are higher 
than the deformation modulus for sandstone (Dobereiner and Freitas 1986), as 
shown in Figure 1.12. It should be stressed that the Em may differ by 100 times 
using different methods of measurement. Zhang (2010) indicates the strength 
and modulus of various types of rocks may be empirically related by

 
q

q

E

E
u

ui

m

r

=







0 7.

 (1.16)

where qui = unconfined compression strength of an intact rock. The modu-
lus of intact rock, Er is (100~1000)qui (Reese 1997).
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18 Theory and practice of pile foundations

Table 1.9 Empirical expressions for deformation modulus Em

Method Reference Empirical equation
Applicable 
conditions

Derived 
conditions

M1 (Bieniawski 1989) Em (GPa) = 2 RMR − 100 RMR > 50 Mining support 
structures

M2 (Serafim and 
Pereira 1983)

Em (GPa) = 10(RMR−10)/40 RMR = 20~85 Dam 
foundations

M3 (Rowe and 
Armitage 1984)

Em (kPa) = 215 qui
Any rock Axially loaded 

drilled piles
M4 (Hoek 2000)

E GPa
q

m
ui GSI( ) ( )/= −

100
10 10 40

qui < 100 MPa Underground 
excavation

M5 (Sabatini et al. 2002) Refer to Table 1.10 Any rock Axially loaded 
drilled piles

Table 1.10 M5: Estimation of Em based on RQD

RQD (%)

Em/Er

RemarksClosed joints Open joints

100 1.00 0.6 Values intermediate between tabulated 
entry values may be obtained by linear 
interpolation.

70 0.7 0.10
50 0.15 0.10
20 0.05 0.05

Source: Sabatini, P. J., R. C. Bachus, P. W. Mayne, J. A. Schneider, and T. E. Zettler, Geotechnical 
Engineering Circular No. 5: Evaluation of Soil and Rock Properties, Rep. No. FHWA-IF-02-034, 
2002.
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Chapter 2

Capacity of vertically 
loaded piles

2.1 INTRODUCTION

Piles are commonly used to transfer superstructure load into subsoil and a 
stiff bearing layer. Piles are designed to ensure the structural safety of the pile 
body, an adequate geotechnical capacity of piles, and a tolerable settlement/
displacement of piles. Under vertical loading, the design may be achieved 
by predicting nonlinear response of the pile using shaft friction and base 
resistance (see Chapter 4, this book). In practice, pile capacity is routinely 
obtained, assuming a rigid pile and a full mobilization of shaft friction. 
This is discussed in this chapter, along with pertinent issues and methods 
for estimating the negative skin friction and the capacity of pile groups.

2.2 CAPACITY OF SINGLE PILES

The total capacity of a single pile is customarily estimated using

 P q A Au b b s s= + τ  (2.1)

where Pu = total ultimate capacity; qb, τs = pressure on pile base and fric-
tion along pile shaft, respectively; and Ab and As = areas of the pile base 
and shaft, respectively. The capacity Pu consists of shaft component of τsAs 
and base component of qbAb. It may be attained at a shaft displacement 
of 0.5%~2% and base displacement of ~20% pile diameter, depending on 
pile–soil relative stiffness.

2.2.1 Total stress approach: Piles in clay

2.2.1.1 α Method (τs = αsu and qb)

With respect to piles in clay, the qb and τs may be correlated to the un drained 
shear strength at pile tip level (cub) and the average shear strength along 
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20 Theory and practice of pile foundations

pile shaft (su) by qb = ωcubNc, and τs = αsu. The ω is a reduction factor that 
relates the ratio of the full-scale strength to the smaller sample strength, 
ω = 0.6~0.9 (Rowe 1972), or ω = 0.75 for bored piles in fissured clays 
(Whitaker and Cooke 1966).

Theoretically, the Nc only depends on the pile slenderness ratio L/d 
(L = pile length, d = diameter). However, higher values of Nc could be 
appropriate for displacement piles. On the basis of Skempton’s work, 
Nc = 9 is generally used for all deep foundations in clay if L/d > 4, oth-
erwise, it is reduced appropriately (e.g., Nc = 5.14 for L/d = 0; Craig 
1997). In the case where piles penetrate into stiffer clays underlying soft 
clays, a low Nc may be adopted to reflect impact of base failure beyond 
the stiff clay layer. This may be assessed through a critical penetration 
ratio, (L/d)crit (Meyerhof 1976). With L/d < (L/d)crit, any point failure 
is entirely contained within that layer and not influenced by the softer 
upper layer (Das 1990). The point bearing capacity in the lower layer 
could be assumed to increase linearly from the full bearing capacity of 
the softer overlying soil at the surface of the underlying stiffer soil to the 
full bearing capacity of the stiffer soil at the critical penetration ratio. 
On the other hand, higher values of Nc normally would be associated 
with driven piles. As an extreme case, the Nc reaches 15 to 21 for cone 
penetration tests (Mesri 2001). However, piles may be founded in stiff 
or very stiff clays, which tend to be less sensitive to disturbance effects, 
with negligible time-dependent variation of excess porewater pressures 
and strength.

The effects of pile installation, disturbance, porewater pressure develop-
ment, and dissipation and consolidation are significant for soft clays, which 
will be discussed in Chapter 5, this book. An adhesion factor α of about 
unity or even higher may be selected to compensate for the immediate loss 
of strength (from undisturbed to remolded values) due to driving of the pile 
and the subsequent consolidation of the soil. However, an adhesion factor 
α of less than unity would be appropriate for sensitive soils, as full com-
pensation for the immediate loss of strength may not occur even after the 
subsequent consolidation.

This adhesion factor α is determined empirically from the results of both 
full-scale and model pile load tests. Values of α are provided for driven piles 
in firm to stiff clay, sands underlined by stiff clay, and soft clay underlined 
by stiff clay, with respect to impact of pile length (Tomlinson 1970). The α 
is 0.3~0.6 for bored piles (Tomlinson 1970) or α = 0.45 for piles in London 
clay (Skempton 1959) and 0.3 for short piles in heavily fissured clay. The 
shaft adhesion should not exceed about 100 kPa. The variation of α with 
su may be estimated using Equation 2.2, as synthesized from 106 load tests 
on drilled shafts in clay (Kulhawy and Jackson 1989)

 α α= + ≤0 21 0 26. . p sa u/ ( 1) (2.2)
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where su = undrained shear strength; pa = the atmospheric pressure 
(≈ 100 kPa); and pa and su are of same units. The values of α with und-
rained shear strength are recommended by API (1984), Peck et al. (1974), 
and Bowles (1997), to name a few. The variation is dependent of over-
burden pressure. Assumed α = 1.0 for normally consolidated clay, the α 
may be given for the general case by two expressions of (Randolph 1983) 
(see Figure 2.1):

 α σ σ σν ν ν= ′ ′ ′ ≤−( ) ( ) ( ). .s su nc u u/ / /0 5 0 5s 1  (2.3a)

 α σ σ σν ν ν= ′ ′ ′ >−( ) ( ) ( ). .s s su nc u u/ / /0 5 0 25 1  (2.3b)

where ′σν = effective overburden pressure. The “nc” subscript in these 
expressions refers to the normally consolidated state of soil. The shaft fric-
tion (thus α) is related to pile slenderness ratio and overburden pressure by 
(Kolk and Velde 1996)

 α σν= ′ −0 55 400 3 0 2. ( ) [ / ( )]. .s L du / /  (2.4)

Given a slenderness ratio L/d of 10–250, Equation 2.4 covers the large 
range of measured data (see Figure 2.1).

100
50

10

L/d = 250
Solid lines: Kolk and van der Velde (1996)
α = 0.55[40/(L/d)]0.2(su/σv')–0.3

Dashed lines: Randolph and Murphy (1985)
α = 0.5/(su/σv')0.5

α = 0.5/(su/σv')0.25

0.1

1

0.3

0.2

2

α
 =

 τ s
/s

u

1010.1 7530.50.2
Normalized strength su/σv'

Figure 2.1  Variation of α with normalized undrained shear strength su/σv′. (Data from 
Fleming, W. G. K., A. J. Weltman, M. F. Randolph, and W. K. Elson, Piling engi-
neering, 3rd ed., Taylor & Francis, London and New York, 2009.)
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2.2.1.2 λ Method: Offshore piles

An alternative empirical (λ) method (Vijayvergiya and Focht 1972) has 
been proposed for estimating the shaft resistance of long steel pipe piles 
installed in clay. This method is generally used in the design of offshore 
piles (with an embedment L >15 m) that derive total capacity mainly from 
the ultimate shaft friction, τs (and negligible end-bearing component):

 τ λ σs vs us= ′ +( )� �2  (2.5)

where � ′σvs and �su = the mean (denoted by “∼”) effective overburden pres-
sure and undrained cohesion along the pile shaft, respectively. The λ 
factor is a function of pile penetration and decreases to a reasonably 
constant value for very large penetrations. Two typical expressions are 
shown in Figure 2.2. For instance, Kraft et al. (1981) suggested λ  = 
0.296 − 0.032ln(L/0.305) (normal consolidated soil) for �su / ′σν < 0.4; oth-
erwise λ  =  0.488 − 0.078ln(L/0.305) (overconsolidated soil), and L in 
m. Equations 2.2 and 2.5 show an inversely proportional reduction in 
shaft friction with the undrained shear strength su. It is interesting to note 
that the α deduced from Equation 2.5 compares well with the previously 
measured values of α, as shown in Figure 2.2. The predicted curves of 
α~su/σ′v (σ′vs is simply written as σ′v) using a pile length of 10 and 50 m 
in Equation 2.5 bracket the measured data well using Vijayvergiye and 
Focht’s λ factor.

3

0.1 1 10
0.1

1

α method
3: Randolph and Murphy (1985)
4: Kolk and van der Velde (1996)

2: L = 15, 50 (m)

1: L = 10, 50 (m)

4

3 α deduced from λ method
1: Vijayvergiye and Focht (1972)

λ = 60(0.1L − 1 + e−0.1L)/L2

2: Kraft et al. (1981) 
λ = 0.296 − 0.032ln(3.278L)

 or λ = 0.488 − 0.078ln(3.278L) 

7530.50.2

0.3

0.2

2

4: L/d = 250, 10

Normalized strength su/σv'

α
 =

 τ s
/s

u

Figure 2.2 Variation of α as deduced from λ method.
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2.2.2 Effective stress approach

2.2.2.1 β Method for clay (τs = βσ′vs)

The unit shaft resistance τs and end-bearing stress qb are linearly related to 
effective overburden pressures σ′vs and σ′vb, respectively (Chandler 1968): 
τ βσνs s= ′ , and qb = σ′vbNq, in which β = Ktanδ, δ = interface frictional angle, 
being consistent with that measured in simple shear tests; Nq = bearing 
capacity factor; σ′vb = effective overburden pressure at the toe of the pile; 
K = average coefficient of earth pressure on pile shaft, for driven pile, lying 
between (1 − sinϕ′) and cos2ϕ′/(1 + sin2ϕ′), and close to 1.5Ko (Ko = static 
earth pressure coefficient); and ϕ′ = effective angle of friction of soil. This 
effective strength approach is suitable for soft clays but not quite appropri-
ate for stiff clays with cohesion.

For normally consolidated clay, assuming K = Ko = 1 − sin ϕ′ and δ = 
ϕ′, Burland (1973) obtained β = (1 − sinϕ′)tan ϕ′. The ϕ′ may be taken as a 
residual friction angle ′φcv and calculated using sin . . ln′ ≈ −φcv PI0 8 0 094 , in 
which IP = the plasticity index (Mitchell 1976; see Chapter 1, this book). 
The use of residue ϕ for pile design compares well with the values derived 
from a range of tests conducted on driven piles in soft, normally consoli-
dated clays. However, slightly higher values of β (>0.3) were deduced from 
measured data, probably due to the actual K value being greater than Ko 
caused by pile installation. The β may be estimated using β = sin ϕ′cosϕ′/
(1 + sin2ϕ′) (Parry and Swain 1977a). Given 21.5° ≤ ϕ′ ≤ 39°, the equation 
yields 0.30 ≤ β ≤ 0.35, which fit the test data well.

Assuming K = Ko, the effective stress β approach provides a lower and 
upper bound to the test results obtained for driven and bored piles in stiff 
London clay, respectively. Meyerhof (1976) demonstrated K ≈ 1.5Ko for 
driven piles in stiff clay and K ≈ 0.75Ko for bored piles, in which Ko = 
(1 − sinϕ′) OCR , and OCR is the overconsolidation ratio of the clay. As 
deduced from 44 test pile data, the β may be correlated to pile embedment 
L (Flaate and Selnes 1977) by β = 0.4 OCR  (L + 20)/(2L + 20) (L in m).

2.2.2.2 β Method for piles in sand (τs = βσ′vs)

In calculating τs using β = Ktanδ, the parameters K and δ may be estimated 
separately. The value of K must be related to the initial horizontal earth pres-
sure coefficient, Ko (= 1 − sin ϕ). As with piles in clay, capacity may be esti-
mated by assuming K = 0.5 for loose sands or K = 1 for dense sands. Kulhawy 
(1984) and Reese and O’Neill (1989) recommend the values of K/Ko in Table 
2.1 to cater for impact of pile displacement and construction methods.

The angle of friction between the pile shaft and the soil δ is a function of 
pile surface roughness. It may attain the value of frictional angle of soil ϕ′ 
on a rough-surface pile, and the pile–soil relative shearing occurs entirely 
within the soil. However, it is noted that the angle ϕ′ (≈ ϕ′cv) is generally 
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noted on a smooth-surface pile, and the shearing takes place on a pile 
surface. There have been many suggestions as to the values of δ and δ/ϕ′. 
Practically, for instance, Broms (1966) suggested δ = 20° for steel piles and 
a ratio of δ/ϕ′ = 0.75 and 0.66 for concrete and timber piles respectively. 
Kulhawy (1984) recommends the ratios of δ/ϕ′ in Table 2.2, again to cap-
ture the impact of pile displacement and construction methods.

Theoretically, Bolton (1986) demonstrates ϕ′ = ϕ′cv +0.8ψ for sand, in 
which ψ = dilatancy angle. It seems that volume changes cause the increase 
in shear strength, whether sand or clay. Chen et al. (private communication, 
2010) conducted shear tests on clay and concrete interface. The roughness 
of the concrete was Rmax = 1~10 mm, and the remolded Zhejiang clay has a 
plasticity index of 26.5 and liquid limit of 53.1. The tests indicate an angle 
of ψ = 5° compared to ϕ′cv = 6°~9°. The shear strength indeed vary with the 
material on the pile surface, as shaft stress increases ~100% (from 30 kPa 
to 62 kPa) when the bentonite slurry was changed to a liquid polymer in 
constructing drilled shaft (Brown 2002).

Potyondi reported similar ratios of δ/ϕ′ to what is mentioned above and 
indicated wet sand is associated with high ratios for steel and timber piles 
(Potyondy 1961). The soil-shaft interface friction angle for bored piles may 
drop by 30% depending on construction methods (see Table 2.2; Reese and 
O’Neill 1989).

During driving, the shaft resistance behind the pile tip is progressively 
fatigued. Randolph (2003) indicates the K varies with depth and may be 
captured by

 K K K K e h d= + − −
min max min

. /( ) 0 05  (2.6)

where Kmin = 0.2~0.4, Kmax = (0.01~0.02)qc/σ′v, qc = cone tip resistance 
from cone penetration test (CPT), and h = distance above pile tip level. The 

Table 2.1  Values of average coefficient of earth pressure on pile shaft over that 
of static earth pressure K/Ko 

Pile type K/Ko Construction method (Bored piles) K/Ko

Jetted piles 1/2 ~ 2/3 Dry construction with minimal sidewall 
disturbance and prompt concreting

1.0

Drilled shaft, 
cast-in-place

2/3 ~ 1 Slurry construction—good workmanship 1.0

Driven pile, small 
displacement

3/4 ~ 5/4 Slurry construction—poor workmanship 2/3

Driven pile, large 
displacement

1 ~ 2 Casing under water 5/6

References (Kulhawy 
1984)

(Reese and O’Neill 1989)
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impact of fatigue coupled with dilation may be captured by (Lehane and 
Jardine 1994; Schneider et al. 2008):

 K A h d qr c v= ′−0 03 20 3 0 5. [max( , )]. ./ /σ  (2.7)

where Ar = 1 − (di/do)2, di and do = inner diameter and outside diameter.
Recent study on model piles has revealed the impact of dilation on shear 

strength (shaft friction). Average shaft stress τs was measured under various 
overburden pressure σ′vo (Lehane et al. 2005) on piles (with a diameter of 
3~18 mm) in sand having a D50 of 0.2 mm and tanϕ′cv = 0.7 (ϕ′cv = critical 
frictional angle at constant volume). The measured value of τs is normalized 
as τs/[σhotanϕ′cv] (σho = horizontal stress). The potential strength on pile shaft 
is normalized as Koσ′votanϕ′cv/pa. The pair of normalized values for each test 
is plotted in Figure 2.3, which offers τs/(σ′hotanϕ′cv) = ψ(Koσ′votanϕ′cv/pa)−0.5 
with ψ = 1.0~2.2. This effect of dilatancy on the adhesion factor for shaft 
friction is compared late with that observed in piles in clay and rock sockets 
(Kulhawy and Phoon 1993).

Some measured variations of β with depth (Neely 1991; Gavin et al. 
2009) are provided in Figure 2.4, which will be discussed later.

Values of Ktan δ for driven, jacked, and bored piles (Meyerhof 1976) 
are illustrated in Figure 2.5. The calculation uses an undisturbed value of 
friction angle of soil ϕ′1 (see Figure 2.5a) but an interface friction angle δ 
(= 0.75ϕ′ + 10°) for bored piles in Figure 2.5b. The angle ϕ′ should be cal-
culated using ′ = ′ +φ φ0 75 101.  for driven piles and ′ = ′ −φ φ1 3 for bored piles 
(Kishida 1967). These values are combined in the Meyerhof method with 
the full calculated effective overburden pressure. A similar relationship was 
also deduced using model test results on steel piles (Vesi  1969; Poulos and 
Davis 1980). The values given in this figure may be conservative for other 
(rougher) surface finishes.

Table 2.2 Values of angle between pile and soil over friction angle of soil δ/ϕ′

Pile material δ/ϕ′
Construction method 

(Bored piles) δ/ϕ′

Rough concrete 
(cast-in-place)

1.0 Open hole or temporary 
casing

1.0

Smooth concrete (precast) 0.8~1.0 Slurry method—minimal 
slurry cake

1.0

Rough steel (corrugated) 0.7~0.9 Slurry method—heavy 
slurry cake

0.8

Smooth steel (coated) 0.5~0.7 Permanent casing 0.7
Timber (pressure-treated) 0.8~0.9
References (Kulhawy 1984) (Reese and O’Neill 1989)
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Figure 2.3  α versus the normalized uniaxial compressive strength qu; pa = 100 kPa. 
(Data from Kulhawy, F. H. and K. K. Phoon, Proc Conf on Design and Perform 
Deep Foundations: Piles and Piers in Soil and Soft Rock, ASCE, 1993; Lehane, B. 
M., C. Gaudin and J. A. Schneider, Geotechnique 55, 10, 2005; Pells, P. J. N., G. 
Mostyn and B. F. Walker, Australian Geomechanics 33, 4, 1998.)
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2.2.2.3 Base resistance qb (= Nqσ′vb)

The bearing stress qb for piles in sand is equal to Nqσ′vb. Meyerhof (1951, 
1976) stipulated a proportional increase in the effective overburden pres-
sure at the pile base σ′vb in a granular soil with depth. On the other hand, 
Vesi  (1967), on the basis of model tests, concluded that the vertical effec-
tive pressure reaches a limiting value at a certain (critical or limiting) depth, 
zc, beyond which it remains constant. The limiting vertical (and therefore 
horizontal) stress effect has been attributed to arching in the soil and par-
ticle crushing.

2.2.2.3.1 Unlimited σ′vb

Meyerhof (1951, 1976) shows bearing capacity factor Nq depends on the 
penetration ratio L/d related to a critical value, (L/d)crit. For instance, at 
ϕ = 40°, it follows: (L/d)crit = 17 and Nq = 330. The Nq is calculated using 
in situ undisturbed values of ϕ or (0.5~0.7)ϕ′ if loosening of the soil is 
considered likely. If the critical embedment ratio is not attained, the Nq  
values must be reduced accordingly. For layered soils, where the pile pen-
etrates from a loose soil into a dense soil, Meyerhof suggested use of the 
full bearing capacity of the denser soil if the penetration exceeds 10 pile 
widths (L/d > 10). Presuming the total pile embedment still satisfies the 
aforementioned critical ratios, the unit point bearing pressure qb should 
be reduced by

 q q
q q h

d
qb ll

ld ll d
ld= +

−
≤

( )

10
 (2.8)
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Figure 2.5  Ktan δ proposed by (a) Meyerhof (1976), (b) Vesić (1967). (After Poulos, H. G. 
and E. H. Davis, Pile foundation analysis and design, John Wiley & Sons, New 
York, 1980.)
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where qll, qld = limiting unit base resistances of σ′vbNq in the loose and 
dense sand, respectively; hd = the pile penetration into the dense sand; and 
d = pile width or diameter. The σ′vb is the (unlimited) effective overburden 
pressure, but the end bearing pressure Nqσ′vb is subject to the limiting value 
with q Nb q≤ 50 tanφ (e.g., at ϕ = 45° [very dense] qb ≤ 45 MPa). In general 
practice, the qb is less than 15 MPa.

Kulhawy (1984) suspects the existence of the limiting depth and attrib-
uted it to the impact of overconsolidation on the capacity of piles of typi-
cal (< 20 m) length and the model scale of pertinent tests. For instance, he 
 proposed that the full overburden pressure should be used. For a square 
shape with width B (drained case), the unit tip resistance is computed as:

 q B N qNb s r q qr qs qd= ′ +0 3. γ ζ ζ ζ ζγ γ  (2.9)

where γ ′s = effective soil unit weight; N eq = +tan ( . ) tan2 45 0 5φ π φ; N Nqγ = +2 1( )
tanφ; and q = vertical effective stress at embedment depth. The ζ  modifiers 
reflect the impact of soil rigidity denoted by subscript “r”, foundation 
shape by “s” and foundation depth by “d”, respectively. For L/d > 4~5, the 
first term becomes less than 10% of the second term and can be ignored. 
The dimensionless portions of both terms are given by Kulhawy in graph-
ical form against friction angle, ϕ. To use these graphs, it is necessary to 
estimate the so-called rigidity index, Ir. Examples of these calculations 
can be found in Fang’s Foundation Engineering Handbook (1991).

2.2.2.3.2 Limited σ′vb

Poulos and Davis (1980) have developed the normalized critical depth, zc/d, 
for a given effective angle of friction ϕ′ obtained using the undisturbed fric-
tion angle ϕ′1 at the pile toe before pile installation. The value of σ′vb is equal 
to the vertical effective overburden pressure if the toe of the pile is located 
within the critical depth zc, otherwise σ′vb = zcγ ′s .

The mean of the curves between Nq and ϕ′ is shown in Figure 2.6 
(Berezantzev et al. 1961) for piles in granular soils, as they are nearly inde-
pendent of the embedment ratio (L/d). The friction angle ϕ′ is calculated from 
the undisturbed ϕ′1 (before pile installation). For instance, at ϕ′1 = 40°, the 
post-installation friction angle, ϕ′ is 40° for driven piles and 37° for bored 
piles. It thus follows Nq driven ≈ 200 and Nq drilled ≈ 110. Berezantev’s method 
is used along with limiting depth theory and effective overburden pressures.

Finally, as is controversial for calculating the effective pressure σ′vb, the 
value of σ′vs may be calculated as effective overburden pressure (Meyerhof 
1976; Kulhawy 1984), regardless of the critical depth zc or limited effective 
overburden pressure below the critical depth.
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2.2.3 Empirical methods

Meyerhof suggests τs = 2N (in kPa) and τs = N for high and low displace-
ment piles based on SPT N values. Reese and O’Neill suggest the following 
variation of β with depth (O’Neill and Reese 1999):

 β β= − ≤ ≤1 5 0 245. . z (0.25 1.2) (2.10)

where z = depth from the ground surface (m). This expression underesti-
mates the values of β to a depth of 6–8 m (see Figure 2.4). The existing data 
may be represented by either β = 43.15z−1.74 (z > 5 m) or β = 0.136z/(z – 8) 
(z > 8 m).

The net unit end-bearing capacity ′qb for drilled shafts in cohesionless 
soils will be less than that for other piles (Reese and O’Neill 1989):

 ′ = ≤ <q p N MPab a0 6 4 560. . ( 1200 mm)d  (2.11) 

and

 ′ = ′ ≥q
d

d
qb

r
b4 17. ( 1200 mm)d  (2.12)

where pa = 100 kPa; dr = reference width, 0.3 m; d = base diameter of 
drilled shaft; and N60 = mean SPT N value for the soil between the base of 
the shaft and a depth equal to 2d below the base, without an overburden 
correction. If the base of the shaft is more than 1200 mm in diameter, the 
value of ′qb from Equation 2.11 could result in settlements greater than 
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10 25 30 35 40 45
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'

Figure 2.6  Nq. (After Berezantzev, V. G., V. S. Khristoforv and V. N. Golubkov, Proc 5th 
Int Conf on Soil Mech and Found Engrg, speciality session 10, Paris, 1961.)
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25 mm, which would be unacceptable for most buildings. Equation 2.12 
should be used instead.

Some theoretical development has been made in correlating shaft fric-
tion and base resistance with cone resistance qc (Randolph et al. 1994; 
Jardine and Chow 1996; Lee and Salgado 1999; Foray and Colliat 2005; 
Lehane et al. 2005), which is not discussed here. In contrast, estimating 
shaft  friction using N (SPT blow counts) is still largely empirical (Fleming 
et al. 1996). The Meyerhof correlations are adopted in China and Southeast 
Asia (see Figure 2.7) as well (e.g., for bored piles in Malaysian soil, the 
shaft friction resistance τs is generally limited to [1~6]N kPa as per instru-
mented pile loading tests) (Buttling and Robinson 1987; Chang and Goh 
1988). Typical correlations between base pressure and SPT blow counts are 
provided in Figure 2.8, for bored pile and driven piles in sand and clay. Low 
values of qb/N than Meyerhof’s suggestions are noted.

2.2.4 Comments

The β values given for Vesi ’s method are about twice those of Meyerhof’s 
(1976). The former may be used for driven piles and the latter for bored 
piles (Poulos and Davis 1980).

Side support system is adopted when installing bored piles in granular 
soils. These design recommendations are valid when casing is utilized. A 
more common technique is to use bentonite slurry to support the drilled 
hole during excavation. The bentonite is displaced upward (from the base 
of the pile) by pouring the concrete through a tremie pipe. Any slurry caked 
on the sides should be scoured off by the action of the rising concrete; 
however, this may not always occur in practice. A 10~30% reduction in the 
ultimate shaft resistance is recommended (Sliwinski and Fleming 1974), as 
is reflected in the reduced ratio of δ/ϕ′ in Table 2.2, although no reduction 
in the resistance is noted in some cases (Touma and Reese 1974). A special 
construction procedure means the need of modifying the empirical expres-
sion, such as use of a full length of permanent liner around large diameter 
piles (Lo and Li 2003).

The design methods outlined here are applicable to granular soils com-
prising silica sands. They are not suitable to calcareous sands predomi-
nated in the uncemented and weakly cemented states. An angle of friction 
of 35°~45° may be measured for undisturbed calcareous sand, but normal 
stresses on a driven pile shaft are noted as extremely low (as low as 5 kPa). 
The driving process tends to significantly crush the sand particles. Bored-
and-grouted and driven-and-grouted piles should be used in such soil.

It is customary to deduce the correlation ratio of shaft friction over SPT 
(τs/N) or over the cone resistance (τs/qc) without accounting for the impact 
of pile–soil relative stiffness. The ratios deduced may be sufficiently accu-
rate in terms of gaining ultimate capacity. Nevertheless, consideration of 
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friction fatigue on shaft friction renders the importance of considering 
displacement and pile stiffness. Ideally, the impact may be determined by 
matching theoretical solutions (see Chapter 4, this book) with measured 
pile-head load and displacement curve, assuming various form of shaft 
stress and shear modulus distribution profiles.
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2.2.5 Capacity from loading tests

The most reliable capacity should be gained using loading test. The detailed 
load test procedure can be found in relevant code (e.g., ASTM D 1143, 
BS8004: clause 7.5.4). With a predominantly friction pile, the pile-head 
force may reach a maximum and decrease with larger penetrations, or the 
highest force may be maintained with substantially no change for penetra-
tions between 1% and 5% of the shaft diameter, depending on the soil 
stiffness as shown in Figure 2.9 (Guo and Randolph 1997a). With an end-
bearing pile, the ultimate bearing capacity may be taken as the force at 
which the penetration is equal to 10% of the diameter of the base of the 
pile. In other instances, a number of factors will need to be taken into 
account, as shown in the BS 8004: Clause 7.5.4 and explored in Chapters 
4 and 5, this book.

Generally, pile capacity may be decomposed into shaft friction and end-
bearing components using the empirical approach (Van Weele 1957), as the 
pile-head force is taken mostly by skin friction until the shaft slip is suf-
ficient to mobilize the limiting value. When the limiting skin resistance is 
mobilized, the point load increases nearly linearly until the ultimate point 
capacity is reached. Chapter 4, this book, provides an analytical solution, 
which allows the components of base contribution and shaft friction to be 
readily resolved concerning a power law distribution of the shaft friction.

Among many other methods, the following methods are popularly 
adopted in practice for analyzing pile loading tests:
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Figure 2.8 Variation of ultimate base pressure with SPT blow counts.
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 1. Chin’s method (1970) based on hyperbolic curve fitting to the 
measured pile-head load-settlement curve to determine ultimate 
capacity.

 2. Davisson’s approach (1972), assuming ultimate capacity at a head 
settlement wt of 0 012 0 1. .d d d PL A Er r t p p+ +/ / , where dr = 0.3m, Pt = 
applied load; Ep = Young’s modulus of an equivalent solid pile; Ap = 
cross-sectional area of an equivalent solid pile.

 3. Van der Veen’s approach (1953), based on a plot of settlement wt ver-
sus ln (1 − Pt/Pu) curve.

 4. The logarithmic plot approach, based on plots of log Pt versus log 
wt, and log T versus wt (T = loading time). The log Pt versus log 
wt plot is normally well fitted using two lines, and the load at the 
intersection of the lines is taken as the ultimate pile-head load, Pu. 
The log T~wt curves are straight lines for load < ultimate Pu, but 
turn to curves after Pu. This load Pu is verified using log T versus 
wt plot, as at and beyond the Pu, a curve plot of log T versus wt is 
observed.

A comparison among nine popular methods (Fellenius 1980) shows val-
ues of capacity differening by ~38% for the very same load-displacement 
curve. This means a rigorous method is required to minimize uncertainty. 
Correlating load with displacement, the closed-form solutions discussed in 
Chapters 4 and 5, this book, are suitable for estimating the capacity.
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Figure 2.9  Effect of soil stiffness on pile-head load versus settlement relationship. 
(After Guo, W. D. and M. F. Randolph, Int J Numer and Anal Meth in Geomech 
21, 8, 1997a.)
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2.3 CAPACITY OF SINGLE PILES IN ROCK

Equation 2.1 may be used to get a rough estimate of the capacity of a rock 
socket pile. The ultimate skin friction along rock socket shaft τs may be 
estimated using uniaxial compressive strength of rock qu (Williams and 
Pells 1981)

 τ α βs r r uq=  (2.13)

where qu = uniaxial compressive strength of the weaker material (rock or 
concrete), τs and qu in MPa, αr = a reduction factor related to qu, βr = a fac-
tor correlated to the discontinuity spacing in the rock mass. Briefly, (a) τs = 
minimum value of (0.05~0.1)fc and (0.05~0.1)qu (fc = 28-day compressive 
strength of concrete piles) for moderately fractured, hard to weak rock; 
(b) τs/qu = 0.03~0.05 for highly fractured rocks (e.g., diabsic breccia); and 
(c) τs/qu = 0.2~0.5 for soft rock (qu < 1.0 MPa) (Carrubba 1997). Other sug-
gestions are highlighted in Table 2.3. A united parameter ψ (see Figure 2.3) 
has been introduced to correlate the shaft friction with the undrained shear 
strength su (= 0.5qu) of clay or rock (via qu in MPa) by (Kulhawy and Phoon 
1993; Pells et al. 1998)
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 (2.14)

Table 2.3 Estimation of shaft friction of pile in rock using Equations 2.13 and 2.14

References ψ (n = 0.5) References
αrβr for Equation 

2.13

Rosenberg and 
Journeaux (1976)

1.52 Thorne (1977) 0.1

Hobbs and Healy 
(1979)

1.8 (Chalk; qu > 
0.5 MPa)

0.05

Horvath et al. (1979, 
1980)

1.1 Reynolds and 
Kaderbeck (1980)

0.3

Rowe and Armitage 
(1987)

2.0~2.7 Gupton and Logan 
(1984)

0.2

Carter and Kulhawy 
(1988)

0.9 Toh et al. (1989) 0.25

Reese and O’Neill 
(1989)

0.9 Osterberg (1992) 0.3–0.5 (qu = 0.33~3.5 
MPa)

Benmokrane et al. 
(1994)

0.9~1.3 0.1–0.3 (qu = 3.5~14 
MPa)

Carrubba (1997) 0.6~1.1 0.03–0.1 (qu = 14~55 
MPa)

Source: Revised from Seidel, J. P., and B. Collingwood, Can Geotech J, 38, 2001.
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Some low adhesion factors from the Australian rock sockets (Pells et al. 
1998) were also added to Figure 2.3. This offers a ψ for rock sockets from 
0.9 to 2.9 with an average of ~1.7. The several-times disparity in shaft fric-
tion mirrors the coupled impact of socket roughness (via asperity heights 
and chord lengths), rock stiffness (via Young’s modulus), shear dilation 
(varying with socket diameter, initial normal stress between concrete and 
rock), and construction practices. The critical factor among these may 
be the dilation, as revealed by the micromechanical approach (Seidel and 
Haberfield 1995; Seidel and Collingwood 2001), and also inferred from the 
shear tests on model piles in sand (Lehane et al. 2005). The impact of the 
listed factors on shaft friction needs to considered, and may be predicted 
using a program such as ROCKET, as is substantiated by large-scale shear 
tests on rock-concrete interface and in situ measured data (Haberfield and 
Collingwood 2006).

The maximum end-bearing capacity qbmax (in kPa) may be correlated to 
the unconfined compressive strength qui (kPa) of an intact rock by (after 
Zhang 2010)
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where αE = 0.0231RQD − 1.32 ≥ 0.15; and RQD in percentage.
The deformation modulus of rock mass Em may be correlated to that of 

intact rock Er by Em = αEEr as well (Gardner 1987), as discussed in Chapter 
1, this book. It is useful to refer to measured responses of typical rock sock-
eted piles in Australia (Williams and Pells 1981; Johnston and Lam 1989) 
and in Hong Kong (Ng et al. 2001).

2.4 NEGATIVE SKIN FRICTION

When piles are driven through strata of soft clay into firmer materials, they 
will be subjected to loads caused by negative skin friction in addition to the 
structural loads, if the ground settles relative to the piles, as illustrated in 
Figure 2.10. Such settlement may be due to the weight of superimposed fill, 
to groundwater lowering, or as a result of disturbance of the clay caused by 
pile driving (particularly large displacement piles in sensitive clays leading 
to reconsolidation of the disturbed clay under its own weight). The depth of 
neutral plane Ln is (0.8~0.9)L for frictional piles and around 1.0L for end-
bearing piles, which may vary with time. Above the plane, the soil subsides 
more than the pile compression.

Dragloads are dominated by vertical soil stress, as pile–soil relative 
slip generally occurs along the majority of the pile shaft. Therefore, the β 
method is preferred to calculate total downdrag load Pns:

www.engbasics.com



36 Theory and practice of pile foundations

 P A Kns s= ′ = ′βσ β η φν and tan  (2.16)

where

•	 η = 0.7~0.9; with tubular steel pipe piles, η = 0.6 (open-ended) η = 1.0 
(closed-end).

•	 β = 0.18~0.25 with β = 0.25 for very silty clay, 0.20 for low plasticity 
clays, 0.15 for clays of medium plasticity, and 0.10 for highly plastic 
clays (Bjerrum 1973).

Results of measurements of negative skin friction on piles have been pre-
sented by numerous investigators (Zeevaert 1960; Brinch Hansen 1968; 
Fellenius and Broms 1969; Poulos and Mattes 1969; Sawaguchi 1971; 
Indraratna et al. 1992). Bjerrum (1973) drew attention to the fact that the 
negative adhesion depends on the pile material, the type of clay, the time 
elapsed between pile installation and test, the presence or lack of other 
material overlying the subsiding layer, and the rate of relative deformation 
between the pile and the soil. At a high rate of relative movement, Equation 
2.16 may be used to estimate the magnitude of the negative skin friction 
forces. The β approach compares well with measured data and numerical 
analysis incorporating pile–soil relative slip. It appears that a small relative 
movement of ~10 mm is sufficient to fully mobilize negative skin friction.

This additional loading due to negative skin friction forces may be illus-
trated via an early case (Johannessen and Bjerrum 1965). A hollow steel 
pile was driven through ~40 m of soft blue clay to rock. After 10 m of fill 
was placed around the pile for 2.5 years, the ground surface settled nearly 

wt so

Pt Pns

Ln

Neutral
depth 

s

s

Pt

Pile displacement
profile 
Soil subsidence
profile  

Figure 2.10  Schematic of a single pile with negative skin friction (NSF). (After Shen, R. F. 
Negative skin friction on single piles and pile groups. Department of Civil 
Engineering, Singapore, National University of Singapore. PhD thesis, 326.)
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2 m and the pile shortened by 15 mm. The compressive stress induced at 
the pile point reached 200 MPa, owing to the negative skin friction. The 
adhesion developed between the clay and the steel pile was about the value 
of the undrained shear strength of the clay, measured by the in site van test, 
before pile driving. It is equal to 0.2 times the effective vertical stress.

Increase in axial loads on pile-head reduces dragloads but increases pile 
settlement and negative skin friction (downdrag). The reduction is small 
for end-bearing piles compared to frictional piles (Jeong et al. 2004). Some 
researchers believe that transient live loads and dragload may never occur 
simultaneously, thus only dead load and dragload need to be considered in 
calculating pile axial capacity. However, in the case of short stubby piles 
found on rock, elastic compression may be insufficient to offset the nega-
tive skin friction. A conservative design should be based on the sum of dead 
load, full live load, and negative skin friction.

The group interaction reduces the downdrag forces by 20%, 40%, and 
55% in two-pile, four-pile, and nine-pile groups, respectively (Chow et al. 
1990). To incorporate the reduction, a number of expressions were devel-
oped. In particular, Zeevaert (1960) assumed the reduced effective over-
burden pressure among a pile group is equal to average unit negative skin 
friction mobilized on pertinent number of piles (n). The unit friction is pre-
sented in term of the reduced effective stress using β method. This results 
in a dimensional ordinary differential equation for resolving the reduced 
stress. Given boundary condition on ground level, the reduced stress is 
obtained (Zeevaert 1960). The stress in turn allows the unit shaft friction 
to be integrated along pile length to gain total shaft downdrag.

Shibata et al. (1982) refines the concept of “effective pile number n” in 
Zeevaert’s method to when a pile under consideration is placed at the center 
of a square with a width of 2s (s = pile center to center spacing), and n is the 
number of piles enclosed by the square (see Figure 2.11). He obtained the 
total downdrag of a single pile in a group Pns:

 P d L p
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ns n n s= −




+ ′ + −










− −
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where p = surcharge loading on ground surface, Ln = depth of neutral plane, and
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Typically n = 2.25 for pile no. 1, 4, 13, and 16; n = 3.0 for pile no. 2, 
3, 5 etc; and n = 4.0 for pile no. 6, 7, 10, and 11 (see Figure 2.11). Once 
the total number of piles in a group exceeds 9, the n value stays constant. 
This “constant” and its impact are consistent with recent centrifuge results 
(Shen 2008).

www.engbasics.com



38 Theory and practice of pile foundations

To reduce negative skin friction, a number of measures were attempted 
(Broms 1979), including driving piles inside a casing with the space between 
pile and casing filled with a viscous material and the casing withdrawn, and 
coating the piles with bitumen (Bjerrum et al. 1969).

2.5 CAPACITY OF PILE GROUPS

Single piles can be used to support isolated column loads. They are more 
commonly used as a group at high load levels, which are generally linked by 
a raft (or pile-cap) above ground level or embedded in subsoil.

A vertically loaded pile imposes mainly shear stress around the subsoil, 
which attenuates with distance way from the pile axis from maximum 
on the pile surface (see Chapter 6, this book). The stress in the soil may 
increase owing to installing piles nearby, which reduce the capacity of the 
soil by principally increasing the depth of stress influence (see Figure 2.12). 
On the other hand, installation of displacement piles may increase soil den-
sity and lateral stresses locally around a pile, although, for example, driv-
ing piles into sedimentary rocks can sometimes lead to significant loss of 
end-bearing (known as relaxation).

The pile group capacity is conventionally calculated as a proportion of 
the sum of the capacities of the individual piles in the group by

 P n Pug g u= η  (2.18)

where Pug = ultimate capacity of the pile group; ng = number of piles in the 
pile group; and η = a group efficiency. With frictional piles, increase in 
capacity due to densification effects is normally not considered, although 
the NAVFC DM-7.2 code refers to η >1.0 for cohesionless soils at the usual 
spacings of 2 to 3 pile diameter. As for end-bearing piles, the capacity of 

Pile
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L

L

2L

n-value for this pile

n = 2.25 for pile
1, 4, 13, and 16
n = 3.0 for pile 2,
3, 5, 8, 9, 12, 14,
and 15
n = 4.0 for pile 6,
7, 10, and 11

32 4

5 76 8

9 1110 12

13 1514 16

Fictitious piles

Figure 2.11 Schematic of a pile in a group with negative skin friction (NSF).
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the pile group is a simple sum of the capacity of each individual pile in the 
group.

2.5.1 Piles in clay

A group of piles may fail as a block under a loading less than the sum of 
the bearing capacity of the individual piles (Whitaker and Cooke 1966). A 
block failure occurred for pile spacings of the order of two diameters. For 
pile groups in clay, the capacity mainly derives from the shaft resistance 
component. The component can be significantly reduced by the proximity 
of other piles, depending on whether the piles are freestanding or capped at 
the ground surface. The end-bearing resistance is largely unaffected.

A single efficiency factor η is adopted in practice to calculate the total 
pile resistance including both shaft and base components. Two efficiency 
factors of ηs and ηb are also used to distinguish shaft and base resistance, 
respectively.

2.5.2 Spacing

Upheaval of the ground surface should be minimized by controlling mini-
mum spacing during driving of piles into dense or incompressible material. 
A too-large spacing, on the other hand, may result in uneconomic pile caps. 
The driving of piles in sand or gravel should start from the center of a group 
and then progressively work outwards to avoid difficulty with tightening up 
of the ground. CP 2004 suggests the minimum pile spacing is the perimeter 
of the pile for frictional piles, twice the least width for end-bearing piles, 
and 1.5 times diameter of screw blades for screw piles. The Norwegian 
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Figure 2.12 Schematic modes of pile failure.
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Code of Practice on Piling recommends a minimum pile spacing of 3d (for 
L < 12 m in sand) or 4d (for L < 12 m in clay), increasing by one diameter 
for 12–24 m piles and by two diameters for L > 24 m.

2.5.3 Group interaction (free-standing groups)

Free-standing pile groups refer to those groups for which the cap capacity is 
negligible. This is noted when a pile cap is above soil surface or the ground 
resistance to a pile cap cannot be relied on. A few expressions have been 
proposed to estimate the capacity of a group using the group efficiency 
concept. For instance, the efficiency η is correlated to the ratio ρ of the 
shaft (skin) load Pfs over the total capacity Pu (i.e., ρ = Pfs/Pu) by (Sayed and 
Bakeer 1992):

 η η ρ= − − ′1 1( )s gK  (2.19)

where ηs′ = geometric efficiency; Kg = 0.4~0.9, group interaction factor, 
with higher values for dense cohesionless or stiff cohesive soils, and 0.4~1.0 
for loose or soft soils. The values of Kg may be determined according to 
relative density of the sand or consistency of the clay. It is noted that ρ = 0 
for end-bearing piles and 1.0 for frictional piles. A value of ρ > 0.6 is usu-
ally experienced for a friction (floating) pile in clay. For a group of circular 
piles, the geometric efficiency ηs′ may be estimated by

 ′ = ×
− × +  + − × + 

× × ×








η

πs

n s d m s d

m n d
2

1 1( ) ( ) 


 (2.20)

where m = number of rows of piles, n = number of piles in each row, and s = 
center to center spacing of the piles. In the case of square piles, π and d are 
replaced by 4 and b (b = width of the pile), respectively. The ηs′ increases 
with an increase in the pile spacing-to-diameter ratio, s/d, and it normally 
lies between 0.6 and 2.5. For a configuration other than rectangular or 
square, it may be evaluated by

 ′ = ∑ηs g pQ Q  (2.21)

where Qg = perimeter of the pile group (equivalent large pile) and ΣQp = 
summation of the perimeters of the individual piles in the group.

Equations 2.18 and 2.20 seem to be consistent with model test results 
(Whitaker 1957; O’Neill 1983). Tomlinson suggested an efficiency ratio of 
0.7 (for s = 2d) to 1.0 (for s = 8d). The action of driving pile groups into 
granular soils will tend to compact the soil around the piles. The greater 
equivalent width of a pile group as compared to a single pile will render an 
increase in the ultimate failure load. For these reasons, the efficiency ratio 
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of a group of piles in granular soils may reach 1.3 to 2.0 for spacing at 2~3 
pile widths, as revealed in model tests (Vesi  1969), and about unity at a 
large pile spacing.

Driving action could loosen dense and very dense sand, but this situation 
is not a concern, as it is virtually impossible to drive piles through dense 
sand. As for bored piles in granular soils, the shaft contributes relatively 
small component to total resistance. The use of an efficiency factor of one 
should not cause major overestimation of capacity. This use is also com-
mon for end bearing (driven and bored) piles in granular soils. However, 
due allowance for any loosening during pile formation should be given in 
assessing individual capacity of bored piles.

2.5.4 Group capacity and block failure

2.5.4.1 Free-standing groups

A pile group may fail together as a block defined by the outer perimeter 
of the group (Terzaghi and Peck 1967). The block capacity consists of the 
shear around the perimeter of the group defined by the plan dimensions, 
and the bearing capacity of the block dimension at the pile points. (The 
only exception is point-bearing piles founded in rock where the group 
capacity would be the sum of the individual point capacities.) Terzaghi and 
Peck’s block failure hypothesis offers a total failure load of the group, PBL 

(see Figure 2.12):

 P N A s A sBL c b
in

u s u= + �  (2.22)

where Nc = bearing capacity factor; Ab
in = Bi × Li, base area enclosed by the 

pile group; su = undrained shear strength at base of pile group; As = 2(Bi + 
Li)L, perimeter area of pile group; �su= average su around the perimeter of 
the piles; Bc, and Lc = the width and the length of block; and L = the depth 
of the piles.

The transition from individual pile failure (slip around individual 
piles) to block failure of a group (slip lines around the perimeter of the 
pile group) is confirmed by model pile tests (Whitaker 1957) as the pile 
spacing decreases. At a small spacing, “block” failure mode governs the 
capacity of the group. At the other extreme, the capacity of individual 
piles predominates group capacity at a very large spacing. As indicated in 
Figure 2.13, at a small spacing, free-standing and capped groups exhibit 
very similar responses. At a large spacing, the rate of increase in effi-
ciency of the free-standing pile groups is smaller than that for the capped 
groups.

Model tests on lower cap-pile groups (Liu et al. 1985) indicate the limit 
spacing for shear block failure and individual failure is about (2~3)d, and 
may increase to (3~4)d for driven piles in sand. A smooth transition from 
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individual to block failure modes is approximately captured using Equation 
2.19. Increasing the number of piles in the group beyond a critical number 
would gain little in total capacity.

2.5.4.2 Capped pile groups versus free-standing pile groups

A rigid pile cap may bear directly on subsoil that provides reliable support 
(see Figure 2.12). This cap enables the piles to work as a group with rigid 
boundary condition at the pile heads, and the group is termed a capped 
group. The ultimate load capacity of the group Pug is the lesser of mode 
(a) the sum of the capacity of the block containing the piles, PBL, plus the 
capacity of that area Ac

ex of the cap lying outside the block, Pcap
ex ; and mode 

(b) the sum of the individual pile capacities, ngPu, plus the bearing capacity 
of the pile cap on the bearing stratum, Pcap. The latter is a sum of Pcap

ex  and 
Pcap

in  deduced from both areas Ac
ex and Ac

in, with Ac
ex

 = BcLc − BiLi, and Ac
in

 = 
BiLi − nAb.

The capped group capacity Pug may be calculated using the shaft (Pfs) and 
base (Pfb) resistances of a single pile, the efficiency factors of shaft (ηs) and 
base (ηb), and the capacity of the cap. For instance, the Chinese design code 
JGJ94-94 recommends to calculate Pug by (Liu et al. 1985)

 P P P n P Pug s fs b fb g cap
ex

cap
in= + + +( )η η  (2.23)
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Figure 2.13  Comparison of η~s/d relationships for free-standing and piled groups. (After 
Poulos, H. G. and E. H. Davis, Pile foundation analysis and design, John Wiley 
& Sons, New York, 1980.)
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where Pfs, Pfb = ultimate shaft and base resistance, respecitvely, Pcap
ex  and Pcap

in  
are given by (Liu 1986),

 P cN Aex
cap c

ex
c

ex
c= η  (2.24)

 P cN Acap
in

c c
in

c
in= η  (2.25)

and Nc = bearing capacity factor incorporating depth and shape effect, c = 
cohesion relevant to the bearing of the cap, ηex

c  = 0.125[2 + (s/d)], and ηin
c  = 

0.08(s/d)(Bc/L)0.5. It should be cautioned that in estimating ηin
c , the ratio of 

cap width over pile length Bc/L is taken as 0.2 for soft clay, regardless of the 
cap dimension and pile length; and taking Bc/L = 1.0 for other soil if Bc/L 
> 1.0. The product of cNc is the ultimate capacity of the subsoil underneath 
the cap. The shaft component Pfs and base component Pfb of the capped pile 
capacity is calculated as they were for a single pile. The factors for shaft ηs 
and base ηb are different between sand and silt/clay.

Clay: 
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Silt, sand:
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where αs = 0.4 + 0.3(s/d) (s/d = 2~3), otherwise αs = 1.6 − 0.1(s/d) (s/d = 3~6).
Equations 2.24 and 2.25 may overestimate the cap capacity without the 

reduction factors ηex
c , and ηin

c  for the enclosed areas. The ηex
c  increases from 

0.63 to 1.0 as the s/d increases from 3 to 6. The ηin
c  varies as follows: (1) 

0.11~0.24 (s/d = 3), (2) 0.14~0.32 (s/d = 4), (3) 0.18~0.40 (s/d = 5) and (4) 
0.21~0.48 (s/d = 6), respectively.

In the case of liquefaction, backfill, collapsible soil, sensitive clay, and/or 
under consolidated soil, the cap capacity may be omitted by taking  η ηex

c
in
c=  = 

0. In other words, Equations 2.23 through 2.25 are also directly used for free-
standing pile groups. In this case, the impact of the parameter in the brackets 
with Bc/L is negligible, and the ηs and ηb reduce to the following forms:
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 Clay: ηs

d
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= −
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 Silt, sand: η αs s= , and ηb

s
d

= +






10 6/  (2.31)

Finally, Equation 2.23 may be rewritten as Equation 2.32 to facilitate 
comparison with Equation 2.19 (free-standing):

 η η η= +s

fs

u
b

fb

u

P

P

P

P
 (2.32)

2.5.5 Comments on group capacity

Equation 2.23 is deduced empirically from 27 in situ model tests on 17 
pile  groups in silt and 10 groups in clay. It works well against measured 
data from piles in clay and silt for 15 high-rise buildings. The accuracy of 
Equation 2.19 for estimating capacity is largely dependent of the value of 
Kg. A comparison between Equations 2.19 and 2.32 indicates Kg = ηs/ ′ηs. In 
light of Equation 2.30 or 2.31 for ηs and Equation 2.20 for ′ηs, the values of 
Kg were obtained for typical model tests and are shown in Figure 2.14. The 
obtained curves of Kg agree well (but for the reverse trend with ng) with those 
reported by Sayed and Bakeer (1992) for piles in clay, whereas the values of 
Kg (rewritten as Kg1 for s/d < 3, otherwise as Kg2) only provide low bounds 
for the piles in sand. The values of Kg1 and Kg2 were increased by 2.5 times 
(= 2.5ηs/ ′ηs) and are plotted in Figure 2.14 as 2.5Kg1 and 2.5Kg2. The latter 
agree well with higher value of measured data for all the piles in sand. This 
seems logical, as Equations 2.26 and 2.28 are deduced from model bored 
piles, which normally offer ~50% resistance mobilized along driven piles.

2.5.6 Weak underlying layer

Care must be taken, of course, to ensure that no weaker or more com-
pressible soil layers occur within the zone of influence of the pile group, 
in particular for end-bearing piles (with tip founded in sand, gravel, rock, 
stiff clay, etc.). The underlying softer layer in Figure 2.12 may not affect 
the capacity of a single pile, but may enter the zone of influence of the pile 
group and punch through the bearing layer. The bearing capacity of the 
group may be estimated using footing analyses (see Figure 2.12, in which 
α = 30°). The stress q′ on the top of the weaker layer is

 ′ =
+ +

q
P

B h L h
ug

c t c t( )( )
 (2.33)

The stress of q′ should be less than 3su to avoid block failure. When 
driving piles into dense granular soils, care must be taken to ensure that 
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previously driven piles are not lifted by the driving of other piles. For fur-
ther discussion on group action, reference can be made to Tomlinson (1970) 
and Whitaker (1957).

1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0
Piles in clay

(a)

4
9

ng = 25

Data from Sayed and Bakeer (1992):
1: Brand et al. (1972)             2×2 
2: Barden and Monckton (1970)

 3×3  5×5
3: Vesić (1980)  3×3
4: Liu (1987)  2×4  4×4

Kg = (1.2  d/s)/ 's

Normalized pile center-center spacing, s/d

G
ro

up
 in

te
ra

ct
io

n 
fa

ct
or

, K
g

G
ro

up
 in

te
ra

ct
io

n 
fa

ct
or

, K
g

1 2 3 4 5 6 7

0.1

1

10

0.5

(b)

Piles in sand

4
9

4

ng = 9

Data from Sayed and Bakeer (1992)
Vesić (1967): Loose sand 2×2, 3×3
     Medium dense , 2×2, , 3×3
Kishida (1967): 2×2, 3×3
Liu (1990): 3×3, (1 4)×4, 2×2, 1×6

2.5Kg1

Kg1
= (0.4 + 0.3s/d)/η's

Kg2
= (1.6  0.1s/d)/ 's

2.5Kg2

0.3

4

2

Normalized pile center-center spacing, s/d

Figure 2.14 Group interaction factor Kg for piles in (a) clay and (b) sand.
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Chapter 3

Mechanism and models 
for pile–soil interaction

Pile behavior may be predicted using various numerical and analytical 
methods, one of the most popular of which is the load transfer model. They 
are discussed in this chapter together with pertinent concepts and mecha-
nisms, which will be used in subsequent chapters to develop solutions for 
piles.

3.1 CONCENTRIC CYLINDER MODEL (CCM)

Load transfer analysis is an uncoupled analysis, which treats the pile–soil 
interaction along the shaft and at the base as independent springs (Coyle 
and Reese 1966). The stiffness of the elastic springs, expressed as the gra-
dient of the local load transfer curves, may be correlated to the soil shear 
modulus by load transfer factors (Randolph and Wroth 1978). The load 
transfer factors are significantly affected by (a) nonhomogeneous soil pro-
file, (b) soil Poisson’s ratio, (c) pile slenderness ratio, and (d) the relative 
ratio of the depth of any underlying rigid layer to the pile length. They 
are nearly constant for a given pile–soil system. Continuum-based FLAC 
(Itasca 1992) analysis has been used previously to calibrate the load trans-
fer factors (Guo and Randolph 1998), which are recaptured next.

3.1.1 Shaft and base models

Load transfer approach is applied to a typical pile–soil system shown in 
Figure 3.1, which is characterized by shear modulus varying as a power of 
depth, z

 G A zg
n=  (3.1)

where n = power for the profile; Ag = a constant giving the magnitude of 
the shear modulus; ξb = GL/Gb, base shear modulus jump (referred to as 
the end-bearing factor); and GL, Gb = values of shear modulus of the soil 
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just above the level of the pile tip and beneath the pile tip. The impact of 
ground-level modulus is incorporated in Chapter 4, this book.

The shaft displacement, ws, is related to the local shaft stress, τo (on 
pile surface), and shear modulus, G, by the concentric cylinder approach 
(Randolph and Wroth 1978)

 w
r

Gs
o o=
τ

ζ (3.2)

where ro = pile radius and ζ = the shaft load transfer factor.
The pile base settlement is estimated through the solution for a rigid 

punch acting on an elastic half-space (Randolph and Wroth 1978)

 
w

P

r Gb
b s

o b

=
−( )1

4

ν ω
 (3.3)

where wb = base settlement; Pb = mobilized base load; ω = base load transfer 
factor; and νs = Poisson’s ratio for the soil.

Assuming a constant with depth of the shaft load transfer factor ζ, closed-
form solutions were established (see Chapter 4, this book) that encompass 
the displacement, w, and load, P, of a pile at any depth, z (Guo 1997); the 
pile-head stiffness of Pt/(GLwtro) (Pt, wt = pile-head load and settlement, 
respectively); and the ratio of pile base load (Pb) over the pile-head load (Pt). 
The solutions (see Chapter 4, this book) were used to examine the validity 
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Figure 3.1 Schematic analysis of a vertically loaded pile.
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of the load transfer approach against FLAC analysis (Guo and Randolph 
1998).

3.1.2 Calibration against numerical solutions

Numerical FLAC analysis (Guo and Randolph 1998) was conducted on 
piles in a soil with a shear modulus G following Equation 3.1 to entire 
depth H, and also with soil modulus given by GL/Gb = 1 below pile base 
(see Figure 3.1), in which H = depth to underlying hard layer; L = pile 
embedment; λ = Ep/GL; Ep = Young’s modulus of an equivalent solid 
cylinder pile; and νp = Poisson’s ratio of the pile. For piles with L/ro = 
10~80, λ = 300~10,000, H/L = 1.2~6, n = 0 ~1.0, and νp = 0.2, the head 
stiffness, ratios of wt/wb, and Pb/Pt are tabulated in Tables 3.1 through 
3.3 for G strictly following Equation 3.1. The impact of GL/Gb is dis-
cussed in Chapter 4, this book. The impact of ratio νp on this study is 
negligible (see Table 3.1). Table 3.2 shows comparisons among boundary 
element analysis (BEM; Randolph and Wroth 1978), variational method 
(VM; Rajapakse 1990), and the FLAC analysis for single piles in homo-
geneous soil (n = 0, H/L = 4). The FLAC and BEM analyses were based 
on a Poisson’s ratio of soil νs of 0.4, while the VM analysis adopts a νs of 
0.5. As a higher Poisson’s ratio generally leads to a higher stiffness (see 
Chapter 4, this book), the stiffness from FLAC analysis is slightly higher 
than other predictions. Table 3.3 shows a further comparison with FEM 
analysis (Randolph and Wroth 1978), for both homogeneous (n = 0) and 
Gibson soil (n = 1). The reduction from n = 0 to n = 1 in the stiffness of 
32~38% (FLAC) or 40~45% (FEM) is primarily attributed to the reduc-
tion in average value of modulus over the pile embedment, as elaborated 
in Chapter 4, this book.

Table 3.1  Effect of Poisson’s ratio on the pile (νs = 0.49, 
L/ro = 40, λ = 1,000)

n 0 0.25 0.5 0.75 1.0

P

G w r
t

L t o

59 08

59 04

.

.

a

b

51 93
51 91

.
.

46 64
46 63

.

.
42 62
42 61

.
.

39 56
39 55

.

.

w

w
t

b

1 64
1 64
.
.

1 60
1 60
.
.

1 58
1 58
.
.

1 55
1 55
.
.

1 53
1 53
.
.

P

P
b

t

7 08
7 09
.
.

8 75
8 76
.
.

10 5
10 51

.
.

12 07
12 08

.

.
13 68
13 69

.

.

Source: Guo, W. D., and M. F. Randolph, Computers and 
Geotechnics, 23, 1–2, 1998.
a numerator for νp = 0.2
b denominator for νp = 0
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The FLAC analysis is utilized to deduce the base and shaft load transfer 
factors. The base factor ω was directly back-figured by Equation 3.3, in 
light of the base load Pb (estimated through the base stress) and the base 
displacement wb (the base node displacement). The profile of shaft load 
transfer factor ζ and its average value were deduced:

 1. With the profiles of local shaft shear stress τo and displacement ws 
along a pile obtained by FLAC analysis, the profile of the factor ζ 
was back-figured using Equation 3.2, which is plotted as “FLAC” in 
Figure 3.2a.

 2. Taking ζ as a constant with depth, the value of ζ was deduced by 
matching FLAC analysis and closed-form solutions for pile-head 
stiffness and the load ratio between pile base and head loads, Pb/Pt, 
respectively.

Figure 3.2a indicates the shaft factor ζ is approximately a constant with 
depth. With a constant ζ, the predicted profiles of load and displacement 

Table 3.2 FLAC analysis versus other approaches (n = 0)

P

G w r
t

L t o

40 FLAC
BEM
VM

69 70
65 70

72 2

.

.

. a

64 38
61 3
65 1

.
.
.

53 60
52 00
54 9

.

.
.

36 51
36 80
38 7

.
.
.

80 FLAC
BEM

109 0
102 2

.

.
85 0
85 2

.

.
61 6
61 6

.

.
36 2
38 0

.

.

W

W
t

b

40 FLAC
BEM
VM

1 05
1 05
.
.
−

1 18
1 12
1 19

.

.

.

1 55
1 49
1 59

.

.

.

2 92
2 66
3 25

.

.

.
80 FLAC

BEM
1 18
1 16
.
. 1 54.

2 96
2 68
.
.

7 99
6 75
.
.

L/ro λ( )= E Gp L
10,000 3,000 1,000 300

Source: Guo, W. D., and M. F. Randolph, Computers and Geotechnics, 
23, 1–2, 1998.
a rigid pile; νs = 0.5 for VM analysis, νs = 0.4 for BEM and FLAC 

analyses, and H/L = 4 for FLAC analysis.

Table 3.3 Pt/(GLwtro) from FEM and FLAC analyses

FLAC
FEM

43 95
41 5

.
.

56 84
53 6

.
.

63 89
65 3

.
.

0 Note:
νs = 0.4, λ = 1,000 for all analyses, 
but H/L = 2 for FEM and H/L = 2.5 
for FLAC analyses.FLAC

FEM
29 89
25 0

.
.

37 21
34 8

.
.

39 53
35 8

.
.

1.0

L/ro 20 40 80 n

Source: Guo, W. D., and M. F. Randolph, Computers and Geotechnics, 23, 1–2, 1998.
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using closed-form solutions (Chapter 4, this book) are very close to those 
from the FLAC analysis, as seen in Figure 3.2d and e, respectively.

3.1.2.1 Base load transfer factor

The base load transfer factor was synthesized as

(d) Load with depth 
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w(z)/wt
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(a)  with depth 

Legend 30

40

50

60

0 0.5 1
n
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/(G
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)

(c) Head-stiffness with n

(b)   Shear stress distribution 

0
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0.4
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o(z)/( o)ave

0.5
1.0

(e) Displacement with depth

Figure 3.2  Effect of back-estimation procedures on pile response (L/ro = 40, νs = 0.4, 
H/L = 4). (a) ζ with depth. (b) Shear stress distribution. (c) Head-stiffness 
ratio. (d) Load with depth. (e) Displacement with depth. (After Guo, W. D., 
and M. F. Randolph, Computers and Geotechnics 23, 1–2, 1998.)
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ω

ω
ω

ω
ω

ων

ν

= h

oh o
o (3.4)

where ωh, ων = the parameters to capture the effect of H/L and soil Poisson’s 
ratio; ωoh = ωh at H/L = 4, and ω νo  = ων at νs = 0.4. They are given as:

•	 ωo oL r n= − +1 0 67 0 0029 0 15/ [ . . ( ) . ] (L/ro < 20), otherwise ωo = +1 0 6/ [ .  
0 0006 0 15. ( ) . ]L r no +  (L/ro ≥ 20)

•	 ω ω νv o s= + −1 1 0 3 0 4/ [ . ( . )] (νs ≤ 0.4, compressible), otherwise ω ω νv o s= + −1 1 1 2 0 4/ [ . ( . )] 
ω ω νv o s= + −1 1 1 2 0 4/ [ . ( . )] (νs > 0.4, nearly incompressible)

 
ωh

n

n
H
L

=
+ − −







− +
1

0 1483 0 6081
1 1

0 1008 0 2

. .
exp( )

. . 4406

.

•	 The effect of pile–soil relative stiffness may be ignored over a practi-
cal range of the stiffness ratio, λ, between 300 and 3000.

The inverse of ω, 1/ω reflects the base stiffness of Pb(1 − νs)/(4Gbrowb). 
It is presented in Figure 3.3 to be consistent with the pile-head stiffness. It 
is equal to 0.6~0.95, with a base-load transfer parameter, ω, of 1.05~1.7. 
Practically, a unit value of ω may still be used to compensate the smaller 
load near pile base gained using a constant ζ (see Figure 3.2) under same 
amount of displacement. In addition, the effect of ω on the overall pile-head 
stiffness is extremely small.

3.1.2.2 Shaft load transfer factor

Back-figured shaft load transfer factors are presented in Figures 3.4 through 
3.6 using pile-head stiffness or load ratio from FLAC analysis. The deduced 
values of ζ should be identical for a given pile–soil system if load transfer 
analysis is exact, otherwise the impact of neglecting layer interaction is 
detected. Figure 3.4 shows the variation of ζ with pile-slenderness ratio 
and soil nonhomogeneous profile described by Equation 3.1. Figures 3.5 
and 3.6 show the impact of Poisson’s ratio and the finite layer ratio on the 
factor ζ, respectively.

The impact on the shaft load transfer factor by a combination of pile slen-
derness ratio L/ro, the soil nonhomogeneity factor n, and the soil Poisson’s 
ratio νs can be approximated by (Cooke 1974; Frank 1974; Randolph and 
Wroth 1978)

 ζ =








ln

r

r
m

o

 (3.5)
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The maximum radius of influence of the pile rm beyond which the shear 
stress becomes negligible was expressed in terms of the pile length, L (Guo 
and Randolph, 1998)

 r A L Brm s g o= − +( )1 ν ρ  (3.6)

where ρg = 1/(1 + n). The parameters A and B were estimated through fitting 
Equation 3.5 to the values of ζ obtained by matching pile-head stiffness. 
This offers an A given by

0.0 0.2 0.4 0.6 0.8 1.0
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Lines: Current equations
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(c) Layer thickness ratio, H/L

Figure 3.3  1/ω versus (a) slenderness ratio, L/d; (b) Poisson’s ratio, vs; (c) layer thickness 
ratio, H/L. (After Guo, W. D., and M. F. Randolph, Computers and Geotechnics 
23, 1–2, 1998.)
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With H/L = 4, s = 0.4,
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With H/L = 4, s = 0.4,
  = 1000, and   

Figure 3.4  Load transfer factor versus slenderness ratio (H/L = 4, νs = 0.4). (a) λ = 300. 
(b) λ = 1,000. (c) λ = 10,000. (After Guo, W. D., and M. F. Randolph, Computers 
and Geotechnics 23, 1–2, 1998.)
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 A
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νλ

0 4

0 4
2

1 0 3
0 4  (3.7)

where Cλ = 0, 0.5, and 1.0 for λ = 300, 1,000, and 10,000, respectively, and 
with negligible impact but for short piles, as shown in Figure 3.7; Aoh = Ah 

at a ratio of H/L = 4, and Ah is given by

 A e e eh

H
L ng= −







+

−
0 124 1 1 01

2 23 1 0 11. .
. .ρ

 (3.8)

Equation 3.6, without physical implication, compares well with that 
back-figured from FLAC analysis, as illustrated in Figures 3.4 through 3.6. 
It adopts a modifier of 1 − exp (1 − H/L) recommended by Lee (1991).

3.1.2.3 Accuracy of load transfer approach

The values of A deduced by matching either load ratio or head stiffness are 
different, in particular, for a homogeneous soil profile or a higher slenderness 

ζ
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   .25
   .50
   .75
   1.0

Symbols: Match head-stiffness
Dotted lines: Match load ratio
Solid lines: Current equations

(c) Slenderness ratio, L/ro

With H/L = 4, νs = 0.4,
 λ = 10,000, and   

Figure 3.4  (Continued) Load transfer factor versus slenderness ratio (H/L = 4, νs = 0.4). 
(a)  λ =  300. (b)  λ = 1,000. (c) λ = 10,000. (After Guo, W. D., and M. F. 
Randolph, Computers and Geotechnics 23, 1–2, 1998.) 
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Figure 3.5  Load transfer factor versus Poisson’s ratio relationship (H/L = 4, L/ro = 40). 
(a) λ = 300. (b) λ = 1,000. (c) λ = 10,000. (After Guo, W. D., and M. F. 
Randolph, Computers and Geotechnics 23, 1–2, 1998.)
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ratio together with a lower stiffness (e.g., λ = 300) (Figures 3.4 and 3.7). 
This implies less accuracy of the load transfer approach for the cases.

The two parameters that most affect ζ are the soil layer depth ratio, H/L, 
and the nonhomogeneity factor, n. The shaft load transfer parameter, ζ, 
may be estimated from Equation 3.5, taking B = 1 and A given approxi-
mately by (Guo and Randolph 1998):

 A e en
H
L≈ + −







− −

1 1 1 1
1

.  (3.9)

Figure 3.8 shows a comparison of Equation 3.9 with results from the 
FLAC analyses. For deep layers, a limiting value of A = 2.1 is noted along 
with B = 1 (for an infinite, homogeneous soil n = 0). This A is lower than 
A = 2.5 (B = 0) (Randolph and Wroth 1978; Guo and Randolph 1996). The 
discrepancy arises from the higher head-stiffness of FLAC analysis than the 
boundary element approach. A 30% difference in choice of A value would 
lead to less than 10% difference in the predicted pile-head stiffness. The 
accuracy of A, however, becomes important in modeling pile–pile interac-
tion factors (Guo and Randolph 1996; Guo 1997).
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Dotted lines: Match load ratio
Solid lines: Current equations

 n = 0
   .25
   .50
   .75
   1.0

(c) Poisson's ratio, νs 
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 λ = 10,000, and   

Figure 3.5  (Continued) Load transfer factor versus Poisson’s ratio relationship 
(H/L = 4, L/ro = 40). (a) λ = 300. (b) λ = 1,000. (c) λ = 10,000. (After Guo, W. 
D., and M. F. Randolph, Computers and Geotechnics 23, 1–2, 1998.) 
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Figure 3.6  Load transfer factor versus H/L ratio (L/ro = 40, νs = 0.4). (a) λ = 300. (b) λ = 
1,000. (c) λ = 10,000. (After Guo, W. D., and M. F. Randolph, Computers and 
Geotechnics 23, 1–2, 1998.)
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The base contribution to the pile-head stiffness is generally less than 
10%. Therefore, taking ω as unity will result in a less than 7% difference 
in the predicted pile-head stiffness. Figure 3.9 shows a comparison of the 
back-figured values of ζ using the simple ω = 1 and the more precise val-
ues of ω for two extreme cases of higher L/ro of 80 and lower L/ro of 10, 
together with the prediction by Equation 3.5.

3.2 NONLINEAR CONCENTRIC CYLINDER MODEL

The concentric cylinder load transfer model is next extended to incorpo-
rate nonlinear pile–soil interaction using a hyperbolic law to model the soil 
stress-strain relationship for pile shaft and base.

3.2.1 Nonlinear load transfer model

In comparison with Equation 3.5 for elastic case, a hyperbolic stress-strain 
curve would render the load transfer factor, ζ, to be recast as in Randolph 
(1977) (Kraft et al. 1981)
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Figure 3.6  (Continued) Load transfer factor versus H/L ratio (L/ro = 40, νs = 0.4). 
(a)  λ  =  300. (b) λ = 1,000. (c) λ = 10,000. (After Guo, W. D., and M. F. 
Randolph, Computers and Geotechnics 23, 1–2, 1998.) 
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Figure 3.7  Load transfer factor versus relative stiffness (νs = 0.4, H/L = 4). (a) 
L/ro  = 20. (b) L/ro = 40. (c) L/ro = 60. (After Guo, W. D., and M. F. 
Randolph, Computers and Geotechnics 23, 1–2, 1998.)

www.engbasics.com



Mechanism and models for pile–soil interaction 61

 ζ ψ ψ= − −ln[( ) / ( )]
r

r
m

o

1  (3.10)

where ψ = Rf o fτ τ/ , the nonlinear stress level on the pile–soil interface, and 
the limiting stress is higher than but is taken as the failure shaft stress 
τf; Rf = 0~1.0, a flexible parameter controlling the degree of nonlinearity, 
Rf = 0 corresponds to a linear elastic case, and

 τ θ
f vA z=  (3.11)

where Av, θ = constants, which may be estimated using SPT blow counts or 
CPT profiles (see Chapter 1, this book). As the pile-head load increases, the 
mobilized shaft shear stress τo will reach the limiting value τf. This occurs 
at a local limiting displacement we, which in turn, in light of Equations 3.1 
and 3.2 and θ = n, can be expressed as

 w r
A

Ae o
v

g

= ζ  (3.12)

Thereafter, as the pile–soil relative displacement exceeds the limiting value, 
the shear stress stays as τf (underpinned by an ideal elastic perfectly plastic 
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Figure 3.7  (Continued) Load transfer factor versus relative stiffness (νs = 0.4, H/L = 4). 
(a) L/ro = 20. (b) L/ro = 40. (c) L/ro = 60. (After Guo, W. D., and M. F. 
Randolph, Computers and Geotechnics 23, 1–2, 1998.)
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load transfer curve). The limiting shaft displacement we is a constant down 
the pile length.

Equation 3.10 is dependent on stress level via ψ and is referred to as non-
linear (NL) analysis. The load transfer curve may be simplified as simple 
linear analysis (SL) by assuming a constant value of ψ. As an example, 
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Figure 3.8  Effect of soil-layer thickness on load transfer parameters A and ζ (L/ro = 40, 
νs = 0.4, λ = 1000). (a) Parameter A. (b) Parameter ζ. (After Guo, W. D., and 
M. F. Randolph, Computers and Geotechnics 23, 1–2, 1998.)
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Figure 3.9  Variation of the load transfer factor due to using unit base factor ω and real-
istic value. (a) L/ro = 10. (b) L/ro = 80. (After Guo, W. D., and M. F. Randolph, 
Computers and Geotechnics 23, 1–2, 1998.)
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Figure 3.10a shows the nondimensional shear stress versus displacement 
relationship obtained for τf/Gi = 350 (subscript i denotes initial subse-
quently), L/ro = 100, and νs = 0.5 using NL (Rf = 0.9) and SL (ζ = constant 
by ψ = 0.5) analyses. It indicates that shaft friction is fully mobilized at 
a displacement we of 1%–2% of the pile radius, which accords well with 
model tests (Whitaker and Cooke 1966).
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Figure 3.10  Comparison of pile behavior between the nonlinear (NL) and simplified linear (SL) 
analyses (L/ro = 100). (a) NL and SL load transfer curves. (b) Load distribution. 
(c) Displacement distribution. (d) Load and settlement. (After Guo, W. D., 
and M. F. Randolph, Int J Numer and Anal Meth in Geomech 21, 8, 1997a.)
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Compared to Equation 3.3 for elastic base, nonlinear base load displace-
ment relationship was written as (Chow 1986b):

 w
P

r G R P Pb
b s

o ib fb b fb

=
−

−
( )

( )

1

4
1

1 2

ν ω
 (3.13)

where Pfb = the limiting base load and Rfb = a parameter controlling the 
degree of nonlinearity.

3.2.2 Nonlinear load transfer analysis

A program operating in Microsoft Excel called GASPILE has been devel-
oped to allow analysis of pile response in nonlinear soil. The analytical 
procedure resembles that for computing load-settlement curves of a single 
pile under axial load (Coyle and Reese 1966). A pile is discretised into ele-
ments, and each element is connected to a soil load transfer spring. Load 
transfer is realized via the shaft model of Equation 3.2 along with 3.10, and 
base model of Equation 3.13, respectively. The input parameters include (a) 
limiting pile–soil friction distribution down the pile (e.g., Equation 3.11); 
(b)  initial shear modulus distribution down the pile (e.g., Equation 3.1); 
(c) the end-bearing factor and soil Poisson’s ratio; and (d) the dimensions 
and Young’s modulus of the pile. Comparison shows the consistency 
between GASPILE and RATZ predictions (Randolph 2003a).

GASPILE was used to analyze a typical pile–soil system to examine the 
effect of the nonlinear soil model. The pile has a length L of 25 m, a radius 
ro of 0.25 m and an equivalent Youngs’ modulus Ep of 2.9 GPa (for a solid 
cylindric pile). The pile is discretized into 20 segments (with little different 
results using 10 segments). The soil has Gave of 20 MPa (subscript “ave” 
denotes “average value over pile embedment”), Poisson’s ratio, νs = 0.4. The 
pile–soil system has a ratio of modulus and strength, Gi/τf of 350; an end-
bearing factor ξb of 1; and the ultimate base load Pfb of 1.2 MN.

3.2.2.1 Shaft stress-strain nonlinearity effect

The nonlinear model (NL, Rf = constant) and the simple linear model (SL, 
ψ = constant), as shown in Figure 3.10a, were used, along with an identi-
cal base soil models featured by Rfb = 0.9. The difference between the NL 
(Rf =  0.9) and SL (ψ = 0.5) models is generally small and consistent, as 
shown in Figure 3.10, in terms of nondimensional load and displacement 
distributions down the pile at a base displacement, wb of 1.5, and 3.0 mm; 
and the pile-head response owing to degree of nonhomogeneity n of 0, 0.5, 
and 1.0 (see Figure 3.11). This is attributed to the consistency between the 
shaft NL and SL models for a stress level to ~0.6 (see Figure 3.10a). For 
most realistic cases, the effect of nonlinearity is expected to be significant 
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only at load levels close to failure (e.g., Figure 3.10d with Rf = 0.9). The SL 
from a constant value of ζ is generally sufficiently accurate.

3.2.2.2 Base stress-strain nonlinearity effect

The influence of base stress level is obvious only when a significant settle-
ment occurs (Poulos 1989). If the base settlement, wb, is less than the local 
limiting displacement, we, the base soil is generally expected to behave elas-
tically. The exception is when the underlying soil is less stiff than the soil 
above the pile base level (ξb > 1). This case is fortunately associated with 
a relatively small base contribution. As a result, an elastic consideration of 
the base interaction before full shaft slip is generally adequate.

3.3 TIME-DEPENDENT CCM

The accuracy of the load transfer model prompts the extension into time-
dependent case. Load transfer functions for the shaft may be derived from 
the stress-strain response of the soil using the concentric cylinder approach. 
As depicted in Figure 3.12b, the approach is based on a simple 1/r varia-
tion of shear stress, τrz, around the pile (where r is the distance from pile 

0 700 1400 2100 2800
20

15

10

5

0

n = 0.(dots)

n = 0.5 (dotted lines)
n = 1.0 (solid lines)

 Simplified linear (  = 0.5)
 Closed form solutions (  = 0)
 Nonlinear

Pile head load (kN)

Pi
le

-h
ea

d 
se

ttl
em

en
t (

m
m

)

L = 25 m, ro = 0.25 m,
Ep = 2.9 GPa, 
Gave = 20 MPa, Gi/ f = 350,
 b = 1, νs = 0.4 

Figure 3.11  Comparison of pile-head load settlement relationship among the nonlinear 
and simple linear (ψ = 0.5) GASPILE analyses and the CF solution (L/ro = 
100). (After Guo, W. D., and M. F. Randolph, Int J Numer and Anal Meth in 
Geomech 21, 8, 1997a.)
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axis) (Cooke 1974; Frank 1974; Randolph and Wroth 1978). The treatment 
below extends those functions to allow for visco-elastic response of the soil.

3.3.1 Nonlinear visco-elastic stress-strain model

A pile in clay under a sustained load usually undergoes additional (creep) 
settlement, owing to time-dependent stress-strain behavior (Mitchell and 
Solymar 1984). The creep settlement occurs in the soil surrounding the pile 
as well as on the pile–soil interface itself (Edil and Mochtar 1988). A model 
consisting of Voigt and Bingham elements in series can account well for 
the creep behavior of several soils (Komamura and Huang 1974), but for 
the difficulty in determining the slider threshold value for the Bingham ele-
ment. An alternative is to adopt a hyperbolic stress-strain curve as shown 
by experiment (Feda 1992). This alternative use leads to a modified intrin-
sic time dependent nonlinear creep model (Figure 3.13a) (Guo 2000b)

 γ γ γ= +1 2 (3.14)

 τ γj j j jG k=  (3.15)

 τ η γγ3 3 3= �  (3.16)

 τ τ τ1 2 3= +  (3.17)

where γj = shear strain for the elastic spring 1 and 2 and dashpot 3 (j = 1, 2, 
and 3), respectively; γ = total shear strain; Gj = instantaneous and delayed 
initial elastic shear modulus (j = 1, 2), respectively; �γ3 = shear strain rate 
for the dashpot (γ3 = γ2); ηγ3 = shear viscosity at a strain rate of �γ3; τj = shear 
stress acted on spring 1 and 2 and dashpot 3 (j = 1, 2, and 3), respectively; 

(b) 

t (t/T )

Load P

(c) 

t (t/T )tc (tc/T )

Load P

(a) 

Gi1

Gi2

1

3
2

Figure 3.13  Creep model and two kinds of loading adopted in this analysis. (a) Visco-
elastic model. (b) One-step loading. (c) Ramp loading. (After Guo, W. D., Int 
J Numer and Anal Meth in Geomech 24, 2, 2000b.)
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and kj = coefficient for considering nonlinearity of elastic springs 1 and 2 
(j = 1, 2), respectively.

The shear strain rate, �γ , is developed and related to absolute temperature 
and/or deviatoric shear stress using rate process theory (Murayama and 
Shibata 1961; Christensen and Wu 1964; Mitchell 1964; Mitchell et al. 
1968). However, they did not account for the nonlinearity of the soil creep. 
A nonlinear hyperbolic model can fit well with measured stress-strain rela-
tionship at different times (Feda 1992). This may be realized via Equations 
3.14 to 3.17 and the coefficient kj given by

 k G Gj j j ij= − =1 ψ /  (3.18)

where ψ τ τj fj j fjR= /  (j = 1, 2); Rfj is originally defined as τ τfj ultj/  (τultj, τfj = 
ultimate and failure local shear stress for spring j, respectively) (Duncan 
and Chang 1970); and i denotes “initial.”

During a creep process, the coefficient kj is a constant. Equations 3.14 to 
3.17 may be converted to

 τ
η

τ γ
η

γγ

γ γ

γ

γ
1

3

2 1
1

3

2

1
J

G G G
+ = +� � (3.19)

where J = 1/Gγ
  
1+1/Gγ

  
2; Gγ

  
j = Gjkj, instantaneous and delayed elastic shear 

modulus at a strain of γj (j = 1, 2) respectively; �τ1, �γ= shear stress rate and 
shear strain rate respectively. Equation 3.19 is of an identical form to that 
for linear visco-elastic material. It captures the impact of nonlinearity of 
the modulus, Gj, through the simple reduction factor, kj. Equation 3.19 is 
integrated with respect to time, and with the initial condition of γ = 0 at 
t = 0, the total shear strain is deduced as
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∫0

t
dt*  (3.20)

where τ1, τ1(t*) = soil shear stress at times t and t*, respectively; t* = a vari-
able for the integration. The shear strain of Equation 3.20, underpinned 
by the nonlinear soil model of Equations 3.14 to 3.17, is characterized by 
instantaneous elasticity (G1) and delayed elasticity (G2). At the onset of 
loading, only elastic shear strain is initiated. Creep displacement gradually 
appears (via delayed elasticity) on and/or around the pile–soil interface and 
is dominated by the ratio of strength over modulus, τ1/Gγ2; the relaxation 
time, ηγ3/Gγ2; and the loading path via τ1(t*)/τ1.

The stress initially taken by the dashpot redistributes to the elastic spring 
2 (Figure 3.13a) until finally all the stress is transferred. During the trans-
ferring process, spring 2 will yield upon attaining the failure stress τf2. A 
larger fraction of the stress subsequently has to be endured by the dashpot, 
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which could lead to a nonterminating creep or eventually trigger a failure. 
The stress τf2 (= τult2) is a long-term value and is lower than τf1 (τult1) (Geuze 
and Tan 1953; Murayama and Shibata 1961; Leonardo 1973), (e.g., τf2/τf1 = 
0.71) (Murayama and Shibata 1961). Soil strength [thus τf2(τult2), τf1(τult1)] 
reduces linearly with the logarithmic time elapsed (Casagrande and Wison 
1951), as also formulated by Leonardo (1973), and reduces logarithmically 
with increase in water content.

The magnitude of the creep parameters, for either disturbed or undis-
turbed clays, are as follows (Guo 1997):

 1. The relaxation time, ηγ3/Gγ2, a constant for a given clay is 0.3~5 (×105 
second) varying from site to site (Lo 1961; Qian et al. 1992). The 
compressibility index ratio, Gγ1/Gγ2, depending on water content, var-
ies from 0.05 to 1.5 (Lo 1961).

 2. The individual values of Gγ1, Gγ2, and ηγ2, however, vary with load 
(stress) level.

The two factors of τ1/Gγ2 and ηγ3/Gγ2 may be estimated through interface 
(pile–soil) shear test or backfigured through field or laboratory pile tests 
(see Example 3.1). They may be similar to the above-mentioned values.

Generally speaking, secondary compression of all remolded and undis-
turbed clays obtained by odometer tests can be sufficiently accurately pre-
dicted by the model of Equation 3.20 for the elastic case (ψ1 = ψ2 = 0). The 
model is adequate to piles, as remolding of the soil is generally inevitable 
during pile installation.

3.3.2 Shaft displacement estimation

3.3.2.1 Visco-elastic shaft model

Local shaft displacement can be predicted through the concentric cylin-
der approach, which itself is based on elastic theory (Randolph and Wroth 
1978; Kraft et al. 1981; Guo and Randolph 1997a; Guo and Randolph 
1998). The correspondence principle (Lee 1955; Lee 1956; Lee et al. 1959) 

states that the analysis of stress and displacement field in a linear visco-
elastic medium can be treated in terms of the analogous linear elastic prob-
lem having the same geometry and boundary conditions. A shaft model 
reflecting nonlinear visco-elastic response thus has to be deduced directly 
from the generalized visco-elastic stress strain relationship of Equation 
3.20, with suitable shear modulus (Guo 2000b).

Model pile tests show that load transfer along a model pile shaft leads to 
a nearly negligible volume change (or consolidation) in the surrounding soil 
(Eide et al. 1961). Approximately, the vertical displacement uv (subscript 
v for vertical loading; see Figure 3.12b) along depth z ordinate may be 
ignored (Randolph and Wroth 1978). Therefore, it follows that
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where wv = local displacement of shaft element at time t. Based on the con-
centric cylinder approach, the shaft displacement ws is obtained by integra-
tion from the pile radius, ro, to the maximum radius of influence, rm
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The shear stress, τ1 (= τrz) at a distance of r away from the pile axis may be 
deduced using force equilibrium on the stress element in vertical direction 
(see Figure 3.12b), which gives τ1 = τoro/r. The shear stress and shear strain γ 
of Equation 3.20 were substituted into Equation 3.22, which gives us
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where τo, τo(t*) = shear stress on the pile soil interface at time t and t* 
respectively. Gγj becomes the shear modulus at distance r away from the 
pile axis for elastic spring j (j = 1, 2). Although the shear modulus and the 
viscosity parameter are functions of the stress level, the relaxation time 
ηγ3/Gγ2 may be taken as a constant (Guo 1997). Hence, it is replaced with 
T (T = η/G2, η = the value of ηγ3 at strain γ3 = 0%).

The inverse linear reduction of shear stress away from a pile (i.e., τ1 = 
τoro/r) along with Equation 3.18 allow a variation of shear modulus with 
distance r to be determined as

 G G
r

rj ij
o

jγ ψ= −(1 ) (3.24)

where ψ τ τj fj oj fjR= / ; nonlinear stress level on the pile–soil interface for elas-
tic spring j (j = 1, 2); and τoj = shear stress on pile–soil interface (j = 1, 2). 
The shear modulus variation of Equation 3.24 allows Equation 3.23 to be 
simplified as

 w
r

Gs
o o

c=
τ

ζ ζ
1

1  (3.25)

where

 ζ
ζ
ζc

G

G
A t= +1 2

1

1

2

( ) (3.26)

Equation 3.25 is a nonlinear visco-elastic load transfer (t-z) model. The 
shear measure of influence ζ is equal to a product of two entities ζ1 and ζc. 
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The displacement calculation embracing nonlinear visco-elastic behavior 
still retains the simplicity and pragmatism of Equation 3.5 (Randolph and 
Wroth 1978; Kraft et al. 1981). The radial shear influence is the same as 
Equation 3.10, and for spring j,

 ζ
ψ

ψj

m o j

j

r r
=

−
−









ln

1
 (3.27)

Normally, ζ1 gradually becomes higher than ζ2, as stress level ψj increases, 
because ψ2 is gradually higher than ψ1 (with the failure stress, τult2 < τult1).

The time dependent part A(t) is related to stress level–time relationship 
by
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t t t
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exp(
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* *
*= − −∫1 τ

τ
 (3.28)

Most practical loading tests follow “ramp type” loading, which is a com-
bination of constant rate of loading during addition of load (i.e., t < tc in 
Figure 3.13c; tc = the time at which a constant load commences) and sus-
tained loading (t > tc, a creep process). Within the elastic stage, the shear 
stress at any time, t* (in between 0 and tc) should follow a similar pattern 
of time dependency to the loading, thereby

 τ τo ot t t t( ) / ( )∗ ∗= /  (3.29)

Afterwards, when t* > tc, the stress ratio stays at unity. Therefore, if the 
total loading time t exceeds tc, Equation 3.28 may be integrated, allowing 
A(t) to be written as
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Otherwise, if t ≤ tc, A(t) is given

 A t
T
t

t
T

( ) exp= − − −












1 1  (3.31)

At the extreme case of tc = 0 (i.e., one-step loading, Figure 3.13b), A(t) is 
given by

 A(t) = 1 − exp(−t/T) (3.32)

The non-dimensional local displacement and stress level for nonlinear 
visco-elastic case (NLVE) is illustrated in Figure 3.14a for a typical pile 
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of L/ro = 50 in a clay with τfj/Gj = 0.04 (j = 1, 2), νs = 0.5, n = 1, G1/G2 = 1, 
and pile–soil interaction factors of ζ2/ζ1 = 1 and ξb = 1. First, the linear 
elastic (LE) and nonlinear elastic (NLE) load transfer curves were gained 
and are illustrated in Figure 3.14a as reference. The creep is then illustrated 
in Figure 3.14a for one-step loading initiated at stress level τo/τf1 of 0.5 and 
ramp loading initiated at the beginning (τo/τf1 = 0) and held at a prolonged 
load level of 0.8 from time tc. Figure 3.14a indicates a significant effect of 
the relative ratio of the duration of constant rate of loading, tc, over total 
loading time, t, on the stress-displacement response, as is evident in Figure 
3.14b concerning a constant of tc/T but varying t/T.

3.3.2.2 Nonlinear creep displacement

Figure 3.15a shows ~200% increase of the parameter ζ1 with the shear 
stress level, ψ, approaching 0.9. At failure, the secant stiffness of the load 
transfer curve is approximately half the initial tangent value for values of 
Rf in the region of 0.9. The whole shape of the curve may be approximated 
closely by a parabola (Randolph 1994). The elastic behavior of pile (cor-
responding to ζc = 1) under working load may be predicted by the solutions 
(Guo and Randolph 1997a).

To predict secondary deformation of clay, the ratio of ζ2/ζ1 may be taken 
as unity (identical shaft failure stress for both springs 1 and 2), in light of 
the correspondence principle for linear visco-elastic media. Generally, at a 
large load level, the stress level on spring 2 may exceed that on spring 1 at 
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the same degree of shaft displacement mobilization, owing to the limiting 
shear stress τult2 < τult1. The parameter ζ2 estimated by Equation 3.27 is 
larger than ζ1. A higher shaft displacement (via high ζc) is expected as per 
Equation 3.25. At this stage, the pile would not yield, but has significant 
creep displacement, particularly for long piles.
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www.engbasics.com



74 Theory and practice of pile foundations

The creep modification factor, ζc, varies with nondimensional time t/T 
and depends on modulus ratios, G1/G2, as shown in Figure 3.15b for step 
loading. It depends on the tc/t of the ramp loading, as illustrated in Figure 
3.15c for G1/G2 = 1. Given a sufficient time, it leads to ζc = (G1/G2) + 1. 
Equation 3.32 may be converted to a creep function J(t) with

 J t A B ec c
t T( ) = + −  (3.33)

where A G Gc = 1 1 2 2 1/ + /ζ ζ ; B Gc = −ζ ζ2 2 1/ . The function is equivalent to that 
adopted previously (Booker and Poulos 1976) and will be used in Chapter 
5, this book. In addition, comparing Equation 3.26 with Equation 3.33 
indicates

 J t Gc( ) = ζ / 1 (3.34)

This relationship enables Equation 3.25 to be written as a function of J(t) 
as well:

 w r J ts o o= τ ζ1 ( ) (3.35)

Equations 3.25 and 3.26 allow the creep component of displacement (step 
loading) to be expressed as
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where wc = local creep displacement at time t. Equation 3.36 implies that the 
rate of creep displacement of a frictional pile is proportional to the diam-
eter of the pile and the stress ratio. This agrees well with theoretical and/
or empirical findings (Mitchell 1964; Edil and Mochtar 1988). The impact 
of pile slenderness ratio, the shaft nonhomogeneity factor, and Poisson’s 
ratio on the we is captured through ζ2. The time-displacement relationship 
of Equation 3.36 is different from the empirical expression by Edil and 
Mochtar (1988), but it matches well with experimental data shown next.

3.3.2.3 Shaft model versus model loading tests

The shaft displacement can be easily gained from Equation 3.25, which 
includes the nonlinear elastic component obtained by using ζc = 1 and the 
creep component (e.g. by Equation 3.36 for step loading). The nonlinear 
model was theoretically verified (Randolph and Wroth 1978; Kraft et al. 
1981; Guo and Randolph 1997a). Next, only the creep component of 
Equation 3.36 is checked against experimental data, concerning the impact 
of the initial elastic and delayed shear moduli, the ultimate (≈ failure) shaft 
shear stress for the springs 1 and 2, the relaxation time, and the geometry 
and elastic property of the pile.
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As discussed in Chapter 2, this book, appropriate values of τf1 (τult1) may 
be estimated using the shear strength of the soil, the effective overburden 
stress, the CPT, or the SPT tests. The variation of the shear stress, τfj, due 
to reconsolidation may be estimated by the relevant elastic or visco-elastic 
consolidation theory to be discussed in Chapter 5, this book.

The modulus G1 may be deduced by fitting Equation 3.25 with the 
measured local shear stress-displacement relationship. The equivalent 
modulus to evaluate a pile settlement of 1% of the pile radius may be 
initially taken as 3G1% (G1% = shear modulus at a shear strain of 1%) 
(Kuwabara 1991), otherwise a smaller value should be taken for a large 
settlement. With normally consolidated clays, the shear modulus at a 
shear strain of 1%, G1% and the initial modulus G1 may be taken as 
(Kuwabara 1991) G1% = (80~90)su and G1 = (400~900)su, respectively. 
Use of nonlinear elastic or elastic form (ψ = 0) of Equation 3.25 gener-
ally results in little discrepancy of the overall pile response over a load-
ing level between 0 and 0.75 (Guo and Randolph 1997a). The initial 
shear modulus, G1, can generally be chosen as 1~3 times the correspond-
ing shear modulus gained from field measurement or empirical formulas 
(Fujita 1976).

The rate factor, 1/T, should be ascertained for a range of relevant load-
ing levels. Three laboratory tests (Edil and Mochtar 1988) provide time-
dependent settlement relationships for short, “rigid” model piles. They 
were well fitted using Equation 3.36 and the parameters in Table 3.4, as 
shown in Figure 3.16a. The poor fits to measured data during initial stage 
are noted irrespective of using Equation 3.36 or Edils and Mochtar’s sta-
tistical formula. This indicates nonlinear elastic displacement in the creep 
tests and reflects the hydrodynamic period of consolidation process (Lo 
1961).

The creep parameters for a given load may also be deduced from mea-
sured settlement versus time relationship of a loading test. Equations 3.25 
and 3.36 show the creep settlement rate may be expressed as
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Table 3.4 Curve fitting parameters for creep tests in Figure 3.16a

Test No. G2/τf2

G2/η 
(10−5/sec)

Length 
L (mm)

Diameter 
d (mm)

Stress Level 
ψ (Rfτo/τf )

38 175. 0.5 115.6 10.1 0.91
32 175. 0.55 90.4 17.0 0.69
12 500. 2.67 77.5 26.7 0.68

Source:  Guo, W. D., Int J Numer and Anal Meth in Geomech 24, 2, 2000b.
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Under a sustained load at the pile top, the logarithmic creep settlement rate 
of log(dwc/dt) may be obtained using loading test. The plot against time 
(normally a straight line) can be fitted by Equation 3.37, which allows the 
parameters to be readily determined. The use of this method is elaborated 
in Example 3.1.

Example 3.1 Determining creep parameters from loading tests

Ramalho Ortigão and Randolph (1983) reported a pile tested in clay 
until failure in an increment sustained tensile loading pattern. The 
closed-ended steel pipe pile was 203 mm in diameter and 6.4 mm in 
wall thickness and had an equivalent Young’s modulus of 2.1 × 105 
MPa. The pile was driven 9.5 m into stiff, overconsolidated clay. The 
shear modulus of the clay was 12 MPa, the failure shaft friction was 
41.5 kPa, as deduced from the load settlement curve.

To estimate creep parameters, an average pile stress level is used to 
gain the nonlinear elastic load transfer measure, ζ. The loading tests 
offer an ultimate load of 280 kN. The stress (load) levels were 0.714 
and 0.857, respectively, for the pile-head loads of 200 and 240 kN. 
With the pile geometry, a soil Poisson’s ratio of 0.3, the nonlinear elas-
tic measure, ζ, as per Equation 3.27, is calculated as 6.35 [i.e., (ξ2)1] at 
200 kN and as 7.04 [i.e., (ξ2)2] at 240 kN, respectively. The tests offer 
the plots of the log creep settlement rate and time, which are shown in 
Figure 3.16b. The two lines for loading of 200 and 240 kN offer relax-
ation times, 1/T1 of 6.64 × 10

-6
/s and 1/T2 of 3.6 × 10

-6
/s, respectively. 
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Figure 3.16  (a) Predicted shaft creep displacement versus test results (Edil and Mochtar 
1988). (b) Evaluation of creep parameters from measured time settlement 
relationship (Ramalho Ortigão and Randolph 1983). (After Guo, W. D., Int J 
Numer and Anal Meth in Geomech 24, 2, 2000b.)
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The intersections in the creep settlement rate ordinate for the two load-
ing levels are 0.00018 and 0.00035 mm/min. At t = 0, Equation 3.37 
for 200 kN and 240 kN is written as

 ( ) .ξ
τ

2 1
1 1

1

2 1 1

1
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G T













=  (mm/min) (3.38a)
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Equation 3.38a, along with ψ1 = 0.714, (ξ2)1 = 6.35, ro = 101.5 mm, 
1/T1 = 6.64 × 10-6/s, and τf = 41.5 kPa offer G1/G2 = 0.2839, (G2)1 = 
42.27 MPa. Equation 3.38b together with ψ2 = 0.857, (ξ2)2 = 7.04, ro = 
101.5 mm, 1/T2 = 3.6 × 10-6/s, and τf = 41.5 kPa lead to G1/G2 = 0.7653, 
(G2)2 = 15.68 MPa.

The initial shear modulus, G1, generally increases with soil consoli-
dation, but it can be regarded as a constant upon completion of the 
primary consolidation. As mentioned before, the creep parameters, G2 
and η, normally vary with the loading (stress) level (Figure 3.16b). The 
ratio of delayed shear moduli (G2)1/(G2)2 is 2.69, indicating the reduc-
tion in G2 with the increase in load level. However, the ratios of G1/G2 

and G2/η are nearly constants to a working load level, say 70% (= τf2/
τf1) of failure load level. Afterwards, the G1/G2 may become higher. 
The ratio G2/η influences the duration of creep time rather than the 
final pile-head response and may roughly be taken as a constant over 
general working load.

Use of Equation 3.37, in essence, is identical to that proposed by 
Lee (1956). The 1/T of (0.36~0.664) × 10−5/s [or T = (1.5~2.78) ×105 
second] deduced for the loading tests is consistent with laboratory 
tests mentioned earlier. Thus, lab tests on soil may be used for 
crude estimation of the time process, though interface tests on pile 
and soil interface are recommended. An average value of 1/T over 
a range of working load may be employed in Equation 3.25, as it 
only slightly affects the time-dependent process but not the final 
pile response.

3.3.3 Base pile–soil interaction model

The nonlinear visco-elastic (time-dependent) response of the pile-base load 
and displacement is still estimated using Equation 3.13, in which the base 
shear modulus of Gib is replaced with the following time-dependent shear 
modulus Gb(t):

 G t
G

A t G Gb
b

b b

( )
( )

=
+

1

1 21
 (3.39)

where Gb1, Gb2 = shear modulus just beneath the pile tip level for springs 1 
and 2, respectively, with Gb1/Gb2 ≈ G1/G2.
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3.3.4 GASPILE for vertically loaded piles

The GASPILE program was extended to incorporate the visco-elastic 
response using Equations 3.25 and 3.39. Using the Mechant’s model, the 
conclusions described below have been directly adopted in this program 
(Guo 1997; Guo and Randolph 1997b; Guo 2000b): (a) τultj (limiting shaft 
stress) = τfj (failure stress on the pile–soil interface); (b) τult1 = αsu or τult1 = 
βσv′; (c) τf2 = 0.71τf1 if not available; (d) Nonlinear and creep responses to 
stress are captured via instantaneous elasticity (Gγ1) and delayed elastic-
ity (Gγ2). At the onset of loading, the stress-strain response is a nonlinear 
hyperbolic curve. Under a specified stress, a creep process is displayed. 
The base settlement is based on Equation 3.13 and time-dependent modu-
lus of Equation 3.39. Overall, secondary deformation is generally suffi-
ciently accurately modeled for piles in “remolded” clays (see Chapter 5, 
this book).

3.3.5 Visco-elastic model for reconsolidation

Installation of piles in clay will induce pore water pressure. The maxi-
mum pore pressure uo(r) immediately following driving may approximately 
equal or even exceed the total overburden pressure in overconsolidated soil 
(Koizumi and Ito 1967; Flaate 1972). The pore pressure decreases rapidly 
with distance r from the pile wall and becomes negligible at a distance 
of 10~20ro. This dissipation is well simulated using the one-dimensional, 
cylindrical cavity expansion analogy (Randolph and Wroth 1979) or the 
strain path method (Baligh 1985) (see Figure 3.17a). The former theory 
has been extended for visco-elastic soil through a model depicted in Figure 
3.17b, which is elaborated on Chapter 5, this book.

3.4 TORQUE-ROTATION TRANSFER MODEL

Torsional loading on piles may occur due to an eccentric lateral loading. It 
is important for some lateral piles (Guo and Randolph 1996). Numerical 
and analytical solutions have been published for piles subjected to torsion, 
for which the soil is elastic with either homogeneous modulus, or modulus 
proportional to depth (Poulos 1975; Randolph 1981a), or a modulus vary-
ing with a simple power law of depth (see Equation 3.1). The power law 
works for homogeneous (n = 0) and proportionally varying cases as well 
and is more accurate to capture the impact of modulus profiles on the pile-
head stiffness. This is important, as load transfer is generally concentrated 
in the upper portion of a torsional pile (Poulos 1975). In the context of load 
transfer model, the torsional behavior may be modeled by a series of “tor-
sional” springs distributed along the pile shaft. The model allows elastic 
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and elastic-plastic solutions to be developed (Guo and Randolph 1996, Guo 
et al. 2007). The solutions are not presented in this book, but it is neces-
sary to review the torsional model (Guo and Randolph 1996) to facilitate 
understanding the load-transfer model.

3.4.1 Nonhomogeneous soil profile

In Equation 3.1, the G is replaced with the initial (tangent) shear modulus 
Gi at depth z. The limiting shaft friction τf follows Equation 3.11, and the 
parameters Av and θ are replaced with a new gradient of At and power 
t (“t” for torsion). In addition, our model is again restricted to a similar 
profile between the shear modulus and shaft friction by taking n = t and a 
constant Ag/At over pile embedment.

3.4.2 Nonlinear stress-strain response

Equations 3.15 and 3.18 indicate the secant shear modulus, Gr, for a hyper-
bolic stress-strain law, which is given by

 G Gr i
ult

= −






1

τ
τ

 (3.40)

Note again that the limiting shear stress in the soil is identical to the failure 
pile–soil shaft friction. The concentric cylinder approach may be used to 
estimate the radial variation of shear stress around a pile subjected to tor-
sion (Frank 1974; Randolph 1981a). The longitudinal stress gradients (par-
allel to the pile, Figure 3.12c) are small compared to radial stress gradients 

R r*

uo(r)
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ro

permeability k permeability k infinite k

G 1

G 2γ2 Spring 2

Spring 1

(a) (b)

Figure 3.17  Modeling radial consolidation around a driven pile. (a) Model domain. (b) 
Visco-elastic model. (After Guo, W. D., Computers and Geotechnics 26, 2, 2000c.)
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and the shear stress (formally τrθ
, but the double subscript is omitted here) 

at any radius, r, is given by

 τ τ= o
or

r

2

2  (3.41)

Substituting this into Equation 3.40 gives the radial variation of secant 
shear modulus as

 G G
r

rr i
o= −









1

2

2
ψ  (3.42)

These relationships are similar to those derived for axial loading of a pile 
of Equation 3.24 (Kraft et al. 1981). However, the effect of nonlinearity 
is much more localized around a torsional pile, as shown by Figure 3.18a 
where the normalized shear modulus, Gr/Gi, is plotted as a function of 
radius, r/ro, for the two types of loading.

3.4.3 Shaft torque-rotation response

The shear strain, γrθ, around a pile subjected to torsion may be written as 
(Randolph 1981a) (see Figure 3.12c)

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

(a) Normalized distance from pile axis, r/ro

N
or

m
al

iz
ed

 sh
ea

r m
od

ul
us

, G
/G

i

Rf = 0.5

Rf = 0.99

 Torsional loading
 Axial loading

Rf = 0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0

0.990.99

(b)

Sh
af

t s
tr

es
s l

ev
el

, 
o/

f

0.5

 Torsional loading
 Axial loading

Gi / f  or wsGi/( f d )

Figure 3.18  Torsional versus axial loading: (a) Variation of shear modulus away from pile 
axis. (b) Local load transfer behavior. (After Guo, W. D., and M. F. Randolph, 
Computers and Geotechnics 19, 4, 1996.)
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where u = radial soil deformation, v = circumferential deformation, and 
θ = angular polar coordinate. From symmetry, ∂u/∂θ is zero and Equation 
3.43 is combined with Equation 3.41 to give
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Substituting Equation 3.42 and integrating this with respect to r from ro to 
yields the angle of twist ϕ at the pile as

 φ ν τ ψ
ψ

=






= − −



r G
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o

i2
1ln( )

 (3.45)

This equation may be rewritten as

 φ
τ

ψ= − −f

i fG R
1

2
1[ ln( )] (3.46)

which shows that the angle of twist depends logarithmically on the rela-
tive shear stress level. Again, the form of the torque-twist relationship is 
similar to that for axial loading, as seen from Equation 3.10. However, 
as shown in Figure 3.18b, the degree of nonlinearity (for a given Rf value) 
is somewhat more evident for the torsional case (ws and ζ in the figure for 
vertical loading).

3.5 COUPLED ELASTIC MODEL FOR LATERAL PILES

A number of simple solutions were developed for laterally loaded piles 
(see Figure 3.19) using an empirical load transfer [p-y (w) curve] model 
(Matlock 1970) or a two-parameter model (Sun 1994) in which p = force 
per unit length and y (w) = displacement. As with vertical loading, pile–soil 
interaction is modeled using independent elastic springs along the shaft 
and may be referred to as an uncoupled model. The two-parameter model 
caters to the coupled impact among the springs through a single factor and 
may be referred to as a coupled model (Guo and Lee 2001). The accuracy of 
these solutions essentially relies on the estimation of the (1-D) properties of 
the elastic springs that represent the 3-D response of the surrounding soil.

The coupled two-parameter (or Vlasov’s foundation) model (Jones and 
Xenophontos 1977; Nogami and O’Neill 1985; Vallabhan and Das 1988) 
mimics well the effect of the surrounding soil displacement (at Poisson’s 
ratio νs < 0.3), through modulus of subgrade reaction k (= p/w) for the 
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independent springs, and a fictitious tension Np of a stretched membrane 
used to tie together the springs. The model was developed using an assumed 
displacement field and variational approach. Unfortunately, the ratio νs 
generally exceeds 0.3. The modelling for νs > 0.3 was circumvented by 
incorporating the effect of νs into a new shear modulus (Guo and Lee 2001) 
and using a rational stress field (see Figure 3.12d). The new model is termed 
a “theoretical” load transfer model, and the parameters k and Np were 
obtained for some typical head and base conditions by Guo and Lee (2001), 
as discussed next.

3.5.1  Nonaxisymmetric displacement 
and stress field

As depicted in Figure 3.19a, a circular pile is subjected to horizontal load-
ing (H, Mo) at the pile-head level. The pile is of length, L, and radius, ro, and 
is embedded in an elastic, homogeneous, and isotropic medium. The pile 
response is characterized by the displacement, w; the bending moment, M; 
and the shear force, Q. The displacements and stresses in the soil element 
around the pile are described by a cylindrical coordinate system r, θ, and z 
as depicted in Figure 3.12d.

The displacement field around the laterally loading pile is nonaxisym-
metric and is normally dominated by radial u and circumferential displace-
ment v, whereas the vertical displacement wv is negligible. It is expressed as 
a Fourier series (as shown in Chapter 7, this book). The effect of Poisson’s 
ratio may be captured using the modulus G* (Randolph 1981b) with G* = 
(1 + 3νs/4)G, G = an average shear modulus of the soil over the effective 
length Lc beyond which pile response is negligible (see next section). Taking 
νs = 0 (thus Lame’s constant = 0), the displacement and stress fields, as 
represented by one component of Fourier series (Chapter 7, this book) (see 
Figure 3.12d), are as follows:

 u w z r v w z r wv= = − =( ) ( ) cos ( ) ( )sinφ θ φ θ 0 (3.47)
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Figure 3.19  Schematic of a lateral pile–soil system. (a) Single pile. (b) Pile element. (After 
Guo, W. D., and F. H. Lee, Int J Numer and Anal Meth in Geomech 25, 11, 2001.)
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where σr = radial stress; σθ, σz = circumferential stress and vertical stress, 
which are negligible; w and dw/dz = local lateral displacement, and rota-
tional angle of the pile body at depth z; θ = an angle between the loading 
direction and the line joining the center of the pile cross-section to the point 
of interest; r = a radial distance away from the pile axis and w(z) = the pile 
displacement at depth z. The radial attenuation function ϕ(r) was resolved 
as modified Bessel functions of the second kind of order zero, Ko(γb) (Sun 
1994; Guo and Lee 2001):

 φ γ γ( ) ( ) ( )r K r r Ko b o o b= / /  (3.49)

where ro = radius of an equivalent solid cylinder pile; γb = load transfer 
factor. The coupled interaction between pile displacement, w(z) and the 
displacements u, v of the soil around is achieved through the load transfer 
factor, γb [or ϕ(r)]. The calculation of the factor γb is discussed in the next 
section.

The modulus of subgrade reaction k [FL -2] of p/w is given by

 k G K K K Kb b o b b b o b= − −1 5 2 11
2

1
2. { ( ) ( ) [( ( ) ( ))π γ γ γ γ γ γ/ / ]]} (3.50)

The fictitious tension, Np [F] of the membrane linking the springs is 
determined by

 N r G K Kp o b o b= −π γ γ2
1

2 1[( ( ) ( )) ]/  (3.51)

3.5.2 Short and long piles and load transfer factor

Response of a lateral pile becomes negligible as the pile–soil stiffness, 
(Ep/G), exceeds a critical value (Ep/G)c. It depends on pile-base and head 
conditions, as illustrated in Figure 3.20, such as free-head (FreH), clamped 
base pile (CP) under a later load H and moment loading (Mo), and fixed-
head (FixH), floating pile (FP). The (Ep/G)c may be estimated by

 
E

G
L rp

o≈ 0 05 4. ( )/  (3.52)

Conversely, a critical length, Lc, for a given pile–soil relative stiffness, Ep/G, 
may be approximated by
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 L dE Gc p≈ 1 05 0 25. ) ./  (3.53)

Note in all equations G is used. With L < Lc or (Ep/G) > (Ep/G)c, or (Ep/G*) 
> (Ep/G*)c, the piles are referred to as short piles, otherwise referred to as 
long piles. In the cases of FreHCP(Mo) and FixHFP(H), the critical stiff-
ness, (Ep/G)c, should be increased to 4(Ep/G)c. As shown in Chapter 7, this 
book, “short” piles are defined herein, are not necessarily “rigid” piles. 
Most lateral piles used in practice behave as if infinitely long.

The load transfer factor, γb, is illustrated in Figure 3.21 for the typical 
slenderness ratios against pile–soil relative stiffness. In general, it may be 
estimated by
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where k1, k2, and k3 = coefficients given in Table 3.5 for short piles. For long 
piles regardless of base constraints, (a) free-head requires k2 = −0.25, k3 = 0, 
and k1 = 1.0, or 2.0 for the lateral load, H, or the moment, Mo, respectively; 
(b) fixed-head (translation only) needs k1 = 0.65, k2 = −0.25, and k3 = −0.04 
due to load; whereas k1 = 2.0, k2 = −0.25, and k3 = 0.0 due to moment. 
These values of γb were estimated for either the load H or the moment Mo. 
Two different γb will be adopted for the pile analysis, subjected to both the 
load and the moment simultaneously.

The γb for a combined loading should lie between the extreme values of 
γb for the load H and the moment Mo, from which the maximum difference 
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Figure 3.20  Schematic of pile-head and pile-base conditions (elastic analysis). (a) FreHCP 
(free-head, clamped pile). (b) FixHCP (fixed-head, clamped pile). (c) FreHFP 
(free-head, floating pile). (d) FixHFP (fixed-head, floating pile). (After Guo, 
W. D., and F. H. Lee, Int J Numer and Anal Meth in Geomech 25, 11, 2001.)
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in the response of the pile and the soil is readily assessed. As the maximum 
difference in the moduli of subgrade reaction, k for the H and the Mo is 
generally less than 40% (particularly for rigid piles), an average k is likely 
to be within 20% of a real k. A 20% difference in the k will, in turn, give 
rise to a much smaller difference in the predicted pile response. Therefore, 
the superposition using the two different γb (thus k) may be roughly adopted 
for designing piles under the combined loading, although a single k for the 
combined loading may still be used (shown next).

Using Equations 3.50 and 3.51, the parameters k and Np were estimated 
due to either the moment (Mo) or the lateral load (H) and are plotted in 
Figure 3.22. For the typical slenderness ratio of L/ro = 50, the figure shows 
that the increase in the pile–soil relative stiffness renders an increase in the 
fictitious tension (Figure 3.22b), but decrease in the “modulus of subgrade 
reaction” (Figure 3.22a). Also, the critical stiffness for the moment loading 
is higher than that for the other cases.
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Figure 3.21  Load transfer factor γb versus Ep/G* (clamped pile, free-head). (After Guo, 
W. D., and F. H. Lee, Int J Numer and Anal Meth in Geomech 25, 11, 2001.)

Table 3.5 Parameters for estimating the factor γb for short piles

Item

Free-head due to H Free-head due to Mo Fixed-head due to H

Clamped Floating Clamped Floating Clamped Floating

k1 1.9 2.14 2.38 3.8 1.5 0.76
k2 0 0 −0.04 0 −0.01 0.06
k3 −1.0 −1.0 −0.84 −1.0 −0.96 −1.24

Source: Guo, W. D., and F. H. Lee, Int J Numer and Anal Meth in Geomech, 25, 11, 2001.
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Figure 3.22  (a) Normalized modulus of subgrade reaction. (b) Normalized fictitious 
tension. (After Guo, W. D., Proc 8th Int Conf on Civil and Structural Engrg 
Computing, paper 112, Eisenstadt, Vienna, 2001a.)
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Example 3.2 γb for Rigid and Short Piles

The critical relative stiffness, and pile length are approximated by 
Equations 3.52 and 3.53. Given free-head (FreH), long piles with 
clamped base (CP), or floating base (FP) [denoted as FreHCP(H), 
FreHFP(H), and FreHFP(Mo)], the load transfer factor at critical 
length should offer (Ep/G*)c

0.25 = Lc/(2.27ro) with νs = 0.49, in light of 
Equation 3.53. This allows Equation 3.54 to be simplified as

 γ b o cr L≈ 2 27. /  (3.55)

With Equation 3.54 and Table 3.5 for short piles [of the same base 
and head conditions, e.g., FreHCP(H), and FreHFP(H)], the factor is 
approximated by

 γ b or L≈ ( . ~ . )1 9 3 8 /  (3.56)

The difference of the “γb” gained between Equations 3.55 and 3.56 is 
expected. As in between long flexible and short rigid piles, there are 
“transitional” nonrigid short piles for which the “γb”varies between 
those given by Equations 3.55 and 3.56.

3.5.3 Subgrade modulus

In the conventional, uncoupled (Winkler) model, the modulus of subgrade 
reaction was deduced through fitting with relevant rigorous numerical solu-
tions (Biot 1937; Vesi  1961a; Baguelin et al. 1977; Scott 1981), as sum-
marized below:

•	 Biot (1937) compared maximum moments between continuum elastic 
analysis and the Winkler model for an infinite beam (with concen-
trated load) resting on an elastic medium, and suggested the following 
“k” (termed as Biot’s k):

 
k
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Es s p
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− −
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•	 Vesi  (1961a), in a similar idea to Biot’s approach, matched the maxi-
mum displacement of the beam and proposed the following expres-
sion (Vesi ’s k):
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 (3.58)

The difference between Equations 3.57 and 3.58 implies that the 
uncoupled model is not sufficiently accurate for simulating beam-soil 
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interaction, although it is used for lateral loaded piles, pipeline, and 
even slab (Daloglu and Vallabhan 2000). The “k” of the empirical 
Equation3.58) was doubled and used for piles (Kishida and Nakai 1977; 
Bowles 1997) (termed as Bowles’ k). These suggestions are indeed empiri-
cal, owing to significant difference in soil deformation pattern between a 
laterally loaded pile and a beam as demonstrated experimentally (Smith 
1987; Prasad and Chari 1999). The “k” is dependent of loading proper-
ties, pile-head and base conditions, pile–soil relative stiffness, and so on 
(Guo and Lee 2001).

To estimate the modulus for lateral piles, a comparison of different 
derived moduli was made and is shown in Figure 3.22a. It indicates that for 
long flexible piles, the values of Bowles’ k and Biot’s k are close to the cur-
rent “k” for free-head clamped piles, FreHCP (H), and fixed-head clamped 
piles, FixHCP (H), respectively. The Vesi ’s k is lower than all other sug-
gestions. For short piles, all the available “k” are significantly lower than 
the current k given by Equation 3.50. The current solution indicates sig-
nificant variations of the k with the load properties and pile slenderness 
ratio (Figure 3.23a), apart from pile–soil relative stiffness considered in 
previous expressions. More comparisons among different k are presented 
in Chapter 7, this book.

The impact of different values of k was examined using the closed-form 
solutions for lateral piles (Guo and Lee 2001). The adequacy of using the 
available expressions (Biot 1937; Vesi  1961a; Kishida and Nakai 1977; 
Bowles 1997; Guo and Lee 2001) for modulus of subgrade reaction has 
been examined against finite element solutions (Guo 2001a). As shown in 
Chapter 7, this book, the comparison demonstrates that

•	 The Biot’s k and Vesi ’s k for beam are not suitable for pile analysis, 
while the Bowles’ k is conditional valid to flexible piles. The second 
parameter Np is generally required to gain sufficiently accurate analy-
sis of lateral piles. The conventional “Winkler” model (Np = 0) is suf-
ficiently accurate only for free-head pile due to moment loading [i.e., 
FreH (Mo)].

•	 Only by using both k and Np would a consistent pile response be pre-
dicted against relevant numerical simulations at any pile–soil relative 
stiffness.

The impact of loading eccentricity (e) on k/G may be seen from Figure 
3.24a and b for rigid and flexible piles at e = 0 and infinitely large. The k/G 
at any e may be given by

 k G
e

e
L
d

e

/ = +
+
















− +
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Figure 3.23  (a) Modulus of subgrade reaction. (b) Fictitious tension for various slender-
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where e e L= / .

3.5.4 Modulus k for rigid piles in sand

The pile–soil interaction may be modeled by a series of springs distrib-
uted along the pile shaft, as the model captures well the stress distribution 
around a rigid pile (see Figure 3.25). In reality, each spring has a limiting 
force per unit length pu at a depth z [FL -1] with pu = Arzd (Figure 3.26b). 
If less than the limiting value pu, the on-pile force (per unit length), p [FL-1] 
at any depth is proportional to the local displacement, u [L], and to the 
modulus of subgrade reaction, kd [FL -2] (see Figure 3.26b), which offers:

 p = kdu (Elastic state) (3.61)

The gradient k [FL -3] may be written as kozm [ko, FL -m-3], with m = 0 and 1 
being referred to as constant k and Gibson k hereafter.

The magnitude of a constant k may be related to the shear modulus G by 
Equation 3.50, in which the k (= p/w) should be replaced with kd (= p/u). 
The average modulus of subgrade reaction concerning a Gibson k is ko(l/2)
d, for which the modulus G in Equation 3.50 is replaced with an average �G
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Figure 3.24  Subgrade modulus for laterally loaded free-head (a) rigid and (b) flexible 
piles. (Revised from Guo, W. D., J Geotech Geoenviron Engrg, ASCE, 2012a. 
With  permission from ASCE.)
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(bar “∼” denotes average) over the pile embedment. This allows Equation 
3.50 to be rewritten more generally as

 k
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Use of Equations 3.50 and 3.62 will be addressed in later chapters. 
For rigid piles (see Figure 3.26), the following points are worthy to be 
mentioned.

 1. The diameter d is incorporated into Equation 3.61 and thus appears 
on the left-hand side of Equation 3.62. This is not seen for flexible 
piles (Guo and Lee 2001), but to facilitate the establishment of new 
solutions in Chapter 7, this book.

 2. The G and �G are not exactly “proportional” to the pile diameter 
(width), due to the dependence of the right-hand side on L/ro (see 
Equation 3.62, via γb). For instance, given l = 0.621 m, ro = 0.0501 m, 
the factor γb was estimated as 0.173~0.307 using Equation 3.54 and 
k1 = 2.14~3.8 and then revised as 0.178 given e = 150 mm. K1(γb)/K0(γb) 
was computed to be 2.898. As a result, the kd (constant k) is evalu-
ated as 3.757G, and 0.5kodl (Gibson k) = 3.757 �G. Conversely, shear 
modulus G may be deduced from G = kd/3.757, or �G = 0.5kodl/3.757, 
as discussed in Chapter 7, this book.
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Figure 3.25  Comparison between the predicted and the measured (Prasad and Chari 
1999) radial pressure, σr, on a rigid pile surface. (After Guo, W. D., Can 
Geotech J 45, 5, 2008.)
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 3. Equation 3.62 is approximate. The average k (= 0.5kol) and �G refer 
to those at the middle embedment of a pile, with linear increase 
from zero to k (= kol) and from zero to GL (pile-tip shear modulus), 
respectively.

 4. The values of km (due to pure moment loading) and kT (pure lateral 
loading) were calculated using Equations 3.50 and 3.54 and are plot-
ted in Figure 3.24a. The modulus ratio km/kT is provided in Table 3.6. 
The calculation shows the ratio km/kT reduces from 1.56 to 1.27 with 
increase in the slenderness ratio l/ro from 1 to 10. The fictitious upper 
limit is 3.153 at l/ro = 0, as is seen from Figure 3.24a. The ratio k/kT 
reduces from km/kT (e = ∞) to 1 (e = 0) as the free length e decreases 
(e.g., from 1.35 to 1.0 for l/ro = 5). The ratio k/G may be underesti-
mated by 30~40% (for l/ro = 3~8) if the impact of high eccentricity is 
neglected.

Given a pile-head load exerted at e > 0, the displacement is conserva-
tively overestimated using k = kT compared to that obtained using a real 
k (kT<k<km). Influence of the e on the k is catered for by selecting the k1 in 
determining γb via Equation 3.54, as is seen in Equation 3.59. The outmost 
difference can be obtained by comparing with the upper bound solutions 
capitalized on k = km. Equation 3.59 may be used to estimate the k.

(a)

l

Elastic

Plastic
zo

zr

H
e

Membrane, Np

Spring, k Slider, pu

ut

(b)

p

u*

pu = Arzd
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Figure 3.26  Schematic analysis for a rigid pile (a) pile–soil system (b) load transfer model 
(pu = Ardz and p = kodzu). (Revised from Guo, W. D., Can Geotech J 45, 5, 2008.)

Table 3.6 Reduction of km/kT with Increase in l/ro of rigid piles

l/ro 1 2 3 4 5 6 7 8 9 10

km/kT
a 1.56 1.47 1.41 1.37 1.35 1.32 1.31 1.29 1.28 1.27

Source: Guo, W. D., Can Geotech J, 45, 5, 2008.
a km/kT = 3.153 (l/ro = 0); 1.27~1.22 (10~20); 1.22~1.19(20~30); 1.14~1.12 (100~200).
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In the context of the load transfer approach, it is critical to capture stress 
development along the pile and in the surrounding soil. As noted earlier, 
the stress distribution is unsymmetrical, and in three-dimensions (3D), 
which results in the non-uniform distribution of force (pressure) on the pile 
surface in radial (Prasad and Chari 1999) and longitudinal dimensions; 
and the alteration of modulus of subgrade reaction due to non-uniform 
soil displacement field around the pile. Load transfer approach (Guo and 
Lee 2001) well captures these two features, (e.g., the stress distribution; 
see Figure 3.25). The approach requires much less computing effort than 
numerical modeling and is thus utilized to model elastic-plastic response.

3.6 ELASTIC-PLASTIC MODEL FOR LATERAL PILES

As schematically depicted in Figure 3.26 (rigid piles), a laterally loaded pile 
is embedded in a nonhomogenous elastoplastic medium. The free length 
(eccentricity) measured from the point of applied load, H, to the ground 
surface is written as e. An uncoupled model indicated by the pu is utilized 
to represent the plastic interaction, and the coupled load transfer model 
indicated by the k, and Np (Np = 0 for rigid piles) to portray the elastic 
pile–soil interaction, respectively. The two interactions occur respectively 
in regions above and below the “slip depth” zo. In other words, the follow-
ing hypotheses are adopted:

 1. Each spring has an idealized elastic-plastic p-y curve (y being written 
as u, Figure 3.26b).

 2. Equivalent, homogenous, and isotropic elastic properties (modulus 
and Poisson’s ratio) are used to estimate the elastic k and the Np.

 3. In plastic state, the interaction among the springs is negligible by tak-
ing Np = 0.

 4. Pile–soil relative slip develops down to the slip depth zo where the 
displacement, u*, is equal to pu/k and net resistance per unit length 
pu is fully mobilized. (The pu and k may be constant or increase with 
depth z [e.g., pu = Arzd for sand]; and Ar is given in Table 3.7).

 5. The slip (or yield) zo occurs from ground level and progress down-
wards, and another slip (z1) may be developed from the rigid pile tip.

The five assumptions (see Table 3.8) are adopted for model flexible piles 
as well, for which no slip occurs at pile base (owing to infinite length). As 
shown in Figure 3.27, the zo is replaced with xp, u with w, u* with pu/k, etc. 
These conditions allow the nonlinear closed-form solutions examined in 
Chapters 8 through 13, this book, to be established. Concepts of mobiliz-
ing shaft friction and capacity are discussed next, with respect to rigid and 
fixed-head piles.
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3.6.1 Features of laterally loaded rigid piles

3.6.1.1 Critical states

A rigid pile is subject to a lateral load, H, at an eccentricity, e, above mud-
line. The net limiting force per unit length or pu (LFP) on the pile may be 
stipulated as linear with depth z (i.e., pu = Ardz), upon which the on-pile 
force per unit length profile (p profile) alters (see the solid lines in Figure 
3.28a1 to c1). The linear LFP (Broms 1964a) is indicated by the two dashed 
lines (independent of pile displacement), while the p profile characterizes 
the mobilization of the resistance along the unique pu profile. The displace-
ment u of the pile varies linearly with depth z (see Figure 3.28a2 to c2), and 
is described by u = ωz + ug, in which ω and ug are rotation and mudline 
displacement of the pile, respectively. Typical stress states between pile and 
soil are noted (Guo 2008):

 1. Pre-tip yield and tip-yield states: The force per unit length at pile tip just 
attains the limiting pu (Figure 3.28a1). This is known as tip-yield state. 
Up to the tip-yield state, the on-pile force profile follows the positive pu 
down to a depth of zo (the slip depth), below which the p is governed by 

Table 3.7 Capacity of lateral piles based on limit states

Mtds Ho/(Ardl2) Ar (kN/m3) References

A Equilibrium about 
rotating point

Kqz s
a′γ Brinch Hansen (1961)

B 1 6 1/ /[ ( )]+ e l 3Kp s′γ Broms (1964a)

C 1 2 131 1 5 1/ /[ . ( . ) ]+ e l b 28 ~ 228 kPa b McCorkle (1969) 
D 0 5 2 12. [ ( ) ]z lr / − ( . )3 7K Kp a s− ′γ Petrasovits and Award (1972)

E 1 1 1 4/ /( . )+ e l F S K Kb bu p a s( )− ′γ
c

Meyerhof et al. (1981)

F 1 8 1 1 5/ [ ( . ) ]+ e l l/ b 80 ~ 160 kPa b,d Balfour Beatty Construction 
(1986) 

G 1
1 0 333

−
−

d l
l d e d

/
/ /[ . ln( )]

4 167. ′γ s Dickin and Wei (1991)

H 0 51 1 59 1. .
z

l

z

l
r r −






0 8 101 3 0 3. . tan .'

′ +γ φ
s Prasad and Chari (1999)

I 0.1181/(1 + 1.146e/l) Kp s
2 ′γ Guo (2008)

Source: Guo, W. D., Can Geotech J, 45, 5, 2008.
a Kqz = passive pressure coefficient as well, but relying on l/d ratio, etc.
b Dimensional expressions with a uniform pu, and Ar in kPa.
c Fb = lateral resistance factor, 0.12 for uniform soil; Sbu = a shape factor varying with the 

length l and the angle ϕ′.
d Smaller values in presence of water.
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elastic interaction. At the slip depth zo, the pile displacement u attains 
a threshold u* (= +ωz uo g). With the pu, the threshold u* is also given 
by u A kr o

* = , and u* = Arz/k, respectively, in light of a force per unit 
length p of kozdu (Gibson k, see Equation 3.62) or kdu (constant k).

 2. Post-tip yield state: A higher load beyond the tip yield state enables 
the limiting force to be fully mobilized from the tip (depth l) as well 
and to a depth of z1 (z1 = l for tip-yield state), at which the local 
displacement u just touches −u* with − = +u z ug

* ω 1 , or u = −u*z1/zo 
(constant k). A new portion of the on-pile force profile appears as the 
negative LFP over the depth l to z1. The overall profile resembles that 

Table 3.8 Features of laterally loaded piles

Item Assumptions Features

p-y(w) curve 
and xp

•	The springs are characterized by an idealized 
elastic-plastic p-y curve (y rewritten as w in 
Figure 3.29f). The uncoupled and coupled 
load transfer models are utilized to portray 
the plastic and elastic zones.

•	Plastic and 
elastic zones 
encountered at 
slip depth xp 

G for k and 
Np

•	Average G over a depth of Lc is used to 
estimate the k and Np for elastic state

•	 k and Np 
deduced from a 
soil deflection 
mode.

LFP •	Average soil properties over a maximum slip 
depth are employed to estimate the LFP for 
plastic state.

•	LFP given by Ng, 
αo, and n

Plastic zone •	 Interaction among the springs is negligible 
(i.e., Np = 0, Figure 3.29b). Pile deflection w(x) 
exceeds wp (see Figure 3.29f), for which 
resistance per unit length, p, is fully mobilized.

Np = 0
w(x) > wp
p = pu.

wp •	At the slip depth, xp, the pile deflection w(x) 
equals wp (see Figure 3.29f). Below the xp, 
the deflection w(z) < wp; and the resistance 
p (< pu) is linearly proportional to the k.

•	wp = pu/k, shown 
in Figure 3.29f

•	p = k w(z)

Slip •	Pile–soil relative slip [e.g., value of w(x) − wp] 
can only be initiated from mudline and can 
only move downwards.

•	Allowing 
closed-form 
solutions to be 
generated

Notes: (1) G = (25~340)su with an average of 92.3su. G = (0.25~0.62)N (MPa) with an average of 0.5N 
(MPa). The parameters su and N are calculated as the average values over the critical pile length Lc

 (2) pu is effective to maximum slip depth xp (initially taken as 8d for prototype piles, and 20d 
for model piles), and su (undrained shear strength), N (blow count of SPT), and ϕ′ (effective angle of 
friction of soil) are average values over the xp.
 (3) Free-head piles in cohesive soil: αo = 0.05~0.2 m, Ng = 0.6~4.8 (average 1.6), and n = 
0.7~1.7. n = 0.7 for a uniform strength profile; whereas n = 1.5~1.7 for a sharp increase strength 
profile (e.g., in stiff clay), otherwise, n is in the middle range (e.g., for multi-layered soil). Given n = αo = 
0, the pu reduces to suNgd, with Ng = 2~4 (Viggiani 1981).
 (4) Free-head piles in sand: Ng = sgKp

2, αo = 0, and n = 1.7, where Kp = tan2(45° +ϕ′/2), and sg = 
0.3~2.0 (average 1.12). High sg is used to cater for dilatancy, which is less possible for FixH piles.
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illustrated in Figure 3.28b2. Upon the pile-tip yield (i.e., z1 = l), the zo 
is later rewritten as z

*
. The pile rotates about a depth zr (= −ug/ω), at 

which no displacement u (= ωzr + ug = 0) occurs.
 3. Further increase in the load brings the depths zo and z1 closer to each 

other and to the limiting depth of rotation zr (with the impossible state 
of zo = zr = z1, termed as yield at rotation point, YRP). To the depth zr, 
the on-pile force profile now follows the positive LFP from the head; 
and the negative LFP from the tip. This impossible ultimate on-pile 
force profile, fully plastic (ultimate) state, is depicted in Figure 3.28c1 
and c2. It had been adopted by some investigators (Brinch Hansen 
1961; Petrasovits and Award 1972).

Similar features for a constant pu to those mentioned above for a Gibson pu 
are noted, as detailed in Chapter 8, this book.

3.6.1.2 Loading capacity

Available expressions for estimating capacity Ho (i.e., H at a defined state) 
of a lateral pile are generally deduced in light of force equilibrium on the 
pile and bending moment equilibrium about the pile-head or tip. They were 
deduced using a postulated on-pile force profile that unfortunately varies 
with load levels (Brinch Hansen 1961; Broms 1964a; Petrasovits and Award 
1972; Meyerhof et al. 1981; Prasad and Chari 1999). Typical expressions 
are outlined in Table 3.7, which are broadly characterized by either the 
normalized rotational depth zr/l (Methods A, D and H), or the normalized 
eccentricity e/l (Methods B, C, E, F, and G). Nevertheless, the capacity 
(alike to Ho) relies on both facets of e/l and zr/l, in addition to the critical 
value Ar and pile dimensions.
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Figure 3.27  Coupled load transfer analysis for a laterally loaded free-head pile. (a) The 
problem addressed. (b) Coupled load transfer model. (c) Load transfer 
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Figure 3.28  Schematic profiles of limiting force, on-pile force, and pile deformation. (ai) 
Tip-yield state. (bi) Post-tip yield state. (ci) Impossible yield at rotation point 
(YRP) (i = 1, 2 for p, pu profiles and displacement profiles, respectively). 
(Revised from Guo, W. D., Can Geotech J 45, 5, 2008.)
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Salient features of the expressions are as follows:

 1. In the denominator, the relative weight of free length over the con-
stant component in general varies from e/l (Broms 1964a) to 1.5e/l 
(McCorkle 1969; Balfour-Beatty-Construction 1986).

 2. Calculated capacities of Ho using each expression may agree with 
measured data via adjusting the gradient Ar, as seen from the diversity 
of the Ar. For example, the low Ar for McCorkle’s method is 20~30% 
that suggested for Balfour-Beatty method and may be compensated 
by the 3.76 times higher ratio of Ho/(Ardl2).

 3. The expressions are not explicitly related to magnitude of the displace-
ment or rotation angle and may correspond to different stress states.

Any solutions underpinned by a single stipulated on-pile force profile 
unfortunately would not guarantee compatibility with the altering profiles 
(see Figure 3.28a1 to c1) recorded at different loading levels for a single pile. 
Capacity is defined as the load at a specified displacement, say, 20% pile 
diameter upon a measured load-displacement curve (Broms 1964a). It is 
also taken as the load inducing a certain rotation angle upon a measured 
load-rotation curve (Dickin and Nazir 1999). These two independent defi-
nitions would not normally yield identical capacities even for the same test. 
This artificial impingement has been resolved using displacement-based 
solutions (see Chapter 8, this book).

3.6.2  Generic net limiting force profiles 
(LFP) (plastic state)

Response of single or pile groups largely depends on profile of limiting 
force per unit length (LFP) and its depth of mobilization. In contrast to 
the linear pu for piles in sand, a number of expressions are available for 
constructing the LFP (pu profile) (e.g., Figure 3.29). Typical expressions are 
tabulated in Table 3.9. In particular, a generic expression for pu has been 
proposed (Guo 2006) and is written in the following forms

 p s N d x du u g o
n= +� [( ) ]α /  (Cohesive soil), (3.63)

 p N d x du s g o
n= ′ +γ α2[( ) ]/  (Cohesionless soil), and (3.64)

 p N q d x du g u
n n n= ++1 1

0
/ [( ) ]α /  (Rock) (3.65)

where x = depth below ground level (note, z is reserved for elastic zone 
only, see Chapter 9, this book); αo = an equivalent depth to include the pu at 
mudline level; n = a power showing the increase in the pu with depth; �su or 
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qu = average undrained shear strength su of the soil, or uniaxial compressive 
strength, [FL-2] over the max xp (i.e., maximum depth of mobilization of 
the pu); Ng

 = a gradient correlated clay strength or sand density to the limit-
ing pu, which depends on pile-head constraints; ′γ s = effective unit weight of 
the overburden soil [FL-3] (i.e., dry weight above water table, and buoyant 
weight below). Equations 3.63 through 3.65 are only effective to the max 
xp. Magnitudes of the parameters αo, Ng, and n are independent of load 
levels over the entire loading regime.

Equation 3.63 indicates at n = 0, pu for cohesive soil is reduced to �suNgd; 
and at mudline, pu becomes �su Ncod, or αo = ( ) /N N dco g

n/ 1  (n ≠ 0). An equiva-
lent �Nc [= �pu/(�sud)] is defined using an average limiting force per unit length 
�pu over the maximum slip depth. A maximum �Nc of 9.14~11.94 for a uni-
form su with depth is expected (Randolph and Houlsby 1984), although 
a superficially high value of �Nc may result by using an average �su for an 
increasing strength profile with depth (Murff and Hamilton 1993).
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Figure 3.29  Schematic limiting force and deflection profiles. (a) A fixed-head pile. (b) 
Model of single pile. (c) Piles in a group. (d) LFPs. (e) Pile deflection and wp 
profiles. (f) p-y curve for a single pile and piles in a group. (After Guo, W. D., 
Int J Numer and Anal Meth in Geomech 33, 7, 2009.)
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Table 3.9 Typical limiting force profiles

Name Expressions

Broms LFP 
(Broms 1964a) 

N K ng p o= = =3 0 1, ,α

Matlock LFP 
(Matlock 1970)

N d s d N ng s u o g= ′ + = =γ α/ ,� 0 5 2 1. / ,

Reese LFP(S) for 
sand (Reese 
et al.  1974)

p x f x K du s r a= ′ +
−

−γ β
β φ

{ [
tan

tan( )
] }1  (x < xt) and

p x K d Ku s a o= ′ − +γ β φ β[ (tan ) tan tan ]8 41  (x ≥ xt)

f
K

K

r
o

o

1 = −
+

+

tan
tan( )

(
tan cos

cos
tan tan )

tan

β
β φ

φ β
α

β α

ββ φ β α(tan sin tan )−
Ko = 1 − sinϕ’, α = 0.5ϕ, β = 45 + 0.5ϕ, Ka = tan2(45 − 0.5ϕ), and xt = 
critical depth. A modification of the calculated pu is used.

Reese LFP(C)
(Reese et al. 
1975)

p x
s

x
d

s du
s

u
u= +

′
+( . )2 2 83

γ
 and (pu ≤ 11sud) (API for clay)

API (1993) sand
p

C x C d x

C d xu
s

s

=
+ ′











min
( )

'

1 2

3

γ

γ

An approximate version of 
Reese’s LFP(S), with ϕ = 25 
to 40°, C1 = 1.2~5, C2 = 
2.0~4.3, and C3 = 0.8~5.3.

Hansen LFP 
(Brinch Hansen 
1961)

p K x K c du q
D

s c
D= ′ +( )γ

where K K K
x
d

x
dq

D
q
o

q q q= + +∞( ) / ( ),α α1  K K K
x
d

x
dc

D
c
o

c c c= + +∞( ) / ( ),α α1

α φ φq q
o

o q q
o oK K K K= − +∞sin( ) / [( )sin( . )],45 0 5

α φc
o

c
o

c c
oK K K= + −∞2 45 0 5sin( . ) / [( )]

K e eq
o o= + −+ − −( . ) tan ( . ) tacos tan( . )0 5 0 545 0 5π φ φ π φφ φ nn cos tan( . )φ φ φ45 0 5o −

K ec
o o= + −+[ cos tan( . ) ]( . ) tan0 5 45 0 5 1π φ φ φ φ φctan

K ec
o∞ = + + −( . . tan )[ tan( . ) ]tan1 58 4 09 45 0 5 14 φ φπ φ ctanφφ,

K Kq c
∞ ∞= −( sin ) tan1 φ φ

Guo LFP
(Guo 2006)

Clay: AL = �Su Ngd1-n, with αo = 0.05~0.2 (m), n = 0.7 (but for n = 1.5 
for stiff clay), and Ng = 2~4

Sand: AL = ′γ s Ngd2-n, with αo = 0, n = 1.7, and Ng = sgKp
2

Rock: AL = qu
n1/  Ngd1-n, with αo = 0, n = 0.7~2.5, and Ng (see 

Chapter 10, this book)
Note sg = an integral factor to cater for all sorts of influence; and 
Kp = tan2(45°+ϕ/2).

Reese LFP(R) 
(Reese 1997)

p q d x du r u= +α ( . / )1 1 4  (0 ≤ x ≤3d) Rock, αr = 0~1.0

Zhang LFP
p x q

m x

q
s g q du m u

b m

u

m
s u= + + +[ ( ) ]γ

γ

(pu in MPa, gs = 0.2 and 0.8 for 
smooth and rough shaft sockets, 
respectively)

m m eb i
GSI= −( )/100 28 , and 

s e GSI= −( )/100 9, m = 0.5 (GSI > 
25); or s = 0, m = 0.65–
GSI/200 (GSI<25) where mi = 
material constant for the intact 
rock, dependent on rock type.
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Equations 3.63 through 3.65 along with L > Lc + max xp (infinitely 
long piles) require full mobilization of the pu from mudline (or rock sur-
face) to the slip depth, xp (see Figure 3.27), and the xp increases with 
lateral loads.

The parameters Ng, Nco, and n may be determined using the following 
options deduced from Table 3.9.

•	 Option 1. The LFP for a cohesionless soil (rigid piles), as suggested by 
Broms (1964a) and termed as Broms’ LFP, is given by

 N K N ng p co= = =3 0 1, ,  (3.66)

 where Kp = tan2 (45° + ϕ′/2), the passive earth pressure coefficient; ϕ′ = 
effective friction angle of the soil.

•	 Option 2. The LFPs for a cohesive soil (Matlock 1970; Reese et al. 
1975) may be represented by

 N d s J N ng s u co= ′ + = =γ � , 2 1,  (3.67)

 where J = 0.5~3 (Matlock 1970). The LFP with J = 0.5 and J = 2.8 are 
referred to as Matlock LFP and Reese LFP (C), respectively.

•	 Option 3. The LFP for flexible piles in sand employed in COM624P 
[i.e., Reese LFP(S)], was underpinned by Ng = Kp

2, Nco = 0, and n = 
1.7 (Guo and Zhu 2004).

•	 Option 4. Values of pu may be acquired from measured p-y curves for 
each depth to generate the LFP.

•	 Option 5. The LFP for a layered soil profile may be constructed by the 
following steps. (1) The entire soil is assumed as the clay or the sand, 
the Reese LFP(C) or LFP(S) is obtained. (2) The obtained pu within a 
zone of 2d above or below an sand-clay interface should be increased 
in average by ~40% for a weak (clay) layer adjoining a stiff (sand) 
layer; and decreased by ~30% for a stiff layer adjoining a weaker 
layer (Yang and Jeremic 2005). (3) The increased and decreased pu of 
the two adjacent layers is averaged, using a visually gauged n, as an 
exact shape of the LFP (thus n) and makes little difference to the final 
predictions (see Chapter 9, this book). Finally, an LFP is created for 
a two-layered soil. This procedure is applicable to a multiple layered 
soil by choosing n (thus the LFP) to fit the overall limiting force pro-
file. Any layer located more than 2d below the maximum slip depth is 
excluded in this process. 

•	 Option 6. The parameters Ng, Nco, and n may be backfigured through 
matching predicted with measured responses of a pile, as elaborated 
in Chapter 9, this book, for piles in soil and in Chapter 10, this book, 
for rock-socket piles, respectively.
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Use of options 1~5 and 6 by Guo (2006) is amply demonstrated in 
Chapter 9, this book, for piles in soil and in Chapter 10, this book, for rock 
socket piles (e.g., parameters n, Ng). For rigid piles in sand, n = 1, Equation 
3.64 is consistent with the experimental results (Prasad and Chari 1999), 
and the pertinent recommendation (Zhang et al. 2002), in contrast to other 
expressions for the Ar provided in Table 3.7.

The pu profiles vary with pile-head constraints (Guo 2009). The deter-
mination of the parameters may refer to Table 3.8 for free-head and ad 
hoc guidelines G1–G5 in Table 3.10 for capped piles. They are synthesized 
from study on 70 free-head piles (32 piles in clay, 20 piles in sand, and other 
piles in layered soil), and capped piles (7 single piles and 27 pile groups). 
Capitalized on average soil parameters, the impact of soil nonhomoge-
neity and layered properties on nonlinear pile response is well simulated 
by adjusting the factor n, owing to the dominance of plastic interaction, 
and negligible effect of using an average k. Typical cases are elaborated in 
Chapter 9, this book, for single piles and in Chapter 11, this book, for pile 
groups, respectively. Using Equation 3.63 or 3.64 to construct the LFP, 
a high n (= 1.3~2.0) is noted for a sharply varying strength with depth, 
whereas a moderate n (= 0.5~0.7) is seen for a uniform strength profile. 
The Ng, n, and αo together (see Table 3.8) are flexible to replicate various pu 
profiles. The total soil resistance on the pile in plastic zone TR is given by

 T p dx
A

n
xR u

x
L

p o
n

o
np= =

+
+ −∫ + +

0

1 1

1

max
[(max ) ]α α  (3.68)

where A s N dL u g
n= −� 1  (cohesive soil), A N dL s g

n= ′ −γ 2  (cohesionless soil); max 
xp is calculated per G4. The difference between the resistance TR and the 
load Hmax renders head restraints to be detected (G3). The input parameters 
where possible should be deduced from measured data of a similar project 
(Guo 2006). The net limiting force per unit length along a pile in groups 
may be taken as pupm (pu for free-head, single piles). Group interaction can 
be catered for by p-multiplier pm (see Figure 3.29). The pm may be estimated 
by

 p a s dm
b= − −1 12( )/  (3.69)

where s = pile center-to-center spacing; a = 0.02 + 0.25 Ln(m); b = 0.97(m)-0.82; 
and m = row number. For instance, the second row (with m = 2) has a = 
0.193 and b = 0.55. The row number m should be taken as 3 for the third 
and subsequent rows. The pm varies with row position, spacing, configura-
tion of piles in a group, and pile installation method. The values of pm for 
24 pile groups were deduced by gaining most favorable predictions against 
measured data (Guo 2009) and are plotted in Figure 3.30a and b. Insights 
about the pm as gleaned herein are provided in Table 3.10. The p-multipliers 
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Table 3.10 Guidelines G–G5 for selecting input parameters

G1 for Gs •	A value of (0.5~2.0)G may be used for FixH piles with G being 
determined from Table 3.8 using �su or SPT. Given identical Gs, the 
k is higher for FreH piles than FixH ones (Gazetas and Dobry 
1984; Syngros 2004),

•	Diameter effect is well considered by the expression correlating 
G to k (Table 3.8), otherwise, 5~10 times the real G (Guo 2008) 
may be deduced from a given k. For large diameter piles, a small 
maximum xp is seen in gaining the �su (Guo and Ghee 2004; Guo 
and Zhu 2004)

•	G for piles in a group may increase by 2~10 times in sand or may 
reduce by 50% in clay, compared to single piles.

G2 FixH single piles Group piles Semi-fixed head group

Sand ns
FixH = 1.1~1.3, Ng

FixH = Kp
2 n = 0.5~0.65 (= 0.5ns

FixH), 
Ng = Kp

2 using FixH solutions
Silt or clay n = nc

FreH = 0.5~0.7, 
independent of head 
restraints

n = 1.7nc
FreH 

if soil strength 
reduces; 
Otherwise 
n = nc

FreH

n = 0.85 regardless of FreH 
or FixH.

Ng = 0.6~4.8, αo = 0.05~0.2 m and 
considering reduction as described in 
the note.

Ng = 0.25Ng
FreH or Ng = Ng

FreH 
using FixH or FreH 
solutions, respectively

Note
for n and Ng

•	 n is independent of head restraints for piles in silt/clay, but 
reduced for FixH piles in sand.  A high n is used for disturbed clay 
within a pile group; whereas a low n is seen for homogenizing 
sand among a pile group, owing to constraints imposed by nearby 
piles and sand dilatancy.

•	Ng, n, and αo are selected by referring to Table 3.8 to cater for 
non-uniform resistance with depth and justified using G5, 
especially for piles in layered soil. Over a maximum depth xp, a 
low value Ng of 0.25Ng

FreH as mobilized along a FixH pile gradually 
increases (e.g. to Ng = 0.7Ng

FixH) (Yan and Byrne 1992) towards 
that for a FreH pile, as the fixed-head restraint degrades.

G3 for TR •	A close TR leads to similar predictions, insensitive to the values of 
αo, n, and Ng.

•	The result of TR > Pmax indicates a FixH condition, whereas TR < Pmax 
implies a FreH condition.  An additional resistance of TR – Pmax is 
induced for FixH pile owing to restraining rotation.

G4 for xp The maximum xp for FixH piles are initially taken as 16d for prototype 
piles and 20d for model piles.

G5 for pm The pm reduces as number of piles in a group increases, such as by 50% 
with 9~16 piles in a group (IIyas et al. 2004). The pm is barely to slightly 
affected by the pile-head restraints.
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are higher than other suggestions at large spacing (Mokwa and Duncan 
2005; Rollins et al. 2006), despite of good agreement with recent sugges-
tions (Dodds 2005). This also implies that the calculated pm using Equation 
3.69 should be reduced with more number of piles in a group (see Figure 
3.30b). Furthermore, the pm varies from one pile to another in a row to 
characterize response of individual piles.
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Figure 3.30  Determination of p-multiplier pm. (a) Equation 3.69 versus pm derived from 
current study. (b) Reduction in pm with number of piles in a group. (After 
Guo, W. D., Int J Numer and Anal Meth in Geomech 33, 7, 2009.)
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Chapter 4

Vertically loaded single piles

4.1 INTRODUCTION

“Hybrid analysis” has been developed to analyze large group of piles. It 
combines numerical and analytical solutions to perform a complete analy-
sis (Chow 1987; Guo 1997) and is the most efficient approach to date. To 
enhance the approach, the impact of soil nonhomogeneity on the pile–soil–
pile interaction and group pile behavior needs to be incorporated into the 
analysis in an efficient manner (Poulos 1989; Guo and Randolph 1999). 
This prompts the development of closed-form solutions for piles in nonho-
mogeneous soil (Rajapakse 1990).

The available closed-form solutions for vertically loaded piles are, strictly 
speaking, largely limited to homogenous soil (Murff 1975; Motta 1994). 
Guo and Randolph (1997a) developed new solutions for nonhomogeneous 
soil characterized by shear modulus as a power of depth. Guo (2000a) 
extended the solutions to accommodate the impact of nonzero modulus 
at ground surface and further to cater for impact of strain softening (Guo 
2001c). The closed-form solutions for a vertically loaded pile in a nonho-
mogeneous, elastic-plastic soil (Guo and Randolph 1997) are expressed in 
modified Bessel functions of non-integer order. Numerical estimates of the 
solutions are performed by either MathcadTM and/or a purposely designed 
spreadsheet program. These solutions are generally sufficiently accurate for 
modeling normally consolidated and overconsolidated soil.

The closed-form solutions are generally based on the load transfer 
approach (Coyle and Reese 1966; Kraft et al. 1981; Guo and Randolph 
1997a; Guo and Randolph 1998), treating the soil as independent springs. 
The approach is underpinned by load transfer factors recaptured in 
Chapter 3, this book, and is able to cater for impact of nonzero input of 
shear modulus (Guo and Randolph 1998). The solutions are sufficiently 
accurate against various rigorous numerical solutions. This chapter pre-
sents the solutions and their application in predicting load displacement 
response, loading capacity of a pile in strain-softening soil, and safe cyclic 
load amplitude for a vertical pile.
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4.2 LOAD TRANSFER MODELS

4.2.1 Expressions of nonhomogeneity

As an extension to that presented in Chapter 3, this book, for zero modulus 
at ground level (i.e., αg = 0), a more generalized soil profile is addressed 
herein. Pertinent profiles and nondimensional parameters are briefly 
described below.

The soil shear modulus, G, along a pile is stipulated as a power function 
of depth

 G A zg g
n= +( )α  (4.1)

where n, αg, Ag = constants; z = depth below the ground surface. Below the 
pile-base level, shear modulus is taken as a constant, Gb, which may differ 
from the shear modulus at just above the pile-base level, GL, as reflected by 
the ratio, ξb (= GL/Gb Figure 3.1, Chapter 3, this book). The variation of 
limiting shear stress, τf, associated with Equation 4.1 is assumed to be (note 
τf is different from the average τs in Chapter 2, this book)

 τ α θ
f v vA z= +( )  (4.2)

where θ, αv, Av = constants. To date, it is assumed that αv = αg and θ = n. The 
ratio of modulus to shaft-limiting stress is thus equal to Ag/Av, independent 
of the depth.

The nonhomogeneity factor ρg is defined as the ratio of the average soil 
shear modulus over the pile length and the modulus at the pile-base level, 
GL (see Equation 3.6 in Chapter 3, this book)

 

ρ
α α α

αg

g g g

g

n

n L L

L

L
=

+
+ −

+























1
1

1
1

 (4.3)

The pile–soil relative stiffness factor, λ, is defined as the ratio of pile 
Young’s modulus, Ep, to the shear modulus at pile-base level, GL, 

 λ = Ep/GL (4.4)

4.2.2 Load transfer models

Closed-form solutions are developed within the framework of load transfer 
models for nonhomogeneous soil (see Chapter 3, this book). In the shaft 
model, the shaft displacement, w, is correlated to the local shaft stress and 
shear modulus by (Randolph and Wroth 1978)
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 w
r

G
o o

i

=
τ

ζ (4.5)

where

 
ζ =







ln

r

r
m

o

 (4.6)

where τo = local shaft shear stress; ro = pile radius; rm = maximum radius of 
influence of the pile beyond which the shear stress becomes negligible, and 
may be expressed in terms of the pile length, L, and “n” as (Guo 1997; Guo 
and Randolph 1997a; Guo and Randolph 1998)

 
r A

n
L Brm

s
o=

−
+

+
1

1

ν
 (4.7)

where νs = Poisson’s ratio of the soil and B may generally be taken as 
5. As discussed in Chapter 3, this book, A is dependent on the ratio of 
the embedded depth of underlying rigid layer, H, to the pile length, L 
(Figure 4.1a), Poisson’s ratio, νs, and nonhomogeneity factor, n. With 
the modulus distribution of Equation 4.1, the A may still be estimated 
using Equation 3.7 (Chapter 3, this book) by replacing the factor “n” 
with an equivalent nonhomogenous factor “ne” (Figure 4.1) (Guo 
2000a, such that
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Figure 4.1  (a) Typical pile–soil system addressed. (b) αg and equivalent ne. (After Guo, W. 
D., Int J Numer and Anal Meth in Geomech 24, 2, 2000b.)
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where Cλ = 0, 0.5, and 1.0 for λ = 300, 1,000, and 10,000. Aoh is Ah at a 
ratio of H/L = 4, Ah is given by

 
A e e eh

H
L ng e= −







+

−
0 124 1 1 01

2 23 1 0 11. .
. .ρ

 (4.9)

where

 ne g= −1 1ρ  (4.10)

The mobilized shaft shear stress on the pile surface will reach the limit-
ing value, τf, once the local pile–soil relative displacement, w, attains the 
local limiting displacement, we, which with n = θ and αg = αv is obtained as

 
w r

A

Ae o
v

g

= ζ  (4.11)

Thereafter, the shear stress stays as τf with w > we (i.e., an ideal elastic-
plastic load transfer model is adopted).

The base settlement can be estimated through the solution for a rigid 
punch acting on a half-space:

 
w

P

r Gb
b s

o b

=
−( )1

4

ν ω
 (4.12)

where Pb = mobilized base load and ω = pile-base shape and depth factor. 
The ω is taken as unity (Randolph and Wroth 1978). This only incurs a 
<  7% (Guo and Randolph 1998) difference in predicted pile-head stiff-
ness but may have a higher impact on predicting load and/or displacement 
distribution profiles down a pile. Generally, the more accurate expressions 
presented in Chapter 3, this book (Guo 1997; Guo and Randolph 1998), 
are adopted herein except where specified.

4.3 OVERALL PILE–SOIL INTERACTION

Generally, a pile behaves elastically under vertical loading. With constant 
diameter and Young’s modulus, the governing equation for pile–soil inter-
action is as follows (Randolph and Wroth 1978)
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d u z

d z

r

E A
o o

p p

2

2

2( ) =
π τ

 (4.13)

where Ap = cross-sectional area of an equivalent solid cylinder pile, u(z) = 
axial pile deformation.

4.3.1 Elastic solution

Within the elastic range, shaft stress, τo in Equation 4.13 is related to the 
local displacement, w as prescribed by Equation 4.5. The basic differential 
equation governing the axial deformation of a pile fully embedded in the 
nonhomogeneous soil, described by Equation 4.1, is thus deduced as

 

d u z

d z
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E A
z w zg

p p
g

n
2

2

2( )
( ) ( )= +π

ζ
α  (4.14)

The axial pile displacement, u(z), is equal to the pile–soil relative displace-
ment, w(z), neglecting any external soil subsidence. The load transfer factor 
ζ is a constant with depth (see Chapter 3, this book). Equation 4.14 is thus 
resolved using Bessel functions of non-integer order as
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where w(z), P(z) = displacement and load at a depth of z (0 < z ≤ L), respec-
tively; Ci(z) (i = 1 to 4) is expressed as the modified Bessel functions, K, and 
I of non-integer order, m and m–1,

 

C z K I y K y I
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m m m m
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1 1 1 1 1

2 1
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− − − −
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C z K I y

−

− −= +
= −

1

3 1 1

4

( )

( ) ( ) ( )

( ) ( )) ( )+ K y Im m

 (4.17)

where m = 1/(n + 2); Im, Im-1, Km-1, and Km are the values of the Bessel func-
tions at z = L; and the variable y is given by

 y mk zs g
m= +2 1 2( ) /( )α  (4.18)
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and

 
k
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r Ls
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α
λζ α
2 1

1 2/( )

 (4.19)

The ratio χv is given by

 
χ

π ν ωξ
ζ
λν = −

2 2
1( )s b

 (4.20)

At any depth, z, the stiffness can be calculated using
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 (4.22)

At the ground surface (z = 0), it is necessary to take the limiting value 
of Cv(z) as z approaches zero. Equations 4.15 and 4.16 allow base settle-
ment to be written as a function of pile-head load and displacement. The 
accuracy of these closed-form solutions (hereafter denoted by CF) has been 
checked by MathcadTM and corroborated by continuum-based finite differ-
ence analysis, as shown later.

4.3.2 Verification of the elastic theory

The closed-form solutions outlined here are underpinned by the uncoupled 
load transfer analysis. As shown in Chapter 3, this book, the solutions com-
pare well with more rigorous numerical approaches for αg = 0 (Guo 1997; 
Guo and Randolph 1998) and αg ≠ 0 (Guo 2000a). Typically, a continuum-
based numerical analysis is conducted using the finite-difference program 
FLAC (Itasca 1992; Guo and Randolph 1997a) on the pile shown in Figure 
4.1a, in which H/L = 4; Young’s modulus of the pile, Ep = 30 GPa; and 
Poisson’s ratio, νp = 0.2. Given constant values, say, of λ = 1,000, GL = 30 
MPa, regardless of n (n > 0), the increase in αg renders reduction in value of 
Ag in Equation 4.1. At a sufficiently high αg, the soil approaches a homog-
enous medium (see Figure 4.1a and b). The associated pile-head stiffness 
(see Figure 4.2) then approaches the upper limit for homogeneous case.
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The pile-head stiffness (z = 0) was estimated using Equation 4.21, in 
which A was estimated from Equation 4.8 using H/L = 4, νs = 0.4, ξb = 1, ω = 1, 
and B = 1. It was obtained for a few typical values of αg and L/ro. The corre-
sponding values of ne and A are tabulated in Table 4.1 for each case. A low 
value of B = 1 (Guo and Randolph 1998) was adopted in view of the slight 

Table 4.1 Estimation of ne and parameter A for the CF analysis

L/ro 20 40 100

αg n = 0.5 n = 1.0 n = 0.5 n = 1.0 n = 0.5 n = 1.0

0 0 50

1 57

.

.

a

b

1 00
1 43
.
.

.
.
50

1 57
1 00
1 43
.
.

.
.
50

1 57
1 00
1 43
.
.

2 .
.
265

1 72
.
.
556

1 54
.
.
341

1 66

.
.
714

1 49
.
.

417
1 61

.
.
862

1 45

5 .
.

160
1 81

.
.
333

1 67
.
.
238

1 74
.
.
50

1 57
.
.
341

1 66
.
.
714

1 49

10 0 97
1 88

.
.

.
.
20

1 77
.
.

160
1 81

.
.
333

1 67
.
.
265

1 72
.
.
556

1 54

20 .
.
055

1 93
.
.
111

1 86
.
.
097

1 88
.
.
200

1 77
.
.
184

1 79
.
.
385

1 63

Source: Guo, W. D., Proceedings of the Eighth International Conference on Civil and 
Structural Engineering Computing, Paper 112, Civil-Comp Press, Stirling, UK, 2001a.
a numerator: value of ne estimated by Equation 4.10 
b denominator: value of A by Equation 4.8. In the estimation, H = 4L, λ = 1,000, and νs = 0.4.

Table 4.2 Pt/(GLwtro) from FLAC and CF analyses

L/ro 20 40 100

αg n = 0.5 n = 1.0 n = 0.5 n = 1.0 n = 0.5 n = 1.0

0 32 2

31 2

.

.

a

b

27 4
25 6

.

.
41 9
39 9

.

.
35 1
32 2

.
.

462
432

37 4
34 2

.

.
2 35 3

35 1
.
.

31 5
30 6

.

.
44 9
43 7

.

.
38 7
36 4

.

.
− −
46 1.

39 7
36 8

.

.
5 37 1

37 3
.
.

34 3
33 9

.

.
47 1
46 4

.
.

42 0
40 4

.

.
50 7
48 8

.

.
42 5
39 9

.

.
10 38 2

38 7
.
.

36 3
36 4

.

.
49 0
48 8

.

.
45 1
44 1

.

.
53 0
51 6

.

.
45 8
43 6

.

.
20 39 0

39 7
.
.

37 9
38 4

.

.
50 0
50 8

.

.
48 0
47 6

.

.
55 7
54 6

.

.
50 0
48 3

.

.

Source: Guo, W. D., Proceedings of the Eighth International Conference on Civil and Structural 
Engineering Computing, Paper 112, Civil-Comp Press, Stirling, UK, 2001a.
a numerator from FLAC analysis (H = 4L, λ = 1,000, and νs = 0.4);
b denominator from closed-form solutions (CF).
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overestimation of pile-head stiffness from the FLAC analysis (compared to 
other approaches). The values of the pile-head stiffness obtained are shown 
in Table 4.2, which are slightly higher than the FLAC predictions for short 
piles and slightly lower for long piles (particularly, at n = 1), with a differ-
ence of ~5%.

4.3.3 Elastic-plastic solution

As the vertical pile-head load increases, pile–soil relative slip is stipulated 
to commence from the ground surface and progressively develop to a depth 
called transition depth (L1), at which the shaft displacement, w, is equal to 
the local limiting displacement, we. As shown in Figure 4.3a, the upper por-
tion of the pile above the transition depth is in plastic state, while the lower 
portion below the depth is in an elastic state. Within the plastic state, the 
shaft shear stress in Equation 4.13 should be replaced by the limiting shaft 
stress from Equation 4.2 (i.e., an increasing τf with depth, see Figure 4.3b). 
Pile-head load is thus a sum of the elastic component represented by letters 
with subscript of “e,” and the plastic one:

 
P w k E A L C L

r A L
t e s p p g

n
v

o v v v= + +
+ −+

( ) ( )
[( )/α µ

π α µ αθ
2

12 11

1

+

+

θ

θ
]
 (4.23)

Slip depth

Plastic
zone

Elastic zone

w = we

L we = 

Pt

w < we

we

L2

L1

G
fro

o = f

 = 1
f

w = 
G

G

G

G

G

oro

Slip degree
 = L1/L 

w

we w

we w

we

Gb

(b)(a)

w

Figure 4.3  Features of elastic-plastic solutions for a vertically loaded single pile. (a) Slip 
depth. (b) τo~w curves along the pile.
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where μ = L1/L is defined as degree of slip (0 < μ ≤ 1), and L1 = the length of 
the upper plastic part; Pe, we = the pile load P(L1), and displacement w(L1), 
at the transition depth L1, estimated from Equation 4.21. Likewise, the 
pile-head settlement is expressed as

 

w w k L L C L

r A

E A

t e s g
n

v

o v

p p

v

= + +

+
++

[ ( ) ( )]

(

/1

2

2

2

µ α µ

π α αθ
vv vL L+ + −

+ +

+µ θ µ α
θ θ

θ) [( ) ]

( )( )

1 1

1 2
 (4.24)

These solutions provide three important results: (a) By specifying a slip 
degree, μ, the pile-head load and settlement are estimated by Equations 
4.23 and 4.24, respectively; repeating the calculation for a series of slip 
degrees, a full pile-head load-settlement relationship is obtained. (b) For a 
specific pile-head load, the corresponding degree of slip of the pile can be 
deduced from Equation 4.23. (c) The distribution profiles of load and dis-
placement can be readily obtained at any stage of the elastic-plastic devel-
opment. Within the upper plastic portion, at any depth of z, the load, P(z), 
can be predicted by

 P z P
r A L z

e
o v v v( )

[( ) ( ) ]
= +

+ − +
+

+ +2

1

1 1π α µ α
θ

θ θ

  (4.25)

and the displacement, w(z), can be obtained by

 

w z w
P L z

E A

r A

E A

z

e
e

p p

o v

p p

v

( )
( )

( ) ( )(

= +
−

+

+ + ++

µ π

α θθ

2

22 µµ α µ α µ
θ θ

θ θL z L Lv v− + − +
+ +

+ +)( ) ( )

( )( )

1 2

1 2
 (4.26)

The current analysis is limited to αv = αg and n = θ. They are all preserved 
in the equations to indicate the physical implications of n and αg to elastic 
state and αv and θ to plastic state.

Equations 4.23 to 4.26 are as accurate against the GASPILE program 
(Guo and Randolph 1997b). An example is provided here for a pile of 
L/ro = 100, embedded in a soil with n = θ = 0.5, λ = 1000, Ag/Av = 350, 
ξb = 1.0, νs = 0.4, and H/L = 4.0. Using Equations 4.23 and 4.24, the pre-
diction adopts ω = 1 and values of A estimated using ne of 0.5 (αg = 0), 
0.238 (αg = 12.5), and 0 (αg = ∞), respectively. The predicted pile-head 
load displacement relationships are plotted in Figure 4.4a. The GASPILE 
analyses were conducted using 20 segments for the pile and the aforemen-
tioned parameters, with nonlinear ζ (see Equation 3.10, Chapter 3, this 
book), an advanced version of Equation 4.5. The predicted results are also 
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shown in Figure 4.4a. The comparison demonstrates the limited effect of 
the nonlinear stress on the pile-head load and displacement, as is noted in 
load-deformation profiles (Guo and Randolph 1997a).

Load and displacement distributions below and above the transition 
depth are estimated respectively using the elastic and elastic-plastic solu-
tions. The depth of the transition (= μL) or the degree of slip μ is first 
estimated using Equation 4.23 (i.e., by using Mathcad) for a given pile-
head load. Below the transition point, the distributions are estimated by 
Equations 4.15 and 4.16, respectively. Otherwise, they are evaluated by 
Equations 4.25 and 4.26, respectively. Any load beyond full shaft resis-
tance (full slip) should be taken as the base load (see later Example 4.2). 
For Pt = 2 MN, the load and displacement profiles were predicted using 
Equations 4.16 and 4.25 and Equations 4.15 and 4.26, respectively. These 
profiles are presented in Figure 4.4b and c, together with the GASPILE 
analyses. They may be slightly different from a continuum-based numerical 
approach, as the ω is equal to 1.36, 1.437, and 1.515 for the αg of 0, 12.5, 
and ∞ [from Guo and Randolph’s (1998) equation in Chapter 3, this book, 
in which the “n” is replaced with ne]. The critical values of μ, we, and wb 
for the Pt were obtained from the CF solutions and are shown in Table 4.3. 
The results demonstrate that an increase in the αg renders a decrease in the 
degree of slip, μ, and base settlement, wb, but an increase in the load, Pe, 
and limiting displacement, we.

Example 4.1 Solutions for homogeneous soil

4.1.1 Elastic solution

In an ideal nonlinear homogeneous soil (n = 0), the coefficients in 
Equation 4.17 can be simplified as

 

C z C z
k L

L
z

k L z

C z C z
k

s
s1 4

2 3

1

1

( ) ( ) sinh ( )

( ) ( )

= = −

= =
ss

sL
L
z

k L zcosh ( )−
 (4.27)

Table 4.3 Critical values at Pt = 2 MN from CF analysis

αg 0 2.5 12.5 ∞
µ P kNe ( ) 0 5271141. 0 4431211. 0 3061323. 0 1261575.

w mm w mme b( ) ( ) 3 25 2 04. . 3 281 80. . 3 331 45. . 3 431 02. .

Source: Guo, W. D., Proceedings of the Eighth International Conference on Civil and 
Structural Engineering Computing, Paper 112, Civil-Comp Press, Stirling, UK, 
2001a.
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The Ci (i = 1∼4) allows Equation 4.15 for shaft displacement, w(z), and 
Equation 4.16 for axial load, P(z), of the pile body at depth of z to be 
simplified as

 w x w k L x k L xb s v s( ) [cosh ( ) sinh ( )],= − + −χ  (4.28)

 P x k E A w k L x k L xs p p b v s s( ) [ cosh ( ) sinh ( )]= − + −χ  (4.29)

With Equation 4.29, the load acting on pile-head Pt is related to the 
force on the pile base Pb, the base settlement, wb, and the shaft (base) 
settlement ratio by

 P k E A w Pb s p p b tcosh sinhβ β+ =  (4.30)

where β = ksL. From Equation 4.28, the head settlement wt (at z = 0) 
can be expressed as

 w wt b v= +(cosh sinh )β χ β  (4.31)

With Equation 4.21, the nondimensional relationship between the 
head load Pt [hence deformation wp = PtL/(EpAp)] and settlement wt is 
deduced as

 

w

w
p

t
v v= + +β β χ χ β(tanh ) ( tanh )1  (4.32)

Equation 4.32 can be expanded to the previous expression (Randolph 
and Wroth 1978), for which “μL” (their symbol) = β and χv replaced 
with Equation 4.20.

4.1.2 Elastic-plastic solution

Within the elastic-plastic stage, Equations 4.11 and 4.32 allow the pile 
load at the transition depth to be derived as
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d L
e

f v

v
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+

+











π τ

β
β χ

χ β

tanh

tanh 1
 (4.33)

where β α β µ= = −L2 1( ) for plastic zone (0 ≤ z ≤ L1). Equations 4.23 
and 4.33 permit the head load to be related to slip degree by

 
P d Lt f
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= +
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π τ µ
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1
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 (4.34)

In terms of Equations 4.11 and 4.24, the pile-head settlement can also 
be rewritten as

 
w wt e

v
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 (4.35)
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Example 4.2 Shaft friction and base resistance at full slip state

A pile head-load Pt may be resolved into the components of total shaft 
friction and base resistance at the full slip state. In comparison with 
Equations 4.25 and 4.26, the axial load P(z) at depth z, the pile-head 
load Pt and displacement wt can alternatively be expressed as

 
P z P r

z
t o

v v( )
( )  

= −
+ −

+

+ +

2
1

1 1

π
α α

θ

θ θ

 (4.36)

 
w w

A E
P z dzt b

p p

L
= + ∫

1
0

( )  (4.37)

The base displacement wb of Equation 4.12 may be correlated to the 
pile cross-sectional properties by wb = PbL/(RbEpAP) and a newly 
defined base deformation ratio Rb of

 
R

L
A E

r G
b

p p

o b

s

=
−

4

1( )ν ω
 (4.38)

The base resistance Pb is the P(z) at z = L using Equation 4.36. With the 
wb obtained and Equation 4.36, the wt of Equation 4.37 is simplified, 
which offers the following linear load and displacement relationship at 
and beyond full shaft slip state
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where Ps = total shaft friction along entire pile length and αm = dimen-
sionless shaft friction factor, which for a τf distribution of Equation 4.2 
is given by
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where αm = 0.5 for a uniform τf (θ = 0), αm = 0.4 for a distribution by 
θ = 0.5 and αv = 0, and αm = 1/3 for a Gibson profile (θ = 1) at αv = 0

 
P

A E

L
wt

m

p p

t=
−
1

1 α
 (4.41)

It is more straightforward to draw the line Pt−wt of Equation 4.41 
together with the line Pt−wt of Equation 4.39 and a measured Pt~wt 
curve. The value of “Pt” at the intersection of the two lines is shaft 
friction Ps, as is illustrated in Example 4.3. Equation 4.39 provides the 
theoretical base for the earlier empirical approach (Van Weele 1957). 
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4.4 PARAMATRIC STUDY

In the form of modified Bessel functions, numerical evaluations of the cur-
rent solutions (Guo 1997; Guo and Randolph 1997a) have been performed 
through a spreadsheet program (using a macro sheet in Microsoft Excel), 
with the shaft load transfer factor of Equation 4.7 and the base load trans-
fer factor of Equation 3.4 (see Chapter 3, this book), except for using ω = 1 
to compare with the FLAC analyses. All the following CF solutions result 
from this program.

4.4.1  Pile-head stiffness and settlement 
ratio (Guo and Randolph 1997a)

The closed-form solution for the pile, which is later referred to as “CF,” 
is underpinned by the load transfer parameter, ζ (thus, the ψo and rm/ro). 
Assuming A = 2, B = 0 (see Chapter 3, this book), νs = 0.4, ξb = 1, ψo = 0, and 
ω = 1 (to compare with FLAC analysis), the solutions were obtained and 
are presented here. The pile-head stiffness predicted by Equation 4.21 is 
plotted against FLAC analyses in Figure 4.5, along with the simple analysis 
(SA; Randolph and Wroth 1978). Note the latter uses A = 2.5 (see Chapter 
3, this book). The results show that:

 1. The CF approach is reasonably accurate, with a underestimation of 
the stiffness by ~10% in comparison with the FLAC results.

 2. The SA analysis progressively overestimates the stiffness by ~20% 
with either increase in nonhomogeneity factor n (particularly, n = 1), 
or decrease in pile–soil relative stiffness factor.

 3. For a pile in homogenous soil (n = 0), the CF and SA approaches are 
exactly the same (see Example 4.1). The discrepancy in the head stiff-
ness between the two approaches is because of different values of A.

The ratios of pile-head and base settlement estimated by Equation 4.15 
are compared with those from the FLAC analyses in Figure 4.6. With 
extremely compressible piles, the CF solutions diverge from the FLAC 
results as the displacement prediction becomes progressively more sensitive 
to the neglecting of the interactions between each horizontal layer of soil, 
which is also observed in the deduced values of ζ in Figures 3.4a and 3.7c 
(Chapter 3, this book).

4.4.2  Comparison with existing solutions 
(Guo and Randolph 1998)

Table 4.4 shows that the pile-head stiffness predicted by Equation 4.21 and 
the ratio of pile-base and head load by Equation 4.16 generally lie between 
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those obtained from the VM analysis (Rajapakse 1990) and the current 
FLAC analyses.

Figure 4.7a shows a nonlinear increase in pile-head stiffness with slen-
derness ratio for a pile in a homogeneous, infinite half space (Banerjee and 
Davies 1977; Chin et al. 1990). As expected, the present CF solution yields 
slightly higher head stiffness than those by other approaches. The solution 
using a value of A = 2.5 [i.e., CF (A = 2.5)] was also conducted and is shown 
in Figure 4.7. It agrees well with those from the more rigorous numerical 

(a) (b)

(c) (d)

0.0 0.2 0.4 0.6 0.8 1.0
20

25

30

35

40

45

50

10000

1000

 = 300

L/ro = 20
 FLAC analysis
 Randolph and Wroth (1978)
 Guo and Randolph (1997a)

          (A = 2, B = 0)

Nonhomogeneity factor, n

P t
/(G

Lr
ow

t)

 = 300

L/ro = 40

0.0 0.2 0.4 0.6 0.8 1.0
20
25
30
35
40
45
50
55
60
65
70
75

10000

1000

 FLAC analysis
 Randolph and Wroth (1978)
 Guo and Randolph (1997a)

         (A = 2, B = 0)

Nonhomogeneity factor, n
P t

/(G
Lr

ow
t)

 = 300

L/ro = 60

Nonhomogeneity factor, n
0.0 0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

10000

1000

 FLAC analysis
 Randolph and Wroth (1978)
 Guo and Randolph (1997a)

         (A = 2, B = 0)

P t
/(G

Lr
ow

t)

 = 300

L/ro = 80

Nonhomogeneity factor, n
0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

120

10000

1000

 FLAC analysis
 Randolph and Wroth (1978)
 Guo and Randolph (1997a)

         (A = 2, B = 0)

P t
/(G

Lr
ow

t)

Figure 4.5  Comparison of pile-head stiffness among FLAC, SA (A = 2.5), and CF (A = 2) 
analyses for a L/ro of (a) 20, (b) 40, (c) 60, and (d) 80. (After Guo, W. D. and 
M. F. Randolph, Int J Numer and Anal Meth in Geomech 21, 8, 1997a.)
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approaches shown there. As for a pile in a Gibson soil (n = 1), Figure 4.7b 
also indicates a good comparison of the head stiffness between the CF solu-
tion and the numerical results (Banerjee and Davies 1977; Chow 1989). 
Again, an increase in slenderness ratio causes an increase in pile-head stiff-
ness until a critical ratio is reached.

Figure 4.8a1 through 4.8c1 indicates the significant impact of soil nonho-
mogeneity and finite layer ratio, H/L, on the head stiffness. Poisson’s ratio (νs) 
reflects the compressibility of a soil. Figure 4.8 shows that more incompressible 
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(higher νs) soil may have ~25% higher pile-head stiffness (at νs = 0.5) com-
pared to that at νs = 0. With L/ro = 40, the increase in finite-layer ratio H/L 
(within effective pile slenderness ratio) from 1.25 to 4 incurs approximately 
a 15% reduction in the head stiffness but only a slight decrease in base load  
(not shown), as reported previously (Valliappan et al. 1974; Poulos and Davis 
1980). The effect of the ratio of H/L can be well represented for other slender-
ness ratios by the current load transfer factors, as against the numerical results 
(Butterfield and Douglas 1981). Equation 3.4 (see Chapter 3, this book) for 
ω and Equation 4.7 for ζ are sufficiently accurate for load transfer analysis.

4.4.3  Effect of soil profile below pile base 
(Guo and Randolph 1998)

The analysis in the last section is generally capitalized on the shear modulus of 
Equation 4.1 through the entire soil layer of depth, H. A constant value of shear 
modulus below the pile-tip level may be encountered (see Figure 3.1, Chapter 3, 
this book), for which modified expressions for the parameter A in Equation 4.7 
(Guo 1997) were presented previously. This situation induces a slightly softer 
pile response compared with Equation 4.1, as is pronounced for shorter piles 
(L/ro < 30). It may result in ~10% difference in pile-head stiffness, particularly 
in soil with a significant strength increase with depth (high n values).

4.5 LOAD SETTLEMENT

Equations 4.23 and 4.24 offer good prediction of a load-settlement rela-
tionship against continuum-based analyses. This is illustrated next for a 
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Figure 4.8  Pile-head stiffness versus (a1−c1) the ratio of H/L relationship (νs = 0.4), (b2−c2) 
Poisson’s ratio relationship (H/L = 4). (Guo, W. D., and M. F. Randolph, 
Computers and Geotechnics 23, 1–2, 1998.)

www.engbasics.com



Vertically loaded single piles 125

 particular set of pile and soil parameters, concentrating on the elastic- 
plastic response.

4.5.1 Homogeneous case (Guo and Randolph 1997a)

A pile of 30 m in length, 0.75 m in diameter, and 30 GPa in Young’s modu-
lus was installed in a homogeneous soil layer 50 m deep. The soil has an 
initial tangent modulus (for very low strains) of 1056 MPa and a Poisson’s 
ratio of 0.49. The constant limiting shaft resistance was 0.22 MPa over the 
pile embedded depth. The numerical analyses by GASPILE and the closed-
form solutions offer the load settlement curves depicted in Figure  4.9. 
They are compared with a finite element analysis involving a nonlinear soil 
model (Jardine et al. 1986), boundary element analysis (BEA utilizing an 
elastic-plastic continuum-based interface model), and BEA with a hyper-
bolic continuum-based interface model, respectively (Poulos 1989). A good 
agreement of the load transfer analysis with other approaches is evident. 
Nevertheless, as noted previously (Poulos 1989), the response of very stiff 
piles (e.g., Ep = 30,000 GPa), obtained using an elastic, perfectly plastic soil 
response, can differ significantly from that obtained using a more gradual 
nonlinear soil model.

Base contribution is generally limited to the pile-head response except 
for short piles. An evidently nonlinear base behavior will be observed only 
when local shaft displacement at the base level exceeds the limiting dis-
placement, we, as determined from the difference between the nonlinear 
GASPILE and linear (closed form) analyses.
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Figure 4.9  Comparison between various analyses of single pile load-settlement behavior. 
(After Guo, W. D., and M. F. Randolph, Int J Numer and Anal Meth in Geomech 
21, 8, 1997a.)
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4.5.2  Nonhomogeneous case (Guo 
and Randolph 1997a)

Previous analyses (Banerjee and Davies 1977; Poulos 1979; Rajapakse 
1990) indicate a substantial decrease in pile-head stiffness as the soil shear 
modulus non-homogeneity factor (n) increases. This is partly owing to use 
of a constant modulus at the pile-tip level, together with reduction in the 
average shear modulus over the pile length as n increases (see Figure 4.1). By 
changing the nonhomogeneity factor (θ = n) and maintaining the average 
shaft shear modulus, the closed-form prediction by ψo = 0 (linear elastic-
plastic case) was obtained and is shown in Figure 4.10a. Only ~30% dif-
ference (this case) is observed due to variation in the n (within the elastic 
stage). This mainly comes from the load variations at low load levels and 
displacement variations at higher load levels, as demonstrated in Figure 
4.10b and c. At the same slip degrees, the wt is only slightly affected until 
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Figure 4.10  Effect of slip development on pile-head response (n = θ). (After Guo, 
W. D., and M. F. Randolph, Int J Numer and Anal Meth in Geomech 21, 8, 1997a.)
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μ > 0.6. These features are important to assessing cyclic capacity. With an 
identical average shaft friction for all three cases, the Pt~μ curves should 
converge towards an identical pile head load at full slip (μ = 1), but for the 
difference in the base.

Example 4.3 Analysis of a loading test on an instrumented pile

An analysis is presented here to show the impact of nonhomogeneous 
soil property and the pile–soil relative slip on pile response. Gurtowski 
and Wu (1984) detailed the measured response of an instrumented pile. 
The pile was a 0.61-m-wide octagonal prestressed concrete hollow pile 
with a plug at the base and was driven to a depth of about 30 m. The 
input parameters (Poulos 1989) include Ep = 35 GPa, E (soil; Young’s 
modulus) = 4N MPa (N = SPT value, with N = 2.33 z/m to a depth of 
30 m, z in meters), τf (shaft) = 2N kPa, τfb (base) = 0.4 MPa, and νs = 
0.3. The pile-head and base load settlement curves were predicted by 
GASPILE (with Rfs = 0.9, Gi/τf = 769.2 Rfb = 0.9) and by the closed 
form solutions (with ψo = 0.5). They are plotted in Figure 4.11a, which 
compare well with boundary element analysis (Poulos 1989), in view 
of the difference at failure load levels caused by the assumed τfb (base).

The shaft friction and base resistance were obtained using Equations 
4.39 and 4.41 and are plotted in Figure 4.11b. The αm was 1/3 using 
θ = 1, αv = 0 in Equation 4.40. The Rb was calculated as 0.55, with 
ω = 1.0, νs = 0.3, Gb/GL = 1, and ζ = 4.455. The shaft resistance Ps was 
determined as 4.019 MN.

The load and displacement distributions are predicted using the closed-
form solutions and the nonlinear GASPILE analysis. The degrees of slip 
at Pt = 1.8 MN are 0.058, 0.136, 0.202, 0.258, and 0.305 for n = 0, 0.25, 
0.5, 0.75, and 1.0 respectively, and at Pt = 3.45 MN, μ = 0.698, 0.723, 
0.743, 0.758, and 0.771 accordingly. At Pt = 4.52 MN, full slip occurs 
and the base takes 1.07 MN. For the three soil profiles of n = 0, 0.5, and 
1.0, Figure 4.12 shows the predicted settlement (only at two load levels) 
and load distribution profiles. Typical predictions of the closed form 
solutions (n = 0, 0.5, and 1) and the GASPILE (n = 1 only) are shown 
in Figure 4.13, along with BEM results (Poulos 1989) and the mea-
sured data. The figures show the linear soil strength and shear modulus 
(n = 1) yield reasonable predictions of the axial force against the mea-
sured data. The accuracy of the CF solutions and GASPILE is evident.

4.6 SETTLEMENT INFLUENCE FACTOR

The settlement influence factor, I, is defined as the inverse of a pile-head 
stiffness

 
I

G w r

P
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where GiL = initial shear modulus of soil at pile-base level. The factor can 
be derived directly from Equation 4.21 for the elastic stage as

 
I

Cvo

= 1

2π
ζ
λ

 (4.43)
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It is straightforward to obtain the factor for an elastic-plastic medium 
using Equations 4.23 and 4.24. The settlement influence factor is primar-
ily affected by pile slenderness ratio, pile–soil relative stiffness factor, the 
degree of the nonhomogeneity of the soil profile, and the degree of pile–
soil relative slip. Our attention is subsequently confined to elastic medium, 
to compare the factor with those of pile groups in Chapter 6, this book, 
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to estimate settlement of pile groups. The elastic factor estimated using 
Equation 4.43 (termed as Guo and Randolph 1997a) is presented in Figures 
4.14 and 4.15.

Figure 4.14 shows the settlement influence factor of piles in a Gibson 
soil with different slenderness ratios at a constant relative stiffness factor 
(λ = 3,000), together with the BEM analysis based on Mindlin’s solution 
(Poulos 1989), BEM analysis of three dimensional solids (Banerjee and 
Davies 1977), and the approximate closed-form solution (Randolph and 
Wroth 1978). The results of Equation 4.43 are generally consistent with 
those provided by the other approaches.

Figure 4.15 shows the impact of relative stiffness λ on the settlement 
influence factor for four different slenderness ratios at n = 0 and 1, in 
comparison with the boundary element (BEM) analysis (Poulos 1979) 
and the FLAC analysis. The BEM analysis is for the case of H/L = 2, 
while this CF solution corresponds to the case of H/L = 4. As presented 
in Figure 4.8, an increase in the value of H/L reduces the pile-head stiff-
ness and increases the settlement influence factor (e.g., with L/ro = 50, 
λ = 26,000; Ep/GL = 10,000), n = 0, an increase in H/L from 2 to infinity 
raises the settlement factor by ~21% (Poulos 1979). In view of the H/L 
effect, the closed-form solutions are generally quite consistent with the 
numerical analysis.
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Figure 4.14  Comparison of the settlement influence factor (n = 1.0) by various approaches. 
(After Guo, W. D., and M. F. Randolph, Int J Numer and Anal Meth in Geomech 
21, 8, 1997a.)
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4.7 SUMMARY

The following conclusions can be drawn:

 1. Nonlinear and simplified elastic-plastic analyses offer slightly differ-
ent results. The closed-form solutions underpinned by the simplified 
elastic-plastic model are sufficiently accurate.

 2. The influence of n on pile-head stiffness or settlement influence factor 
is largely attributed to the alteration of average shear modulus over 
the pile length. The nonhomogeneity factor, n, may be adjusted to fit 
the general trend of the modulus with depth for a complicated shear 
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modulus profile. The solution presented here may thus still be applied 
with reasonable accuracy

 3. The evolution of the pile–soil relative slip on load-settlement behavior 
is readily simulated by the closed-form solutions.

The last conclusion is useful to gain capacity of piles in strain-softening 
soil, as highlighted subsequently.

4.8 CAPACITY FOR STRAIN-SOFTENING SOIL

4.8.1 Elastic solution

To facilitate determining capacity of piles in strain-softening soil, the elastic- 
plastic solutions are recast in nondimensional form (Guo 2001c), with the 
same definitions of parameters (except where specified). The axial pile dis-
placement, u, is equal to the pile–soil relative displacement, w. Within elas-
tic state, the governing equation for the axial deformation of a pile fully 
embedded in the soil addressed is as follows (Murff 1975)

 

d w

dz

d
E A

w
wp p e

f

2

2
= π τ  (4.44)

where d = 2ro, diameter of the pile. Under cyclic loading, αv and αg may be 
taken as zero. Introducing nondimensional parameters, Equation 4.44 is 
transformed into (see Figure 4.16a), with αg = αv = 0.

 

d

d v
m

2
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2
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1
2 1

π
π

π π πθ= /
 (4.45)

where π1 = w d, π2 = z L (0 < z ≤ L). The pile–soil relative stiffness, πv, is a 
constant along the pile. With we = Avroζ/Ag (see Equation 4.11), it is given 
by

 

π
λζv
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L
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2
2

 (4.46)

Therefore, Equation 4.45 may be solved in terms of modified Bessel func-
tions, I and K, of the second kind of non-integer order m and m − 1, using 
the pile-head load, Pt, and the base load, Pb. The Pb is correlated to the base 
displacement, wb, by the base settlement ratio Rb. The Rb of Equation 4.38, 
with Equation 4.12, may be rewritten as
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At depth z, the pile stiffness, compared to Equation 4.21, may be expressed 
as
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A new form of Cv(z) is as follows:
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Figure 4.16  Schematic pile–soil system. (a) Typical pile and soil properties. (b) Strain-
softening load transfer models. (c) Softening ξτf (ξcτf) with depth.
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Within the elastic state, the shaft displacement at the ground level (z = zt), 
w(zt) equals the head settlement, wt. For a rigid pile (i.e., with a displace-
ment of wt at any depth), the total shaft load, Pfs, is obtained by integration 
of Equation 4.2 (αv = 0) over the pile length

 P dA Lfs v= ++π θθ1 1( ) (4.50)

As Av = wtG/(ζroLθ), in light of Equations 4.2 and 4.5, Equation 4.50 can 
be rewritten as

 

P

G w r
L
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L t o o
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2 1

1
π
ζ θ

 (4.51)

Mobilization of the shaft capacity (for a pile of any rigidity) may be quanti-
fied by a capacity ratio np (= Pt/Pfs) deduced from Equations 4.48 and 4.51:
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4.8.2 Plastic solution

A rigid pile sitting on a soft layer may yield initially at the pile base before 
it does from the pile top. In the majority of cases, as load on the pile top 
increases, plastic yield may be assumed to initiate at the ground surface 
and propagate down the pile. As shown in Figure 4.16c, the yield transfers 
to a transitional depth, L1, at which the soil displacement, w, equals we, 
above which the soil resistance is in a plastic state, below which it is in an 
elastic state. Strain softening renders the limiting stress reduce to ξτf from τf 
(Figure 4.16b, subscript “b” for pile base), and the we reduces to ξ we, and 
the depth L1 increases to the “dash line” position (Figure 4.16c). The pile–
soil interaction is governed by the following differential equation
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where π2 1p z L= , L1 = length of the upper plastic zone; and
π ξπ θ

4 1
2= +A L E Av P P( ). The π4 is positive where the pile is in compression 

and negative where it is in tension. Integration of Equation 4.53 offers two 
constants, which are determined using the boundary conditions of load Pt 
at the top of plastic zone (π2p = 0) and the displacement π1

* (= we/d) at the 
transition depth (π2p = 1.0). This offers the following
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4.8.3 Load and settlement response

To assess pile capacity, the plastic solutions are now transformed into func-
tions of the capacity ratio np defined by Equation 4.52. The pile-head defor-
mation from Equation 4.54 may be rewritten as
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At the transition depth of the elastic-plastic interface (z = L1), firstly, as with 
Equation 4.50, the pile load, Pe, is deduced as
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and, secondly, Equation 4.53 allows the displacement, we, to be related to 
Pe by
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Therefore, the capacity ratio np for an elastic-plastic case is (n = θ)
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Equation 4.58 is used to examine the effect of the slip development on 
the pile capacity. As slip develops (L1 > 0), pile capacity, np may increase 
due to further mobilization of the shaft stress in the lower elastic portion 
of the pile or decrease because of the strain softening (ξ < 1) in the upper 
plastic portion (see Figure 4.16c). The incremental friction is the difference 
between the reduced shaft friction of (1 − ξ)τfπdL1 and possible shaft fric-
tion increase in elastic zone. This is evident in Figure 4.17a for a pile in a 
soil with stiffness factors of λ = 1,000 (πv = 1.1 given n = 0 or 1) and Rb = 0. 
The figure shows that as long as ξ > 0.75, the overall increase for the pile is 
greater than the decrease. Thus, the capacity ratio, np, at any degree of slip 
is higher than that at the incipient of slip (Pe/Pfs). Particularly for the case of 
n = 1, irrespective of the softening factor, ξ, the upper portion (e.g., ~20% 
pile length) of the pile may be allowed to slip to increase the capacity ratio. 
The portion extends to a critical degree of slip, μmax, at which the capacity 
ratio np reaches maximum nmax. This maximum can be viewed in another 
angle from Figure 4.17c, showing the capacity ratio, np (given by Equation 
4.58), and the normalized pile-head displacement wt/we (by Equation 4.55). 
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The figure indicates the existence of a maximum value of the displacement, 
wt/we [written as (wt/we)max]. As the displacement, wt/we, reaches (wt/we)max, 
it will increase indefinitely, although the capacity ratio, np, will stay at a 
constant (written as nw). This is not shown in the figure, but instead the 
unloading curve is given, which indicates the wt/we returns to unity upon a 
complete unloading (Pt = 0).

With Equation 4.58, the maximum, nmax (see Table 4.5), may be mathe-
matically determined through setting the first derivative of np (with respect 
to μ) as zero:

 

dn

d
L

d
dL

C Lp v

v
mµ

θ µ ξ
π

θ= + +


















( )

( )
/

1
1

1
1 2

 (4.59)

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a)

 = 1
0.75

0.5

0.25

0

Lines: Guo (2001c)
 nmax
 (wt/we)max

(  as shown, v = 1.1, n = 0,
Rb = 0,  = 1000) 

np

 (= L1/L)
1.0

 = 1 0.75
0.5
0.25
0

 nmax
 (wt/we)max

(  as shown, v = 1.1, n = 1.0,
Rb = 0,  = 1000) 

np

 (= L1/L)
0.0 0.2 0.4 0.6 0.8

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(b)

Lines: Guo (2001c)

 = 1
0.75

0.5

0.25

0

 nmax
 (wt/we)max

(  as shown, v = 1.1,
n = 0, Rb = 0,  = 1000) 

np

wt/we

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.1 1.2 1.3 1.4 1.5 1.6
(c)

Lines: Guo (2001c)

 = 1
0.75

0.5
0.25

 nmax
 (wt/we)max

wt/we

(  as shown, v = 1.1, 
n = 1.0, Rb = 0,  = 1000) 

np

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.1 1.2 1.3 1.4 1.5
(d)

Lines: Guo (2001c)

0

Figure 4.17  Capacity ratio versus slip length. (a) n = 0. (b) n = 1.0; or normalized 
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With np of Equation 4.58, the pile-head displacement of Equation 4.55 may 
be rewritten as
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As with that for obtaining nmax, Equation 4.60 allows maximum values 
of the displacement ratio, (wt/we)max, to be gained through setting the first 
derivative of wt/we (with respect to μ) as zero:

Table 4.5 Maximum capacity ratio (nmax) and degree of slip (μmax)

ξ n 0.1a 0.25 0.5 0.75 1.0 1.5 2.0

0 0 < 0

1000

b

c.

< 0
2499.

< 0
4820.

< 0
6526.

< 0
7616.

< 0
8742.

< 0
9242.

0.5 .
.
752
1397

.
.
514
3176

.
.
271

5417
.

.
141

6898
.
.
075
7851

.
.
024
8857

.
.
009
9312

1.0 .
.
781

1768
.
.
578
3802

.
.
367
6053

.
.
243
7389

.
.
168
8196

.
.
091

9030
.
.
055
9408

0.25 0 .
.
868
3037

.
.
671

3842
.
.
342
5184

.
.
012
6526

< 0
7616.

< 0
8742.

< 0
9242.

0.5 .
.
870
3284

.
.
686
4373

.
.
422
5921

.
.
238
7099

.
.
131

7930
.
.
042
8872

.
.
017
9316

1.0 .
.
873
3518

.
.
698
4834

.
.

47
6488

.
.
318
7583

.
.
222
8290

.
.
121

9057
.
.
074
9419

0.5 0 .
.
912
5266

.
.
780
5666

.
.
559
6332

.
.
339
6998

.
.
119
7664

< 0
8742.

< 0
9242.

0.5 .
.
913
5393

.
.
782
5954

.
.
576
6807

.
.
394
7537

.
.
250
8128

.
.
092
8912

.
.
037
9326

1.0 .
.
913
5519

.
.
785

6217
.
.
592
7193

.
.
434
7933

.
.
317
8467

.
.
178
9111

.
.
110
9439

0.75 0 .
.
945
7588

.
.
863
7720

.
.
725
7940

.
.
588
8160

.
.
451

8380
.
.
176
8820

< 0
9242.

0.5 .
.
945
7631

.
.
863
7821

.
.
728
8123

.
.
597
8402

.
.
473

8657
.
.
264
9078

.
.
131

9348
1.0 .

.
945
7672

.
.
864
7917

.
.
731

8285
.
.
607
8601

.
.
495

8867
.
.
320
9255

.
.
210
9497

Source: Guo, W. D., Soils and Foundations, 41, 2, 2001c.
a 1 1 2πv

m/

b Numerator: μmax
c denominator: nmax; and μmax

 taken as if < 0
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Two possible values of the capacity ratio are seen in Figure 4.17c and d 
for a given pile-head displacement (wt/we). The displacement ratio, (wt/we)max, 
was thus obtained for various values of pile–soil stiffness and softening factor 
and is detailed in Table 4.6 together with the degree of slip, μw, and the capac-
ity ratio, nw, at which the displacement ratio occurs. Generally, the critical 
displacement reduces as the softening becomes more severe (ξ gets smaller).

Example 4.4 Use of equation 4.58 to calculate np

Equation 4.58 states that as L1 (Rb = 0) approaches the pile length, np 
reduces to ξ. As L1 (Rb = 0) approaches zero, Equation 4.58 reduces to 
Equation 4.52, np becomes the ratio of the limiting load (Pe) divided by 
the ultimate load (Pult), Pe/Pult. Given n = θ = 0, Equation 4.58 reduces 
to Equation 4.62 given previously by Murff (1980),
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Given L1 = 0, and replacing the stiffness, πv, with an equivalent stiff-
ness, πv

n1 2+ / , in Equation 4.62, the np for the nonhomogeneous case may 
be approximated by
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The validity of Equation 4.63 is discussed in Example 4.6.

Example 4.5 Use of equation 4.59 to estimate nmax

The nmax for various values of 1/πv, at n = 0 and 1 (Rb = 0, ξ = 0.75), was 
estimated using Equation 4.59 and is illustrated in Figure 4.18. It forms 
the envelope lines of the capacity ratio gained using Equation 4.58 for 
various degrees of slip μ. The figure indicates that the capacity ratio 
(np) generally increases at lower values of 1/πv (< 1) for “flexible” piles, 
with evolution of the slip until the np attains the nmax. Subsequently, the 
np generally decreases, especially for higher values of 1/πv (i.e., “rigid” 
piles), until np = ξ at μ = 1. The nmax attains at higher degrees of slip 
for lower values of 1/πv (“flexible” piles), but at approximately zero 
degrees of slip for high values of 1/πv (“rigid” piles). The nmax is gener-
ally lower for flexible piles.

Capacity of offshore (normally “flexible”) piles may reduce due to strain 
softening and degradation of soil strength and stiffness upon cyclic loading. 
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Table 4.6 Capacity ratio (nw), degree of slip (μw) at maximum (wt/we)max

ξ n 0.1a 0.25 0.5 0.75 1.0 1.5 2.0

0 0 8 766

825

094

.

.

.

b

c

d

3 334
698
209

.
.
.

1 797
598
333

.
.
.

1 394
556
399

.
.
.

1 232
535
434

.
.
.

1 107
517
467

.
.
.

1 061
510
481

.
.
.

0.5 8 760
833
093

.
.
.

3 330
714
204

.
.
.

1 719
625
431

.
.
.

1 350
589
502

.
.
.

1 205
571
538

.
.
.

1 094
557
569

.
.
.

1 053
551
582

.
.
.

1.0 8 211
840
172

.
.
.

3 034
728
349

.
.
.

1 655
647
506

.
.
.

1 315
615
576

.
.
.

1 183
601
610

.
.
.

1 084
588
639

.
.
.

1 048
584
651

.
.
.

0.25 0 18 028
887
303

.
.
.

4 422
773
373

.
.
.

2 000
675
455

.
.
.

1 472
631
500

.
.
.

1 273
609
525

.
.
.

1 124
590
548

.
.
.

1 071
582
557

.
.
.

0.5 15 421
888
327

.
.
.

3 948
780
423

.
.
.

1 859
691
524

.
.
.

1 404
653
574

.
.
.

1 233
635
601

.
.
.

1 106
620
624

.
.
.

1 06
613
634

.
.
.

1.0 13 650
890
350

.
.
.

3 614
786
467

.
.
.

1 758
705
579

.
.
.

1 355
672
631

.
.
.

1 204
657
657

.
.
.

1 092
644
679

.
.
.

1 052
639
688

.
.
.

0.5 0 28 270
922
526

.
.
.

5 721
837
562

.
.
.

2 256
758
604

.
.
.

1 573
720
628

.
.
.
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.
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.
.
.
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759

.
.
.
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770

.
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.

2 579
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.
.
.
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.
.
.
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.
.
.
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.
.
.
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.
.
.
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763

.
.
.

6 022
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.
.
.
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856
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.
.
.
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853
805

.
.
.
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826
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.
.
.
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818
814

.
.
.

1 081
814
816

.
.
.
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952
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.
.
.
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902
788

.
.
.
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.
.
.
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840
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.
.
.
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831
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.
.
.

1 121
824
829

.
.
.

1 068
821
831

.
.
.

continued
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140 Theory and practice of pile foundations

To avoid the reduction, the degree of slip may be controlled (Randolph 
1983). By specifying a degree of slip (μ) (via depth of softening layer), the 
design value of 1/πv (thus, pile dimensions) may be taken as that ensuing 
nmax, since further increases in rigidity via 1/πv (μ = constant) render little 
increase in the pile capacity. Under a given np, a lower degree of slip may 
be induced for a flexible pile (low 1/πv). For instance, as is evident in Figure 
4.18, given μ = 0.75 (ξ = 0.75, Rb = 0), np reaches the nmax of 0.794, and 
0.828 at values of 1/πv of ~0.5, 0.63 for n = 0, and 1, respectively. With 
1/πv increased further to 2.0, the nmax exhibits 2.2% and 3.5% increases for 
n = 0 and 1, respectively. With a lower degree of slip of μ = 0.5, the nmax 
then occurs at higher values of 1/πv ≈ 0.9 (n = 0) and 1.1 (1.0), respectively.

With Equation 4.59, the influence of the softening factor, ξ, on the maxi-
mum ratio of Pt/Pfs (nmax) was obtained for various values of relative stiffness 
πv and is shown in Figure 4.19. The figure illustrates that the capacity ratio, 
nmax, is the ratio of Pe/Pult for ξ = 0 and is less affected by the strain-softening 
factor, at high values of 1/πv (“rigid” piles). These capacity ratios of nmax occur 
at the degrees of slip, μmax shown in Figure 4.20 as also tabulated in Table 4.5.

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
nmax(n = 0)nmax(n = 1)

Guo (2001c)
 n = 0

 = 1.0

 = 0

 n = 1.0
 = 0.75, Rb = 0

np

1/ v

Figure 4.18  Development of load ratio as slip develops. (After Guo, W. D., Soils and 
Foundations 41, 2, 2001c.)

Table 4.6 (Continued) Capacity ratio (nw), degree of slip (μw) at maximum (wt/we)max

Source: Guo, W. D., Soils and Foundations, 41, 2, 2001c.
a 1 1 2πv

m/

b (wt/we)max
c μw,
d nw at (wt/we)max
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Example 4.6 μmax for n = 0

At n = 0, the μmax may be simply given by (Murff 1980)

 
µ

π
π
π ξ ξ

ξmax ln= +
+
+

− + −












1

1
2

1
2 2

1
v

b v

b v

R

R
 (4.64)
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Guo (2001c)
 n = 0

 = 0

 = 0.75

0.5

 n = 0.5
 n = 1.0

max

1/ v

Figure 4.20  μmax versus πv relationship (ξ as shown and Rb = 0). (After Guo, W. D., Soils 
and Foundations 41, 2, 2001c.)

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

Guo (2001c)

 = 0.75

 = 0

0.25

0.5
 n = 0
 n = 0.5
 n = 1.0nmax

1/ v

Figure 4.19  nmax versus πv relationship (ξ as shown and Rb = 0). (After Guo, W. D., Soils 
and Foundations 41, 2, 2001c.)
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As the value of 1/πv increases (toward rigid piles), the degree of slip, 
μmax gradually reduces to zero (when μmax < 0, μmax is taken as zero). 
Thus, Equation 4.63 compares well with Equation 4.58 for n = 0 and 
n = 1 (not shown herein, Guo 2001c).

Finally, it should be stressed that all the solutions are intended for the 
initiating of slip from ground level. In rare case, the base slip occurs prior 
to the slip from ground level, which occurs when πv < πvc (πvc = a critical 
value of πv), for which the current solutions are not applicable. As shown in 
Figure 4.21, the critical ratio πvc depends on the base limiting displacement 
web (= τfbroζ/Gb).

4.9 CAPACITY AND CYCLIC AMPLITUDE

The normalized limiting load, Pe, by the Pfs at the elastic-plastic transition 
depth, L1, is determined from Equation 4.52 as

 

P

P
C Le

fs v
m v= +1

1 2 1

θ
π /

( ) (4.65)

As mentioned previously, mobilization of pile capacity is dominated by 
pile–soil relative slip and strain-softening properties of the soil. In the cir-
cumstance where piles are in a homogenous soil with a lower softening 

1E-3 0.01 0.1 1 10
0.0

0.2

0.4

0.6

0.8
2

3
4 5 6 8 10

12

1.0
Plastic response 
occurs at base

Guo (2001c):
Values of wb/web as shown
Solid lines: n = 0
Dash lines: n = 1.0 

1/ vc

Rb/ vc

Figure 4.21  Critical stiffness for identifying initiation of plastic response at the base prior 
to that occurring at ground level. (After Guo, W. D., Soils and Foundations 
41, 2, 2001c.)
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factor (e.g., ξ < 0.5; Figure 4.17a), no slip is allowed even at the ground 
surface (Randolph 1983). In contrast, with a nonhomogeneous soil profile, 
a small, upper portion of slip (see Figure 4.17b) is beneficial to increase pile 
capacity.

Under a cyclic loading, the limiting shaft stress τf on the pile reduces 
to the residue skin friction, ξτf, at a lower limiting local shaft stress, τf

c 
(Randolph 1988a; Randolph 1988b)

 τ α τf
c

c f=  (4.66)

where αc = 0.5(1 + ξc) under one-way cyclic loading between zero and τf
c; 

αc = (1 + ξc)/(3 − ξc) under two-way (symmetric) cyclic loading between −τf
c 

and τf
c. ξc = a yield stress ratio for cyclic loading, which may be approxi-

mately taken as ξ for the monotonic loading described before (Randolph 
1988b). This limiting shaft stress, τf

c, renders a reduced limiting shaft dis-
placement we

c

 
w

r

G
we

c
c

f o

c e= =α
τ

ζ α  (4.67)

Equation 4.58 is modified to gain cyclic load amplitude nc.

 
n

L

L
C Lc

c

v
m v=







+
+

+

ξ
α θ
π

θ

1

1

1 2 1

1( )
( )

/
 (4.68)

where nc = safe cyclic load amplitude. Figure 4.22 shows the effect of the 
yield stress ratio, ξc, on the amplitude of nc. The impact of the discrepancy 
between the yield stress ratio, ξc, and the residue stress ratio, ξ (= 0.5), 
is determined as: (1) nc increases with the stress ratio, ξc, at high values of 
1/πv, as the slip never occurs for rigid piles, with L1 ≈ 0 in Equation 4.68; (2) 
given ξc = ξ, the difference in the values of nc obtained from μ = 0 and μ > 0 
(directly from Equation 4.68) is significant at low values of 1/πv, indicat-
ing shaft resistance from residue strength in the slip zone. This resistance, 
nevertheless, vanishes for piles in calcareous sediments, with a rather low ξ 
(Randolph 1988b). The effect of the residue value of ξ on the capacity ratio, 
nmax, may also be determined from Figure 4.23, apart from Figure 4.19.

Example 4.7 Capacity and cyclic amplitude

A typical offshore pile is studied here to gain capacity and cyclic ampli-
tude. The pile had L = 100 m, d = 1.5 m, wall thickness = 50 mm, and 
Young’s modulus Ep = 7.037 × 108 kPa. It was installed in a soil with 
Av = 150 kPa/m, ξ = 0.5, and we = 0.01d. The predicted capacity of the 
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Figure 4.22  Effect of yield stress level (ξc) on the safe cyclic amplitude (nc) (ξ = 0.5, n = 0, 
Rb = 0, one-way cyclic loading). (After Guo, W. D., Soils and Foundations 41, 
2, 2001c.)
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Figure 4.23  Effect of strain-softening factor on ultimate capacity ratio (nmax) (Rb = 0). 
(After Guo, W. D., Soils and Foundations 41, 2, 2001c.)
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pile is provided in Tables 4.7 and 4.8 for three typical soil profiles. As 
the factor n increases, maintaining ultimate pile capacity, Pfs, as 70.69 
MN would reduce the ratio nmax by only ~4.5% (see Table 4.7), but 
reduce the limiting load, Pe at ground level by ~37%. Maintaining a 
constant stiffness of 0.3194 would increase the ratio nmax by ~11.3% 
(see Table 4.8), reduce the limiting load Pe by ~51%, and alter slightly 
the ratio Pe/Pfs.

The capacity of 41.35 MN (at n = 0) obtained here is lower than 52 
MN based on a gradually softening soil model (Randolph 1983). The 
limiting load, Pe (for initiating slip at ground level, L1 = 0), at n = 1 is 
about half of that at n = 0. As degradation of pile capacity under cyclic 
loading is less severe at n = 1 than at n = 0 (Poulos 1981). It appears 
appropriate to allow a limiting load for the case of n > 0 not less than 
that for n = 0. A slip degree μ of 0.1556 and 0.255 for n = 0.5 and 1, 
respectively, may be allowed to reach a value of Pe/Pfs = 0.3183 for 
n = 0. In the case of two-way cyclic loading (αc = 1/3) and ξc = 0, the 
safe cyclic load amplitude nc is estimated as 4.13 MN.

Table 4.7 Analysis of an offshore pile in strain-softening soil

n 1/πv
m1 2/

Pe/Pfs
* 

(MN) 
(Pfs = 

constant)

At nmax State At (wt/we)max State

nmax

maxµ
( )

max

w w

P
t e/

nw wµ
(wt/we)

max

0 0.3194 22 48
70 69

.

.
.
.
5851
719

3 856
41 35
.
.

.
.
5757
809

3.961

0.5 0.2608 16 97
70 69

.
.

.
.
5993
773

4 512
42 17
.
.

.
.
5917
835

4.594

1.0 0.2259 14 14
70 69

.
.

.
.
6111
805

4 968
42 35
.
.

.
.
6045
853

5.037

Source: Guo, W. D., Soils and Foundations, 41, 2, 2001c.

Table 4.8 Analysis of an offshore pile in strain-softening soil

n
1/πv

m1 2/  
(= constant)

Pe/Pfs 
(MN)

At nmax state At (wt/we)max state

nmax

maxµ
( / )

max

w w

P
t e

nw wµ (wt/we)max

0 0.3194 22 48
70 69

.

.
.
.
5851
719

3 856
41 35
.
.

.
.
5757
809

3.961

0.5 14 30
47 12

.
.

.
.
6202
724

3 351
29 22
.
.

.
.
6073
813

3.447

1.0 10 92
35 34

.
.

.
.
6512
729

3 01
23 02

.
.

.
.
6355
817

3.099

Source: Guo, W. D., Soils and Foundations, 41, 2, 2001c.
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Chapter 5

Time-dependent response 
of vertically loaded piles

Two types of time-dependent response of vertically loaded piles are pre-
sented in this chapter, owing to (a) visco-elastic load transfer behavior, 
and (b) the variations of limiting shaft friction and soil stiffness with 
reconsolidation.

5.1 VISCO-ELASTIC LOAD TRANSFER BEHAVIOR

Piles are installed largely to reduce settlement of a building or a structure. 
Two kinds of settlement-based design methodologies (Randolph 1994) are 
creep piling and optimizing pile-raft analysis. The creep piling approach 
(Hanbo and Källström 1983) allows each pile to operate at a working load 
of about 70–80% of its ultimate bearing capacity. The optimising pile-raft 
analysis (Clancy and Randolph 1993) is proposed to control the differential 
settlement of a foundation by reducing the number of piles and concentrat-
ing piles in the middle of a foundation. Either methodology will generally 
lead to piles operating at a high load level at which creep can induce signifi-
cant pile-head movement at constant load, and even a gradual reduction in 
shaft capacity.

Creep or viscoelastic response of the soil leads to variations in stiffness 
and capacity depending on the time-scale of loading. The loading history 
may be a major concern for predicting settlement of a pile foundation when 
using different time-scale loading tests, including maintained loading tests 
and constant rate loading tests. The tests may be simulated sufficiently 
accurately by one-step loading and ramp (linear increase followed by sus-
tained) loading, respectively.

Numerical solutions for axial pile response, based on elasticity, have 
incorporated the impact of nonhomogeneity of the soil (Banerjee and 
Davies 1977; Poulos 1979), relative slip between pile and soil (Poulos and 
Davis 1980), and visco-elastic response of soil (Booker and Poulos 1976). 
However, the analysis can be more efficiently conducted using the unified 
compact closed-form solutions in the context of the load transfer approach 
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(see Chapter 4, this book) with the visco-elastic solutions to be presented 
in this chapter.

The hyperbolic approach of pile analysis (Fleming 1992) was extended 
(England 1992) to cater to time-dependent pile response, with separate 
hyperbolic laws being used to describe the time dependency of the (average) 
shaft and base response. This phenomenological approach is limited by the 
difficulty in linking the parameters required for the model to fundamental 
and measurable properties of the soil.

Visco-elastic shaft and base load transfer models have been presented 
in Chapter 3, this book, for the step and ramp type loading respectively. 
With the models, the closed-form solutions for a pile in an elastic-plastic 
nonhomogeneous media (Guo and Randolph 1997a) are extended herein 
to account for visco-elastic response. The visco-elastic solutions are subse-
quently compared with the numerical analysis (Booker and Poulos 1976) 

for the case of one-step loading. They are used to examine the overall pile 
response for the two commonly encountered loading types. Finally, two 
example analyses are compared with measured pile responses to illustrate 
the validity of the proposed theory to practical applications. 

5.1.1 Model and solutions

5.1.1.1 Time-dependent load transfer model

Local shaft displacement for visco-elastic soil is described in Chapter 3, 
this book, where it shows

 w
r

G
o o

c=
τ

ζ ζ
1

1  (5.1)

where

 ζ
ζ
ζc

G

G
A t= +1 2

1
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If the total loading time t exceeds tc, A(t) is given by
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Otherwise, if t ≤ tc, it follows that
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( ) exp= − − −












1 1  (5.4)
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where tc = the time at which a constant load commences. If tc = 0, Equation 
5.3 is reduced to one-step loading (Figure 3.13b, Chapter 3, this book), 
which can be simply described by

 A(t) = 1 − exp(−t/T) (5.5)

For this case, the creep function J(t) (Booker and Poulos 1976) is inferred as

 J t A B ec c
t T( ) = + −  (5.6)

where A G Gc = +1 1 2 2 1ζ ζ , B Gc = −ζ ζ2 2 1, and

 w r J to o= τ ζ1 ( ) (5.7)

The base load-settlement relationship is given by

 w
P

r G

A t G G

R P Pb
b s

o b

b b

fb b fb

=
− +

−
( ) ( )

( )

1

4

1

11

1 2
2

ν ω
 (5.8)

5.1.1.2 Closed-form solutions

Closed-form solutions are presented in Chapter 4, this book, for a pile 
in an elastic-plastic nonhomogeneous soil. Under the circumstance of 
a constant of ζc with depth, these solutions can be readily extended to 
account for visco-elastic response of soil by simply replacing the non-
linear elastic load transfer, ζ1, with the new load transfer factor, ζcζ1, 
and replacing the base shear modulus, Gb, with the time-dependent Gb(t) 
(Equation 3.39, Chapter 3, this book). This is highlighted next for load 
ratio, settlement influence factor, and pile-head load displacement. The 
load ratio of pile base and head (see Equation 4.16, Chapter 4, this book) 
can be predicted by
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 (5.9)

where zt = depth for pile-head, taken as an infinitesimal value; and Pt = 
pile-head load.
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The modified Bessel functions Im(y), Im-1(y), Km-1(y), and Km(y) are written 
as Im, Im-1, Km-1, and Km at z = L; m = 1/(2 + n). The ratio χv becomes

 χ
π ν ωξ

ζ ζ
λv

s b

c=
−
2 2

1
1

( )
 (5.11)

where λ = Ep/GL. The variable y and the stiffness factor, ks, are given, 
respectively, by

 y mk zs
m= 2 1 2/   (5.12)

and
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The settlement influence factor, I, is recast as
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As the pile-head load increases, the shaft shear stress will reach the limiting 
shaft stress, τf

 τ θ
f vA z=  (5.16)

where Av, θ = a gradient, and a constant for limit shear stress distribution 
(θ = n), respectively. This τf is attained at a local limiting displacement, we, of

 w r A Ae o c v g= ζ ζ1  (5.17)

In light of Equations 4.23 and 4.24 for αg = αv = 0 (see Chapter 4, this 
book), pile-head load, Pt, and settlement, wt, can be expressed as the slip 
degree, µ = L L1  (L1 = slip length) by

 P w k E A L C L dA
L

t e s p p
n

v v= +
+

+
/ ( )
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1

1
µ π µ
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 (5.18)
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 (5.19)

These solutions are referred to as “Guo (2000b)” or “closed-form solu-
tions” in the subsequent figures. Under high stress levels and/or at a higher 
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slenderness ratio, ζc is no longer a constant, which invalidates Equations 
5.18 and 5.19. This case may be simulated using numerical analysis (e.g., 
the GASPILE program) (Guo and Randolph 1997b).

5.1.1.3 Validation

Booker and Poulos (1976), through incorporating a linear visco-elastic 
model into Mindlin’s solution, showed the impact of the following three 
variables on the settlement influence factor and the ratio of base and head 
loads: the pile–soil relative stiffness, λ; the ratio of long-term and short-
term soil response, J(∞)/J(o) (Chapter 3, this book); and the nondimensional 
time, t/T. The numerical analysis is sufficiently rigorous, despite neglecting 
the effect of viscosity on the Poisson’s ratio. It agrees with the closed-form 
prediction (Guo 2000) concerning the settlement influence factor for two 
different relative stiffnesses at a ratio of J(∞)/J(o) = 2, see Figure 5.1a; and 
regarding the ratio of base and head load predicted by Equation 5.9, both 
with and without the base creep (see Figure 5.1b). The base creep signifi-
cantly affects the load ratio, although with limited impact on the settle-
ment influence factor as shown in Figure 5.2. At a higher ratio of J(∞)/J(o), 
such as 10 (i.e., G1/G2 = 9), the difference is evident between the predicted 
I by Equation 5.14 and the numerical solution (Booker and Poulos 1976) 
(Figure 5.2). This is fortunately not a concern, as the ratio of G1/G2 is nor-
mally lower (Lo 1961) and generally less than 5 as backfigured from a few 
different field tests.
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Figure 5.1  Comparison of the numerical and closed form approaches. (a) The settlement 
influence factor. (b) The ratio of pile head and base load. (After Guo, W. D., 
Int J Numer and Anal Meth in Geomech 24, 2, 2000b.)
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Figure 5.3 shows the predicted pile-head load and settlement curves 
using Equations 5.18 and 5.19, respectively. They are consistent with the 
numerical prediction by GASPILE (Guo and Randolph 1997b) (see Chapter 
3, this book).

5.1.2 Effect of loading rate on pile response

The impacts of one-step and ramp loading on the settlement influence fac-
tor was obtained using the closed-form solution, Equation 5.14, and are 
shown in Figure 5.4a and b, respectively. They demonstrate that step load-
ing is associated with a larger settlement. Increasing the time tc (hence 
reducing the loading rate) can reduce secondary pile settlement to a large 
extent. Likewise, step loading induces a slightly higher proportion of base 
load over the head load (as per Equation 5.9), in comparison with that for 
the ramp loading, as is evident in Figure 5.5a and b.

5.1.3 Applications

Two kinds of time-dependent loading tests on piles are frequently con-
ducted in practice:

 1. A series of loading tests are performed at different time intervals fol-
lowing installation of a pile. For each step of the loading tests, a suf-
ficient time is given.
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Figure 5.2  Comparison of the settlement influence factor. (After Guo, W. D., Int J Numer 
and Anal Meth in Geomech 24, 2, 2000b.)
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 2. Only one loading test is performed after full reconsolidation of the 
destructed soil around the pile. Each step of loading is maintained at 
a specified interval of time.

The first kind of test may capture the recovery of the soil strength 
(modulus) with reconsolidation (see examples in section 5.2, Visco-Elastic 
Consolidation). The second kind of test reflects purely the pile response due 
to time-dependent loading and may be simulated by either the closed-form 
solutions of Equations 5.18 or 5.19 or the numeric GASPILE program. 
Normally, if the test time for each step loading is less than that required for 
a 90% degree of consolidation t90 of the soil, the soil surrounding the pile 
may behave elastically, otherwise the extra deformation mainly originates 
from visco-elastic response. Unfortunately, the current criterion for stop-
ping each step of loading uses settlement rate (e.g., Maintained Loading 
Test) rather than degree of consolidation t90. This criterion is not helpful to 
classify the consolidation and creep settlements.

Example 5.1 Tests reported by Konrad and Roy

Konrad and Roy (1987) reported the results of an instrumented pile 
loaded to failure at intervals after driving. The closed-ended steel pipe 
pile was 0.219 m in outside radius, 8.0 mm in wall thickness, with 
a Young’s modulus of 2.07 × 10

5
 MPa and a cross-sectional area of 

53.03 cm
2 (an equivalent pile modulus of 29,663 MPa). The pile was 

jacked vertically to a depth of 7.6 m. The test site consists of topsoil 
(0.4 m in thickness); weathered clay crust (1.2 m); soft silty, marine 
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Figure 5.5  Loading time tc/T versus ratio of Pb/Pt. (a) Comparison among three different 
loading cases. (b) Influence of relative tc/T. (After Guo, W. D., Int J Numer and 
Anal Meth in Geomech 24, 2, 2000b.)
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clay (8.2 m); very soft clayey silt (4.0 m); and a deep layer of dense sand 
extending from a depth z of 13.7 m to more than 25 m. The undrained 
shear strength, su, increased approximately nearly linearly from 18 kPa 
(at z = 1.8 m) to 28 kPa (at z = 9 m). The pile was loaded to failure in 
10 to 15 increments of 6.67 kN. Each increment was maintained for 
a period of 15 min. The immediate elastic response (t = 0) measured 
at different days is plotted in Figure 5.6a, and the total settlement in 
Figure 5.6b. Assuming a soil shear modulus of 260 su, and G/τf = 270 
(see Table 5.1), the load-settlement relationship was predicted using 
GASPILE and the closed-form solutions as shown in Figure 5.6a and 
b. Figure 5.6a indicates, at a load level higher than about 70%, a non-
linear relationship between the initial load and settlement prevails 
with increasing curvature as failure approaches. This nonlinearity 
principally reflects the effect of the base nonlinearity, since by simply 
using a nonlinear base model (Rfb = 0.95 in Equation 5.8), an excellent 
prediction using GASPILE is achieved. Time-dependent creep settle-
ments for the test at 33 days after completion of the driving were pre-
dicted by the visco-elastic analysis, with G1/G2 = 2. As shown in Figure 
5.6b, the current closed-form solutions agree with those measured at a 
number of time intervals, 0, 15, and 90 minutes to a load of ~40 kN. 
Nevertheless, at higher load levels, the factor ζ2 is no longer a constant 
as adopted in the prediction, or else the effect of the base nonlinearity 
become evident. Both factors render the divergence between the closed 
form solution and measured data.
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(Konrad and Roy 1987). (After Guo, W. D., Int J Numer and Anal Meth in 
Geomech 24, 2, 2000b.)
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Example 5.2: Visco-elastic behavior under compressive loading

Bergdahl and Hult (1981) conducted tests on two driven wooden 
piles in a site (mainly of postglacial organic clay) about 20 km west 
of Stockholm. The undrained shear strength increased almost linearly 
from 9 kPa at a depth z of 4~5 m to 25 kPa at z = 14 m. The square 
piles B1 and B2 were 100 mm on each side and 15 m in length. The 
creep behavior was monitored by maintained load tests, with the load 
increased every 15 minutes in steps of 1/16 of the estimated bearing 
capacity of the pile. The measured values of load-settlement and load-
creep settlement are plotted in Figure 5.7a and c, respectively. The two 
piles gave consistent results, therefore only pile B1 is analysed herein. 
The analysis adopts a Young’s modulus of the piles of 10

4
 MPa, and 

these parameters tabulated in Table 5.1. In particular, an equivalent 
shear modulus distribution of �G = 755.6 kPa, n = 0.75 is employed 
in the closed-form predictions. The nonlinear elastic-plastic predic-
tions (using ψoj = 0.5 in estimating ζi) of load-settlements by numeric 
GASPILE program and the closed-form solutions (Chapter  4, this 
book) are compared with the measured data in Figure 5.7a. Nonlinear 
visco-elastic (NLVE) and nonlinear elastic (NLE) predictions were 
made, respectively, using ψoj = 0.5 in estimating the factor ζj, and 
ψoj = 0 in estimating ζ1 (see Equation 3.10, Chapter 3, this book). Their 
difference is the creep displacement, which is shown in Figure 5.7c, 
together with the measured creep displacement. The corresponding 
load distribution down the pile is illustrated in Figure 5.7b. In this 
instance, the secondary deformation due to the viscosity of the soil 
is sufficiently accurately predicted by a visco-elastic analysis over a 
loading level of 75~85% of the ultimate bearing capacity (determined 
by constant rate of penetration [CRP]test). Afterwards, considerable 
creep occurs as shown in the tests, which implies failure of spring 2 
(Figure 3.13a, Chapter 3, this book), and may be accounted for by tak-
ing τf2/τf1 = 0.75~0.85.

5.1.4 Summary

The shaft and base pile–soil interaction models capture well the nonlinear 
visco-elastic soil behavior at any stress levels. Capitalized on the models, the 
closed-form solutions or the GASPILE program well model the overall pile 
response under one-step and ramp-type loading. Numerical analysis (e.g., 

Table 5.1 Parameters for creep analysis

Examples G1/su G1/τf1 ζ1 ζc G1/G2 Note

5.1 260 270 4.60 1./1.13/1.666
for 0/15/90 minutes

___ ω = 1.0,
ξb = 1.0,
νs = 0.45.2 47.5 80 6.27 1.025 0.025

Source: Guo, W. D., Int J Numer and Anal Meth in Geomech, 24, 2, 2000b.

Note: τf2/τf1 was taken as unity; ψoj was taken as 0.5.
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GASPILE analysis) is sufficiently accurate to predict creep behavior, while 
the closed-form solutions are generally valid to normal working loads of 
~70% of ultimate load level by adopting a constant load transfer factor, 
ζc. Input values of the shear modulus, and failure shear stress with depth, 
might be simply obtained from empirical formulas or, more accurately, by 
field tests. A suitable control of the ramp type loading can avoid excessive 
secondary settlement.

The solutions hitherto are limited to invariable values of limiting stress 
(τf) and shear modulus G. To allow for the variation of load-displacement 
response  owing to reconsolidation, the variations of τf and G are 
modeled next.

5.2 VISCO-ELASTIC CONSOLIDATION

Driving a pile into ground generally will remold the surrounding soil. This 
will alter the pile capacity (see Chapter 2, this book). In particular, some 
loss in the strength and an increase in pore water pressure are observed in 
the adjacent clay around the pile. Subsequent to driving, a gradual increase 
in the bearing capacity of the pile in clay is seen (Seed and Reese 1955), 
with increase in strength (e.g., su) with time, until a final soil strength equal 
to or greater than the initial value (Orrje and Broms 1967; Flaate 1972; 
Fellenius and Samson 1976; Bozozuk et al. 1978).

The maximum pore pressure occurs immediately following driving. 
Koizumi and Ito (1967) and Flaate (1972) demonstrate that the pressure 
may approximately equal or exceed the total overburden pressure in over-
consolidated soil. It decreases rapidly with distance from the pile wall and 
becomes negligible at a distance of 5 to 10 pile diameters. This distribution 
is well simulated using the (one-dimensional) cylindrical cavity expansion 
analogy (Randolph and Wroth 1979a) and the strain path method (Baligh 
1985). The former analogy with sufficient accuracy against the latter has 
been extended to visco-elastic soil (Guo 2000c).

Soderberg (1962) and Randolph and Wroth (1979a), in light of a radial 
consolidation theory, show the consistency between the rates of develop-
ment of pile capacity in soft clay and pore-pressure dissipation. The predic-
tion of time-dependent capacity for an impervious pile may thus be scaled 
from dissipation of the excess pore pressures. The dissipation also causes a 
gradual raise in the stiffness of the surrounding soil (Eide et al. 1961; Flaate 
1972; Flaate and Selnes 1977; Bergdahl and Hult 1981; Trenter and Burt 
1981). This raise needs to be incorporated to design settlement reduction 
piles (Olson 1990; Fleming 1992; Randolph 1994), apart from the time-
dependent bearing capacity following pile installation.

Consolidation problems have generally been modeled using diffusion 
theory (Terzaghi 1943; Rendulic 1936) and elastic theory (Biot 1941). The 
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diffusion theory is generally less rigorous than the elastic theory, as it stipu-
lates a constant of mean total stress and may result in a different value of 
coefficient of consolidation from rigorous elastic theory (Murray 1978). 
However, the diffusion theory is mathematically much simpler to apply and 
is readily extended to cater to the impact of soil visco-elasticity and soil 
shear modulus nonhomogeneity. A coefficient from elastic theory may be 
used to replace that in the diffusion theory, allowing the diffusion solution 
to be converted into a rigorous solution.

The behavior of a driven pile is characterized by generation of the pore 
water pressure during installation of a pile, resembling the cylindrical 
cavity expansion and the radial reconsolidation subsequent to pile instal-
lation (Randolph and Wroth 1979a). This behavior has been well mod-
eled by elastic theory (Randolph and Wroth 1979a). However, as noted 
earlier, the viscosity effect may become appreciable on load-settlement 
response. This is incorporated into elastic solutions via establishing (Guo 
2000b): (1) a volumetric strain and excess pore water pressure relation-
ship; (2) a governing equation for radial reconsolidation of a visco-elastic 
medium, for which general solution is established; and (3) solutions for 
radial consolidation for a given logarithmic variation of initial pore pres-
sure. The visco-elastic solutions are elaborated next, together with three 
examples.

5.2.1 Governing equation for reconsolidations

The model on effect of driving a pile into clay using expansion theory is 
underpinned by plain strain expansion of a long cylindrical cavity under 
undrained conditions in an ideal elastic, perfectly plastic material, charac-
terized by the shear moduli and the undrained shear strength. The plane 
strain expansion is verified experimentally for the middle portion of the 
pile (Clark and Meyerhof 1972). The soil properties and the stress state 
immediately following pile driving have been simplified and illustrated in 
Figure 3.17 (Chapter 3, this book), which offer the initial stress and bound-
ary conditions for the reconsolidation investigated herein.

5.2.1.1 Visco-elastic stress-strain model

Reconsolidation of a visco-elastic soil is simulated using the model illus-
trated in Figure 3.17b (also called Mechant’s model). Under a prolonged 
constant loading, the model offers a creep compliance, F(t), of (Booker and 
Small 1977)

 F t
G

m t T( ) { [ exp( / )]}= + − −1
1 1

1
2 2

γ

 (5.20)
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where m G G2 1 2= γ γ ; 1 2 2 2/T G= γ γη ; ηγ2 = the shear viscosity at visco ele-
ment 2; Gγ j = an average shear modulus, at the outset of the reconsoli-
dation, for each of the elastic spring, j for the concerned domain. More 
generally, in the model shown in Figure 3.17, a Voigt element may be added 
to simulate some special soil behavior (Lo 1961; Guo 1997). It must stress 
that prior to the reconsolidation (i.e., just after installation of a pile), the 
soil parameters should correspond to large deformation (strain γj) level, as 
indicated by the subscript “γj” for spring j; during the process of recon-
solidation, the modulus, Gγj, and shear viscosity, ηγ2, remain constants; 
and subsequent to completion of the reconsolidation, the soil parameters 
for modeling pile loading test should account for the effect of the time- 
dependent stress-strain relationship as discussed previously.

The magnitude of the relaxation time, T2, is provided in Table 5.2, as col-
lected from relevant publications (Ramalho Ortigão and Randolph 1983; 
Edil and Mochtar 1988; Qian et al. 1992). Lo (1961), through model tests, 
showed that the rate factor, Gγ2/ηγ2, is generally a constant for a given type 
of clay; the compressibility index ratio, Gγ1/Gγ2, generally lies between 0.05 
and 0.2 (depending on water content), except for a soil of loose structure; 
and the individual values of Gγ1, Gγ2, and ηγ2 vary with load (stress) level. 
Clark and Meyerhof (1972) conducted field tests and showed that during 
a loading test, the change in pore water pressure along the shaft of a pile 
is insignificant and the magnitudes of the total and effective radial stress 
surrounding a pile are primarily related to the stress changes brought about 
during the pile driving and subsequent consolidation. Their variations dur-
ing loading tests are insignificant relative to the initial values. The ratio of 
Gγ1/τf1 may be stipulated as a constant during a loading test and be deduced 
by matching the measured load-settlement curve with the theoretical solu-
tion (see Chapter 4, this book). Soil stress-strain nonlinearity has only a 
limited effect on such a back-analysis (Guo 1997), as further demonstrated 
in later examples.

5.2.1.2 Volumetric stress-strain relation of soil skeleton

The volumetric effective stress-strain relationship for an elastic medium is 
obtained using the plane strain version of Hooke’s law as

Table 5.2 Summary of relaxation factors for creep analysis

Authors Lo (1961) Lo (1961) Qian et al. (1992)
Ramalho Ortigão and 
Randolph (1983)

Gγ2/ηγ2
(× 10−5s−1)

0.2~0.4 0.5~2.67 1.71~3.29 0.36~0.664

Description Odometer 
test

Creep test on 
model piles

Vacuum 
preloading

Field pile test

Source: Guo, W. D., Computers and Geotechnics, 26, 2, 2000c.
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where ξ = outward radial displacement of the soil around a pile; r = distance 
away from the pile axis; νs = Poisson’s ratio of the soil; εr, εθ, εz = strains 
in the radial, circumferential, and depth directions, respectively; and G = 
elastic soil shear modulus; δσ′r, δσθ′, δσ′z = increments of the effective stresses 
during consolidation in the radial, circumferential, and depth directions, 
with δσ ν δσ δσθ′ = ′ + ′z s r( ). Combining Equation 5.21 and the effective stress 
principle, the volumetric effective stress-strain relationship for plain strain 
cases may be written as

 ε
ν

δθv
s

oG
u u=

−
− −

1 2
[ ( )] (5.22)

where εv = volumetric strain; δθ δσ δσθ= +0 5. ( )r , total mean stress change; 
u = excess pore pressure; and uo = initial value following driving (Randolph 
and Wroth 1979a). Radial equilibrium leads to
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As with that by McKinley (1998), Equations 5.21 and 5.23 offer

 δσ δσ
νθ′ + ′ = −

+
−r

s
ou u

1
1

( ) (5.24)

Equation 5.24 is valid to a domain with a sufficiently faraway outer bound-
ary (i.e., r > r*). Beyond the critical radius r*, the pore pressure, u, and the 
stresses, δσ′r, δσθ′, δσ′z, are all zero at any time. Thus, the total mean stress 
change may be expressed as

 δθ
ν
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=
−
−

−
1 2

2 1
s

s
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( )
( ) (5.25)

and Equation 5.22 may be rewritten as

 ε
ν
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s
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u u= −
−
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−
1 2

2 1( )
( ) (5.26)
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Equation 5.26 is derived for an elastic medium. It is transformed into 
Equation 5.27 for visco-elastic media by using the correspondence prin-
ciple (Mase 1970) and applying the inverse Laplace transform (Guo 
2000c):
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At t = 0, εv is equal to 0. The Poisson’s ratio was regarded as a constant 
in this derivation, as is adopted in numerical analysis (Booker and Poulos 
1976). Equation 5.27 renders the changing rate of volumetric strain as
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Equation 5.28 satisfies both radial equilibrium and Hooke’s law.

5.2.1.3  Flow of pore water and continuity 
of volume strain rate

The volumetric strain rate is deduced next by considering the flow of pore 
water and continuity of volume. The pore water velocity is related to the 
pressure gradient by Darcy’s law. The rate of volumetric strain for con-
tinuity is related to the flow of pore water into and out of any region by 
(Randolph and Wroth 1979a)
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where k = permeability of the soil and γw = unit weight of water. Equations 
5.28 and 5.29 are combined to yield
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where cv = coefficient of soil consolidation under plain strain condition 
(Randolph and Wroth 1979a), given by

 c
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γ
ν
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1 2 1

1 2

( )
 (5.31)

The subscript “γ1” in Gγ1 will be dropped subsequently, for convenience. 
Equation 5.30 is the governing equation for radial consolidation. For an 
elastic soil, Equation 5.20 offers dF t d t( ) ( )− − =τ τ 0, which in turn allows 
Equation 5.30 to reduce to elastic case as
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5.2.1.4 Comments and diffusion equation

Equation 5.25 indicates the dependenence of total mean stress, δθ, on 
the pore pressure, u, during the process of consolidation, as is noted in 
other kinds of consolidation (Mandel 1957; Cryer 1963; Murray 1978). 
Generally speaking, it is difficult to gain a similar expression to Equation 
5.25 to correlate δθ with u. Instead, the δθ is taken as a constant or zero 
(Rendulic 1936; Terzaghi 1943; Murray 1978). With δθ = 0, a new similar 
equation to Equation 5.30 was derived that yields a different coefficient, cv 
(Guo 1997). It naturally does not warrant radial equilibrium and is a dif-
fusion equation (Murray 1978). The diffusion equation is readily resolved 
and compares well with a corresponding rigorous solution with a proper cv 
(Christian and Boehmer 1972; Davis and Poulos 1972; Murray 1978). In 
fact, a few popular theories are underpinned by this assumption (Murray 
1978), including the sand drain problem (Barron 1948).

5.2.1.5 Boundary conditions

Randolph and Wroth (1979a) elaborated the boundary conditions for 
radial consolidation of an elastic medium around a rigid, impermeable pile. 
These conditions as described below are generally valid for the visco-elastic 
medium as well:

 u u r t r r
t o o=

= = ≥
0

0( )( , ) (5.33a)

 
∂
∂
u
r

r ro=

= 0 (t≥0) (5.33b)

 u
r r≥

=* 0 (t≥0) (5.33c)

 u = 0 as t r ro→ ∞ ≥( ) (5.33d)

where ro = the pile radius (r* is defined in the note for Equation 5.24). 
Initially, u = 0 for r ≥ R (R is the width of the plastic zone). However, dur-
ing consolidation, outward flow of pore water will give rise to excess pore 
pressures in the region r > R, and generally it is necessary to take r* as 5 
to 10 times R.

5.2.2 General solution to the governing equation

Equation 5.30 is resolved by separating the variables for time-dependent 
and independent parts through

 u = wT(t) (5.34)
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With a separation constant of λn
2, Equation 5.30 is transformed into
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where

 α λ2 2
n v nc=  (5.37)

The parameter, λn, is one of the infinite roots satisfying Equation 5.35, 
which is governed by Bessel functions through

 w r A J r B Y rn n o n n o n( ) ( ) ( )= +λ λ  (5.38)

where An = constants determined using boundary conditions; Jo, Yo, J1, and 
Y1 = Bessel functions of zero order and first order; and Ji, Yi = Bessel func-
tions of the first and second kinds, respectively.

Cylinder functions, Vi(λnro), of i-th order are expressed as (McLachlan 
1955)
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The boundary condition of Equation 5.33b renders B A J r Y rn n n o n o= − 1 1( ) ( ).λ λ  
Equations 5.38 and 5.33b are simplified, respectively, as

 w r A V rn n o n( ) ( )= λ  (5.40)
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Also, Equation 5.33c of u = 0 for r ≥ r* provides
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Equations 5.41 and 5.42 define the cylinder functions. There are an infinite 
number of roots of λn satisfying these equations.

The time-dependent solution for the standard linear visco-elastic model 
(Figure 3.17, Chapter 3, this book) is

 T t
n n t n

n
c c( )

( ( ) )exp( ( ) ) ( ( ) )exp( (
=

− − − − −ω α ω ω α ω1 1 2 2 nn t

n n

) )

( ) ( )ω ω1 2−
 (5.43)
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where
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and

 αc m T= +( ) /1 2 2 (5.46)

This time factor, Tn(t), is essentially identical to the previous one (Christie 
1964) using a similar model for one-dimensional consolidation. For the 
elastic case of αc = 0, and m2 = 0, Equations 5.44 and 5.45 reduce to ω1(n) = 
αn

2 and ω2(n) = 0, respectively; and Equation 5.43 reduces to

 T t en
tn( ) = −α2

 (5.47)

The full expression for pore pressure, u, will be a summation of all the 
possible solutions

 u A V r T tn o n
n

n=
=

∞

∑ ( ) ( )λ
1

 (5.48)

Normally use of the first 50 roots of the Bessel functions offers a suffi-
ciently accurate value of u. With Equations 5.33a and 5.48, it follows

 A u r V r r dr V r r drn o o n
r

r

o n
r

r

o o

= ∫ ∫( ) ( ) ( )
* *

λ λ2  (5.49)

These visco-elastic solutions may be readily obtained, in terms of the elastic 
solutions, by the correspondence principle (Guo 1997).

5.2.3 Consolidation for logarithmic variation of uo

For a cavity expansion from zero radius to a radius of ro (pile radius), the 
initial stress state for radial consolidation of a visco-elastic medium around 
a rigid, impermeable pile is taken as that of an elastic medium (Guo 2000c), 
which, as reported previously (Randolph and Wroth 1979a), is adopted 
herein along with Gγ1 at a suitable strain level.

 (1) During the cavity expansion from zero radius to a radius of ro (pile 
radius), the stress change, δθ, within the plastic zone (ro ≤ r ≤ R) 
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follows Equation 5.50. Note R = the radius, beyond which the excess 
pore pressure is initially zero (see Figure 3.17, Chapter 3, this book)

 δθ γ= −s G s r ru u o[ln( / ) ln( / )]1 2  (5.50)

  where su = the undrained shear strength of the soil. The width of the 
plastic zone is given by

 R r G so u= ( / )γ1
1 2 (5.51)

 (2) Under undrained conditions and an invariable mean effective stress, 
the initial excess pore pressure distribution away from pile wall varies 
according to

 u r s R ro u( ) ln( / )= 2  r r R

R r r
o ≤ ≤

< < * (5.52)

The initial pore pressure distribution of Equation 5.52 allows the coef-
ficients, An, to be simplified as
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s V r V R

r V r r Vn
u

n

o n o o n

n o o n

=
−
−

4
2 2

1
2 2 2λ
λ λ
λ λ
( ) ( )

( ) (* * rro)
 (5.53)

These values of An permits the pore pressure to be estimated using Equation 
5.48. The estimations were readily conducted using a spreadsheet program 
operating in Microsoft ExcelTM.

The rate of consolidation may be quantified by the nondimensional time 
factor, T (Soderberg 1962),

 T c t rv o= / 2 (5.54)

The visco-elastic effect may be represented by the factor, N (Christie 1964),

 
N

r

T G k
w= 0

2

2 1

γ

γ  (5.55)

A parametric study was undertaken using Equation 5.48. In Figure 5.8, 
the predicted dissipation of pore water pressure is presented as (uo − u)/uo 
(uo, u is the pore pressure on the pile–soil interface). Figure 5.8a illustrates 
the effect of viscosity, η, by the factor N on the dissipation process. The 
“extreme” curves for N = 0 and ∞ all behave as Terzaghi’s consolidation, 
except for the time factor being as a multiplier of the factor, T (Christie 
1964). As the factor N increases, the effect on the dissipation process will 
start earlier. Figure 5.8b shows the slowdown in dissipation of pore pres-
sure at a later stage of the process, owing to Gγ2 < Gγ1 (i.e., secondary shear 
modulus, Gγ2, is lower than the primary modulus).

uo = 0
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Figure 5.8  Influence of creep parameters on the excess pore pressure. (a) Various val-
ues of N. (b) Typical ratios of Gγ1/Gγ2. (After Guo, W. D., Computers and 
Geotechnics 26, 2, 2000c.)
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The time factor T at 50% and 90% degree (of consolidation) for the dis-
sipation of pore pressure, (uo − u)/uo, is denoted as T50 and T90. This degree 
of consolidation using pore pressure dissipation is not equal to that based 
on settlement (Christie 1964; Booker and Small 1977) for a visco-elastic 
medium. Figure 5.9 shows a set of plots of the factor, T50 and T90, at differ-
ent values of uo(ro)/su and Gγ1/Gγ2 (uo[ro] = initial pore pressure on pile–soil 
interface immediately following pile installation). Increase in the ratio of 

Gγ1/Gγ2, (i.e., including the secondary consolidation) would render higher 
values of T50 and T90, thus longer consolidation times and higher displace-
ments compared to elastic analysis (Gγ1/Gγ2 = 0). Figures 5.8 and 5.9 are 
applicable for both cases of constant total stress and plane strain deforma-
tion (but for different coefficients of consolidation, cv).

5.2.4 Shaft capacity

The shaft resistance was estimated in terms of total and effective stress 
using the following expressions (see Chapter 2, this book):

 τ αf us1 =   (5.56)

and

 τ βσf v1 = ′ (5.57)
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Figure 5.9  Variations of times T50 and T90 with the ratio uo(ro)/su. (After Guo, W. D., 
Computers and Geotechnics 26, 2, 2000c.)
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where ′σv = effective overburden pressure; τf1 = limiting shaft stress, α = 
average pile–soil adhesion factor in terms of total stress; and β = average 
pile–soil adhesion factor in terms of effective stress.

5.2.5 Visco-elastic behavior

Recovery of the soil strength and modulus with reconsolidation was inves-
tigated by a series of loading tests conducted at different time intervals 
following installation of the piles (Trenter and Burt 1981). Each measured 
load-settlement curve allows a time-dependent soil strength and modulus to 
be back-figured by matching with the theoretical solution (via the GASPILE 
program; see Chapters 3 and 4, this book) (Guo 2000a; Guo 2000b; Guo 
2000c). As illustrated next, only the initial shear modulus Gγ1 needs to be 
changed to match a measured load-settlement curve with GASPILE analy-
sis for a set of ratio of creep moduli, Gγ1/Gγ2, and load transfer factor, ζj. 
Imposing identical values of Gγ1/Gγ2 and ζj for each pile analysis at different 
times eliminates their impact on the time-dependent normalized values of 
limiting shaft stress τf1, shear modulus, α, and β obtained.

Example 5.3 Test reported by Trenter and Burt (1981)

Trenter and Burt (1981) conducted loading tests on three driven open-
ended piles in Indonesia, mainly by maintained load procedure. The 
basic pile properties are shown in Table 5.3, along with a Young’s 
modulus of 29,430 MPa. The undrained shear strength of the subsoil 
at the site varies basically according to su = 1.5z (su, kPa; z, depth, m). 
The ratio, Gγ1/su is back-analyzed from the test data, with Gγ1/Gγ2 = 
0.15 and Gγ2/ηγ2 = 0.5 × 10−5 (s−1).

The load transfer factor, ζ1, should be limited to L/ro = 180, against 
numerical solutions (Guo 1997; Guo and Randolph 1998), as the real 
slenderness ratio exceeds the critical ratio of 3 λ  [λ = ratio of pile 
Young’s modulus to the soil shear modulus at pile tip level (Fleming 
et al. 1992)]. To avoid the recursive calculation of the critical pile slen-
derness ratio, the load transfer factor is simply estimated using the real 
pile slenderness ratios. With the input parameters tabulated in Table 
5.3 using GASPILE analysis, the relevant average values are back- 
figured and shown in Table 5.4 for piles 4, 3, and 2. At ultimate capaci-
ties, the measured pile-head displacements were 4% and 6.3% of the 
diameter for piles 4 and 3, respectively, which agree with the lower 
value of Gγ1/τf1 for pile 3 against pile 4 (Table 5.4) (Kuwabara 1991).

The theoretical solutions using GASPILE were adopted to match the 
measured data of pile 2, pile 4, and pile 3, individually. For pile 4 
at 1.7 and 10.5 days, the following analyses were undertaken (Guo 
2000c): nonlinear elastic (NLE, with Gγ1/Gγ2 = 0 and ψoj = 0.5), non-
linear visco-elastic (NLVE, using ψoj = 0.5 in estimating the ζj and Gγ1/
Gγ2 = 0.15), linear elastic (LE, with Gγ1/Gγ2 = 0 and ψoj = 0), and linear 
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visco-elastic (LVE, with Gγ1/Gγ2 and ψoj = 0). It was found that with 
a low value of Gγ1/Gγ2 = 0.15, the difference amongst these analyses 
(NLE, NLVE, LVE, and LE) is negligibly small and the final settlement 
and the settlement rate under a given load depend on Gγ1/Gγ2 and Gγ2/ηγ2, 
respectively.

The reported parameters α and β (Trenter and Burt 1981) for 
piles 3 and 4 are tabulated in Table 5.5. Their normalized values (by 
those at 1.7 days) turn out quite consistent with those of the shear 
modulus (Table 5.5) against time. More generally, strength increases 

Table 5.3 Parameters for the analysis of the tests

Pile No. Penetration (m) ζ1 (ψo1 = 0) ζ1 (ψo1 = 0.5) ω/ξb Note

2a & b 24/30.3 4.5/4.73 5.2/5.4 1.0/2 Diameter: 400 mm
Wall thickness: 

12 mm
3 53.5/54.5 5.31 6.0 1.0/2
4 43.3 4.4 5.08 1.0/2

Source: Guo, W. D., Computers and Geotechnics, 26, 2, 2000c.

Table 5.4 Parameters for analysis of test piles 4, 3, and 2

Time (days) Gγ1 (MPa) τf1 (kPa) Gγ1/τf1 Example 5.3

1.7 6.11 20.18 303 Pile 4:
Gγ2/ηγ2t = 12.96
Gγ1/Gγ2 = 0.15

10.5 7.64 25.28 302
20.5 8.43 27.12 311
32.5 8.43 27.5 306
2.3 3.62 20.717 175 Pile 3:

Gγ2/ηγ2t = 12.96
Gγ1/Gγ2 = 0.15

3.0 3.69 21.13 175
4.2 3.9 22.308 175
Infinite
(L = 24 m)

8.46 20.225 418 Pile 2a & b:
Gγ2/ηγ2 = 0.5 × 
10−5(s−1)

Gγ1/Gγ2 = 0.15
Infinite
(L = 30.3 m)

7.75 23.865 308

Source: Guo, W. D., Computers and Geotechnics, 26, 2, 2000c.

Table 5.5 Parameters for empirical formulas

Pile No. 4 3

Time (days) 1.7 10.5 20.5 32.5 2.3 3.0 4.2

α 0.63 0.81 0.87 0.87 0.51 0.53 0.55

β 0.16 0.20 0.22 0.22 0.13 0.13 0.14

α/αo
a 1.0 1.286 1.381 1.381 1.0 1.039 1.0784

β/βo
a 1.0 1.25 1.375 1.375 1.0 1.0 1.077

Gi/Gio 
a 1.0 1.25 1.38 1.38 1.0 1.02 1.077

Source: Guo, W. D., Computers and Geotechnics, 26, 2, 2000c.
a αo, βo, Gio = the values of α, β, Gi at 1.7 days
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logarithmically with time (Bergdahl and Hult 1981; Sen and Zhen 
1984), but is obviously capped by the “original” undisturbed strength. 
This example demonstrates that the pile–soil interaction stiffness 
increases simultaneously as soil strength regains, and secondary com-
pression of clay only accounts for a small fraction of the settlement of 
the pile, with a low Gγ1/Gγ2 and a short period of consolidation.

5.2.6 Case study

Pore pressure, u, was estimated using Equation 5.48 for plane strain defor-
mation for each case study discussed next. The dissipated pressure, uo − u, 
(uo initial value given by Equation 5.52 at r = ro) is then normalized by 
the initial value uo and compared with (a) the normalized difference of 
the measured (if available) pore pressure, uo − u, by the initial pressure, 
uo; (b) the normalized, back-figured shear modulus by the modulus at t90; 
(c) the normalized, back-figured limiting shear strength by the strength at 
t90; and (d) the normalized, measured time-dependent pile capacity by the 
capacity at t90. The shear modulus and limiting strength with time were 
deduced in a similar manner described in Example 5.3, using the measured 
load-settlement curves at different times following pile driving. Also, the 
values at t90 were obtained through linear interpolation.

Example 5.4 Tests by Seed and Reese

Seed and Reese (1955) assessed the change in pile-bearing capacity 
with reconsolidation of soil following pile installation by conducting 
loading tests on an instrumented pile at intervals after driving. The 
pile, of radius 0.0762 m, was installed through a sleeve, penetrating 
the silty clay from a depth of 2.75 to 7 m. The Young’s modulus is 
2.07  × 105 MPa and the cross-sectional area is 9.032 cm2 (i.e., the 
equivalent pile modulus = 10,250 MPa). Through fitting the measured 
load-settlement response by elastic analysis using the GASPILE pro-
gram (Figure 5.10), values of Gγ1, τf1 were back-figured from each load-
settlement curve. These values are tabulated in Table 5.6.

With Poisson’s ratio, νs = 0.49, permeability k = 2 × 10−6 m/s and 
cv = 0.0529 m2/day, the 90% degree of reconsolidation (elastic case) is 
estimated to occur at t90 = 8.76 days (T90 = 74.43, Gγ1/τf1 = 350). At the 
time of t90, Table 5.6 shows a shear modulus of ~3.55 MPa, which is 
less than 90% of 4.5 MPa (i.e., the maximum value at 33 days), and 
a shaft friction of ~11.6 kPa (the final pile–soil friction = 12.7 kPa), 
which is a fraction of the initial soil strength of 18 kPa (due to soil 
sensitivity). The back-figured shear modulus and the limiting strength 
were normalized by the values at t90 and are plotted in Figure 5.11a 
together with the normalized pile capacity and elastic prediction of 
dissipation of pore water pressure by Equation 5.48.

Taking Gγ1/Gγ2 = 1, and the parameters for elastic analysis, the 
visco-elastic analysis offers a new t90 = 16.35 days (T90 = 148.85, 
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Gγ1/τf1 = 350). At this new t90, Table 5.6 indicates a shear modulus of 
4.06 MPa (≈90% of the final value, 4.5 MPa) and a shaft friction of 
12.54 kPa. The normalized back-figured shear modulus and the limit-
ing strength by the values at this new t90 are shown in Figure 5.11b, 
together with the normalized pile-capacity (by the value at this new 
t90) and the visco-elastic prediction of the dissipation of pore pressure.

This example shows that both elastic and visco-elastic analysis can 
well simulate variation of shear strength or pile capacity but for the 
difference in consolidation time.

Example 5.5 Tests reported by Konrad and Roy

Konrad and Roy (1987) reported an instrumented pile loaded to fail-
ure at intervals after driving. The closed-ended pile, of outside radius 
0.219 m and wall thickness 8.0 mm, was jacked to a depth of 7.6 m. It 
has a Young’s modulus of 2.07 × 105 MPa and a cross-sectional area of 
53.03 cm2 (i.e., equivalent pile modulus = 29,663 MPa). The normal-
ized increase in pile (shaft) capacity with consolidation (Konrad and 
Roy 1987) by which at 2 years after installation seems to agree with 
the normalized dissipation of pore pressure measured at three depths 
of 3.05, 4.6, and 6.1 m (see Figure 5.12a and b).

The initial load-settlement response measured at various time inter-
vals after pile installation allows Gγ1/su = 270 to be deduced using 
elastic analysis (Guo 1997). The associated final load-settlement 
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Figure 5.10  Comparison between the calculated and measured (Seed and Reese 1955) 
load-settlement curves at different time intervals after driving. (After Guo, 
W. D., Computers and Geotechnics 26, 2, 2000c.)
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relationships offer Gγ1/su = 210–230, deduced using Gγ1/Gγ2 = 2 and 
visco-elastic GASPILE analysis. Using linear distributions, the values 
of shear modulus and strength back-figured are tabulated in Table 5.6.

The visco-elastic analysis offers a slightly better agreement with the 
measured response at low load levels of ~70% ultimate load (Figure 
5.13a) than elastic analysis (Figure 5.13b). At high load levels, the 
prediction may be further improved by incorporating nonlinear base 
response and variation of ζ1 with load level. Nevertheless, the current 
analysis is deemed sufficiently accurate for gaining the variations of 
shear strength and modulus with reconsolidation.

Table 5.6 Back-figured parameters in Examples 5.4 and 5.5

Example 5.4 From measured data 

Time (days) .125 1 3 7 14 33
τf1 (kPa) 2.26 5.71 8.4 11.3 12.52 12.68

Gγ1(MPa) .6 1.6 2.1 3.4 4 4.5

Example 5.5 From measured data 

Time (days) 4 8 20 33 730
τf1 (kPa) 5.58a/12.93b 6.56/19.49 7.75/23.0 8.06/23.93 8.63/25.61

Gγ1 (MPa) 1.07/3.19 1.44/4.29 1.65/4.9 1.73/5.15 1.9/5.64

Sources: Guo, W. D., Computers and Geotechnics, 26, 2, 2000c; Seed, H. B., and L. C. Reese, 
Transactions, ASCE, 122, 1955; Konrad, J.-M., and M. Roy, Geotechnique, 37, 2, 1987.
a numerators for ground level
b denominators for the pile base level
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Figure 5.11  Normalized measured time-dependent properties (Seed and Reese 1955) 
versus normalized predicted pore pressure. (a) Elastic analysis. (b) Visco-
elastic analysis. (After Guo, W. D., Computers and Geotechnics 26, 2, 2000c.)
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Figure 5.12  Normalized measured time-dependent properties (Konrad and Roy 1987) 
versus normalized predicted pore pressure. (a) Elastic analysis. (b) Visco-
elastic analysis. (After Guo, W. D., Computers and Geotechnics 26, 2, 2000c.)
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W. D., Computers and Geotechnics 26, 2, 2000c.)
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The coefficient of consolidation cv was 0.0423 m2/day (νs = 0.45) 
(Konrad and Roy 1987). Elastic analysis offers the time factor T90 
of 65, with Gγ1/su = 230 from Figure 5.9; hence, t90 ≈18 days. At the 
time of t90, Table 5.6 shows a shear strength at the pile base level of 
22.4 kPa, which agrees with 23.0 kPa (= 90% of limiting stress, τf1 of 
25.61 kPa); and a shear modulus of 4.79 MPa, which is slightly lower 
than 5.08 MPa (= 90% of the maximum modulus 5.64 MPa). Using 
visco-elastic analysis, and Gγ1/Gγ2 = 2, T90 = 205.1, the t90 is estimated 
as 57 days, at which τf1 = 23.99 kPa and Gγ1 = 5.16 MPa (by interpola-
tion from Table 5.6). With these estimated values at t90, the normalized 
variations are plotted in Figure 5.12a and b, respectively, for elastic 
and visco-elastic analyses, together with the theoretical curves of dis-
sipation of pore water pressure.

The predicted pore pressure by Equation 5.48 at the initial stage 
is lower than the measured data, indicating the impact of the radial 
nonhomogeneity of shear modulus (Guo 1997) or soil stress-strain 
nonlinearity (Davis and Raymond 1965). Radial nonhomogeneity of 
modulus can reduce the ratio of (u − uo)/uo and retard the regain in 
the average shear modulus (at some distance away from the pile axis). 
Thus, a comparatively higher new value of t90 for the nonhomogenous 
modulus regain is anticipated than the currently predicted t90. Using 
the values at this new t90 to normalize the rest of the measured data 
or back-estimated values, a lower trend of the curves is obtained than 
the current presentation in the figure, which will be more close to the 
prediction by Equation 5.48.

Soil strength may increase due to reconsolidation or decrease due 
to creep. The latter may continue until it attains a long-term strength 
(e.g., ~70% of the soil strength) (Geuze and Tan 1953; API 1993; Guo 
1997). The effect of reconsolidation and creep on the soil strength may 
offset in this particular case.

5.2.6.1 Comments on the current predictions

The back-figured values of Gγ1/Gγ2 for the two field studies are higher than 
those based on confined compression (oedometer) tests (Lo 1961). The 
current radial consolidation theory is based on a homogeneous medium. 
Radial nonhomogeneity can alter the shape of the time-dependent curve at 
the initial stage and increase the time for regain of shear modulus.

5.2.7 Summary

A method is provided to predict overall response of a pile following driving 
rather than just the pile capacity. A number of important conclusions can 
be drawn:

 1. Visco-elastic solutions can be obtained by the available elastic solu-
tions using the correspondence principle.
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 2. The viscosity of a soil can significantly increase the consolidation 
time and the pile-head settlement, despite its negligible effect on soil 
strength or pile capacity.

 3. During reconsolidation, the normalized pile–soil interaction stiffness 
(or soil shear modulus) increase, pore pressure dissipation on the pile–
soil interface, and soil strength regain observe similar time-dependent 
path. These time-dependent properties can be sufficiently accurately 
predicted by the radial consolidation theory. They in turn allow load-
settlement response to be predicted at any times following driving by 
either GASPILE analysis or the previous closed-form solutions (Guo 
1997; Guo 2000a; Guo 2000b).
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Chapter 6

Settlement of pile groups

6.1 INTRODUCTION

When piles are in a group, the settlement will increase. This increase, as 
revealed previously using various numerical analyses, is dependent on at 
least five factors: pile center-center spacing, the number of piles in a group, 
pile–soil relative stiffness, the depth of the underlying rigid layer, and the 
profile of shear modulus both vertically and horizontally.

A large body of information is available for analyzing pile groups. 
Generally, the settlement of pile groups can be predicted by the following 
procedures:

 1. Empirical methods (Terzaghi 1943; Skempton 1953; Meyerhof 1959; 
Vesić 1967);

 2. Shallow footing analogy or imaginary footing method;
 3. Load transfer approaches, based on either simple closed-form solu-

tions (Randolph and Wroth 1978; Randolph and Wroth 1979b; Lee 
1993a) or discrete layer approach (Chow 1986b; Lee 1991);

 4. Elastic continuum-based methods such as boundary element analysis 
(Poulos 1968; Butterfield and Banerjee 1971; Chin et al. 1990), infinite 
layer approach (Guo et al. 1987; Cheung et al. 1988), and FEM analy-
sis (Valliappan et al. 1974; Ottaviani 1975; Pressley and Poulos 1986);

 5. Hybrid load transfer approach (O’Neill et al. 1977; Chow 1986a; 
Clancy and Randolph 1993; Lee 1993b), which takes advantage of 
both numerical and closed-form approaches and provides the pos-
sibility of analyzing large group piles.

In view of the five influencing factors, empirical methods are perhaps the 
least reliable, and the shallow footing analogy is overly simplistic. Elastic 
methods of analysis are perhaps the most suitable method for the majority 
of engineering problems, as the pile–soil interaction may generally be in 
elastic state. For more critical structures, finite element or boundary ele-
ment analyses may be more appropriate. 

www.engbasics.com



178 Theory and practice of pile foundations

It is also important to note that the zone of influence of a pile group 
extends considerably further below the pile bases than that of the indi-
vidual piles. If a soft layer lies within the extended zone, the compression 
of the layer must be considered (see Chapter 2, this book).

6.2 EMPIRICAL METHODS

A few nondimensional parameters have been introduced to describe pile 
group behavior. A commonly used settlement ratio, Rs, is defined as the 
ratio of the average group settlement, wg, to the settlement of a single pile, 
wt, carrying the same average load (Poulos 1968). Skempton correlated the 
group settlements, wg, with the single pile settlement, wt, by
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in which wg = settlement of a pile group of width Bc in meter, and wt = 
observed settlement of a single pile at the same load intensity. Later, 
Meyerhof (1959) revised Equation 6.1 to Equation 6.2 to account for the 
geometry of the pile group (Meyerhof 1959):
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where s = ratio of spacing to diameter; and m = number of rows for a square 
group.

The empirical formulas were generally established by comparing full-
scale or model test results between the settlements of pile groups and those 
of single piles in sands (Skempton 1953; Meyerhof 1959). Kaniraj (1993) 
introduced a new settlement ratio as a ratio of the settlement of a pile group 
over that of a single pile under an identical average stress on their respec-
tive load transmitting area. The load transmitting area is, at the pile-base 
level, estimated through the dispersion angle (≈7°, Berezantzev et al. 1961) 
as illustrated in Figure 6.1. A semi-empirical equation was proposed for the 
ratio and compared with the measured values, which show slight improve-
ment over Equations 6.1 and 6.2. These empirical formulas do not account 
for all five of the factors mentioned in introduction.

6.3 SHALLOW FOOTING ANALOGY

Settlement of a pile group may be estimated using shallow footing analogy 
or “imaginary footing method.” The pile group presumably acts as a block, 
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the dimensions of which are defined by the perimeter of the group and a 
depth zf equal to either the depth of the group for end-bearing piles or to 
two thirds the depth of the group for friction piles (see Figure 6.2). Assume 
the load beneath the imaginary footing spreads out over a 30° frustum. The 
increase in the vertical stress in the subsoil at the depth zf is:

 ′ =
+ +

σv

g

c f c f

P

B z L z( tan )( tan )2 30 2 30o o  (6.3)

where ∆ ′σv = increase in the vertical effective stress; Pg = downward load 
acting on a pile group; Bc, Lc = width and length of pile group (cap), which 
equal to width and length of the imaginary footing, respectively (see Figure 
2.12, Chapter 2, this book); and zf = depth below bottom of imaginary 
footing. The settlement of the imaginary footing may be readily estimated 
by the methods for shallow foundations. Thereafter, the elastic compres-
sion we of the piles should be added to the settlement of the footing to gain 
the total settlement of the pile groups:

7 7

(a) (b)

Figure 6.1  Load transmitting area for (a) single pile, (b) pile group. (After Kaniraj, S. R., Soils 
and Foundations, 33, 2, 1993.)

L

2L/3

Friction groupEnd bearing group

Figure 6.2 Use of an imaginary footing to compute the settlement of pile.
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where we = settlement due to elastic compression of piles; Pt = downward 
load on each pile; zi = depth to bottom of imaginary footing; Ap = equiva-
lent cross-sectional area of a single solid pile; Ep = modulus of elasticity of a 
pile, = 2 × 105 MPa for steel; = 4806 6. ′fc  MPa for concrete, and ′fc  = 28-day 
compressive strength of concrete.

Assuming that the compressibility of the soil beneath the imaginary foot-
ing is constant or increases with depth, Meyerhof (1976) developed the fol-
lowing expressions for calculating settlement of piles in cohesionless soils:
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where wg = settlement of pile group (mm); ′qe= Pg/(BcLc), equivalent net bear-
ing pressure (kPa); Bc = width of pile group (m); Lc = length of pile group 
block (m); ′N60= SPT N-value within a depth of zi to zi + Bc with overburden 
correction; qc = CPT cone bearing within a depth of zi to zi + Bc. The “shal-
low footing analogy” method ignores the load-transfer interaction between 
piles and soil, which depends on the five factors mentioned earlier. The 
block behavior may never exhibit before the piles fail individually, which 
renders the block analogy inappropriate.

6.4 NUMERICAL METHODS

Finite element and boundary element analyses, especially for a 3-dimensional 
analysis, are sophisticated to predicting pile group settlements, particularly 
for complex boundary conditions. These analyses are warranted for settle-
ment sensitive structures, which are justified economically. The accuracy of 
these methods is critically dependent on the failure criterion adopted, and 
particularly the constitutive laws that govern the pile–soil interface. Typical 
numerical methods are briefed next.

6.4.1 Boundary element (integral) approach

Using the BEM (BI) approaches, Butterfield and Banerjee (1971) extensively 
explored pile-head stiffness for different pile groups of rigid cap at various 
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pile slenderness ratios and pile–soil relative stiffnesses. Poulos (1968) intro-
duced the pile–soil–pile interaction factor, as mentioned earlier, and gener-
ated values of the settlement ratio, Rs, and load distribution within a group 
considering the influence of pile spacing, pile length, type of group, depth 
of a rigid layer, and Poisson’s ratio of the soil. Chin et al. (1990) reported 
pile–soil–pile interaction factors in terms of Chan’s solution (Chan et al. 
1974) for various pile spacing, relative stiffness, and slenderness ratios.

6.4.2 Infinite layer approach

Guo et al. (1987) and Cheung et al. (1988) proposed an infinite layer 
approach. The stress analysis for a single pile embedded in layered soil was 
performed through a cylindrical coordinate system. Each soil layer was 
represented by an infinite layer element and the pile by a solid bar. The 
displacements of the soil layer were given as a product of a polynomial 
and a double series. The strain-displacement and stress-strain relations 
were established from the displacement fields; therefore, the total stiffness 
matrix could be readily formed.

The interaction between piles 1 and 2 (see Figure 6.3) is simulated 
through the following procedure:

 1. Replacing pile 2 with a soil column of the surrounding soil properties. 
The settlement of pile 1 as well as the soil due to the action of unit 
load on the pile is then computed by the single pile model. Ignoring 
the change in the displacement field due to the existence of pile 2, the 
force acting along pile 2 can be readily calculated by multiplying the 
displacement vector and the stiffness matrix of pile 2. The differences 

S

P1 P2

L1 L2

E1

E2

Ei

En

1

2

i

n

Figure 6.3  Model for two piles in layered soil. (From Guo, D. J., L. G. Tham, and Y. K. 
Cheung, Computers and Geotechnics 3, 4, 1987.)
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between the forces on the pile 2 and those computed from the infinite 
layer model are regarded as residual forces, which are applied in the 
opposite direction along pile 2 to maintain the equilibrium of the 
whole system.

 2. Likewise, if the forces are applied to pile 2, pile 1 is replaced by a soil 
column. The soil movement and residual forces induced in pile 1 are 
computed.

 3. The whole procedure (1) to (2) is repeated by applying the residual 
forces of each step on pile 1 and pile 2 accordingly until the changes 
in the displacement of both piles due to the loading are negligible. By 
this analysis, the resulting interaction factors for two identical piles 
embedded in homogenous soil generally agree with those by Poulos 
(1968).

6.4.3 Nonlinear elastic analysis

Trochanis et al. (1991) studied the response of a single pile and pairs of piles 
by undertaking a 3-dimensional FE analysis using an elastoplastic model. 
The results demonstrated that as a result of the nonlinear behavior of the 
soil, the pile–soil interface interaction, especially under axial loading, is 
reduced markedly compared to that for an elastic soil bonded to piles. The 
commonly used elastic methods for evaluating pile–soil–pile interaction 
can substantially overestimate the degree of interaction in realistic situa-
tions. In load transfer analysis, this nonlinear effect may be modeled using 
elastic interaction factors and adding nonlinear components afterwards 
(Randolph 1994; Mandolini and Viggiani 1997).

6.4.4 Influence of nonhomogeneity

Vertical soil nonhomogeneity significantly affects pile group behavior (Guo 
and Randolph 1999), although it has limited effect on single pile response 
(Chapter 4, this book) under same average shear modulus along the pile 
depth. Figure 6.4a and b shows the difference in the interaction factors 
between homogeneous soil (Poulos and Davis 1980) and Gibson soil (Lee 
1993b). The differences in the pile-pile interaction factor may be attributed 
to the variation of the average shear modulus, and the twice as large a value 
for a homogeneous soil compared with a Gibson soil (Randolph and Wroth 
1978).

Horizontal nonhomogeneity considered so far has been limited to the 
shear modulus alteration caused by pile installation (Randolph and Wroth 
1978; Poulos 1988). This alteration leads to a significant change in the 
load transfer factor and, therefore, normally results in a lower value of the 
pile-pile interaction factor as noted experimentally (O’Neill et al. 1977) 
and obtained numerically (Poulos 1988). Horizontal nonhomogeneity may 
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be readily incorporated into the “ζ” (refer to Equation 4.6, Chapter 4, this 
book) (Randolph and Wroth 1978). Therefore, closed-form solutions as 
shown next may be directly used to account for the nonhomogeneity.

6.4.5  Analysis based on interaction factors 
and superposition principle

Pile group settlement may be estimated using design charts developed 
through various numerical approaches and for a vast range of boundary 
conditions (Poulos and Davis 1980).

The influence of the displacement field of a neighboring identical pile was 
represented by an interaction factor between pairs of incompressible piles 
(Poulos 1968). The interaction factor α is defined as the ratio of the addi-
tional settlement of a pile due to the displacement field of a similarly loaded 
neighboring pile. The factor may be expressed using pile-head stiffness as

 α ij =
Pile-head stiffness of a single pile

Pile-heaad stiffness of a pile in a group of two
−1 (6.8)

where αij = interaction factor between pile i and pile j. The interaction fac-
tor originally defined for two identical piles is then extended to unequally 
loaded piles. Instead of pile-head stiffness, pile shaft displacement increase 
due to a displacement field of a similarly loaded neighboring pile may be 
represented by a shaft interaction factor between pile i and pile j, and base 
displacement by a base interaction factor (Lee 1993a). In fact, the inter-
action factor can be defined in other forms depending on the manner of 
estimating displacements. For instance, the settlement of a single pile δs is 
a sum of elastic shortening of a pile (ws) and the base settlement owing to 
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Figure 6.4 α~s/d relationships against (a) slenderness ratio, (b) pile–soil relative stiffness.
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shaft (wpp) and base (wps), respectively. The components wpp and wps may be 
estimated using the pile-pile interaction factors αps

ij and αpp
ij , which capture 

an increase in the settlement at the base of pile j due to the load transmitted 
along the shaft and at the base of pile i, respectively.

With a known displacement field or pile–soil–pile interaction factors, the 
behavior of a pile in a group can be readily evaluated using the principle of 
superposition. The results generally agree with those when analyzing the 
entire pile group (Clancy and Randolph 1993). This is illustrated later in 
various figures. The validity of the superposition approach both to the esti-
mation of the pile settlement and to the determination of the load carried by 
each pile was confirmed through a number of field tests (Cooke et al. 1980).

It should be noted that all the solutions herein are intended for a free-
standing group with the pile cap located above the principal founding layer 
and not contributing to the overall group performance. Otherwise, the cap-
pile interaction should be considered (Randolph 1994).

6.5 BOUNDARY ELEMENT APPROACH: GASGROUP

GASGROUP (Generalized Analytical Solutions for Vertically Loaded Pile 
Groups) is a numerical program using closed-form solutions (Guo and 
Randolph 1997a; Guo and Randolph 1999) designed specially for predict-
ing behavior of vertically loaded single piles and pile groups. The solutions 
were developed based on the load transfer approach (see Chapter 4, this 
book), and the program compares well with other more rigorous numeri-
cal approaches. The distinct advantage of this program is that it is very 
efficient, particularly in analyzing large pile groups. As a matter of fact, for 
large pile groups, a rigorous numerical approach may become impractical 
or impossible in many cases, while GASGROUP offers an efficient and suf-
ficiently accurate approach.

6.5.1 Response of a pile in a group

6.5.1.1 Load transfer for a pile

Closed-form solutions for a pile in a nonhomogeneous soil have been devel-
oped previously (Guo and Randolph 1997a) for the case where the elastic 
shear modulus of the soil varies with power law of depth (see Equation 4.1, 
Chapter 4, this book, and Figure 6.5).

In order to allow for the presence of neighboring piles, load transfer fac-
tors for a pair of piles is revised as (Randolph and Wroth 1979b)

 ζg= +ln(r /r ) ln(r /s)omg mg  (6.9)

where s = pile spacing; rmg = a radius of the “group,” which is given by
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 r rmg m= + − −














1 1exp

H
L

rg (6.10)

where H = depth to the underlying rigid layer; rg = about one-third to one-
half of the pile spacing (Randolph and Wroth 1979b; Lee 1991). More gen-
erally, rg may be estimated by rg = (0.3 + 0.2n)s, with the s being taken as the 
lesser of s and rm. The multiplier of rg is adopted to account for the effect of 
a finite layer on reduction in the value of the group radius, which resembles 
that for the parameter A (see Equation 3.8, Chapter 3, this book).

The base-load transfer factor may be expressed as

 ω ω πg or s= +( )1 2  (6.11)

Generally, in the present analysis, the factors rm and ω have been estimated 
using Equations 3.6 and 3.4, respectively. The analysis based on these 
values is termed later as “A by Guo and Randolph’s equation”’ or “Real 
A.” Previously, for a pile in an infinite layer, the values of A and ω were 
reported as 2.5 and 1, respectively (Randolph and Wroth 1978). Analyses 
using these simple values for A and ω are given later as well for H/L = ∞, 
and the results are referred to as “A = 2.5.”

6.5.1.2 Pile-head stiffness

The solutions for a single pile can be readily extended to a pile in a group, 
through replacement of the load transfer factors, ζ, ω for a single pile in 
Equations 4.5 and 4.12 (see Chapter 4, this book) with the factors, ζg, ωg 
for a pile in a group. Therefore, the ratio of load, P, and settlement, w, at 
any depth, z, may be expressed as (Guo and Randolph 1997a)
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Figure 6.5  Pile group in nonhomogeneous soil. ng = total number of piles in a group; Rs = 
settlement ratio; wg = Rswt (rigid cap); Pt = Pg/ng (flexible cap); G = Ag(αg + z)n 
(see Chapter 4, this book).
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where the subscript g refers to a pile in a group; λ = relative stiffness ratio 
between pile Young’s modulus, Ep, and the soil shear modulus at just above 
the base level, GL; the function, Cvg(z), is given by
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The individual functions Cj(z) are given by modified Bessel functions of 
fractional order of Equation 4.17 (see Chapter 4, this book) for which the 
argument y is replaced with yg

 y mk zg sg g
m= +2 1 2( ) /α   (6.14)
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where m = 1/(2 + n). The ratio χvg is given by

 χ
π ν ω ξ

ζ
λvg

s g b

g=
−
2 2

1( )
 (6.16)

Note that the surface value of Cvg must be taken as a limit, as z approaches 
zero. The ζg and ωg may be replaced with the ζgζc and ωg[1 + A(t)Gb1/Gb2] to 
incorporate creep effect (see Chapter 5, this book).

6.5.1.3 Interaction factor

Influence of the displacement field of a neighboring identical pile may be 
captured by the interaction factor of Equation 6.8, which is rewritten as

 α ij
t L t o

t L t o g

P G w r

P G w r
= −

( )

[ ( )]
1 (6.17)

where Pt, wt = pile-head load and settlement, respectively; Pt/(GLrowt) = 
pile-head stiffness of a single pile and αij = the conventional interaction fac-
tor, which can be expressed explicitly from Equations 6.12 and 6.13:

 α
ζ
ζij

v

vg

gC

C
= −1 (6.18)

where Cvg and Cv = limiting values of the function, Cvg(z) in Equation 6.13 
as z approaches zero, with values of ζg, ωg and ζ, ω respectively.
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6.5.1.4 Pile group analysis

The settlement of any pile in a group can be predicted using the superpo-
sition principle together with appropriate interaction factors. For a sym-
metrical group, the settlement wi of any pile i in the group can be written as

 w w Pi t j
j

n

ij

g

=
=
∑1

1

α  (6.19)

where wt1 = settlement of a single pile under unit head load; αij = interaction 
factor between pile i and pile j (for i = j, αij = 1) estimated by Equation 6.18; 
and ng = total number of piles in the group. The total load applied to the 
pile group is the sum of the individual pile loads, Pj.

For a perfectly flexible pile cap, each pile load will be identical and so the 
settlement can be readily predicted with Equation 6.19. For a rigid pile cap 
with a prescribed uniform settlement of all the piles in a group, the loads 
may be deduced by inverting Equation 6.19. This procedure for solving 
Equation 6.19 has been designed in the GASGROUP program. By assum-
ing pile cap as rigid, the GASGROUP program gives a very good predic-
tion of settlement in comparison with other numerical approaches and field 
measured data. In the present analysis, estimation of settlement of a single 
pile under unit head load and the interaction factors are based on closed-
form solutions. Therefore, the calculation is relatively quick and straight-
forward (e.g., for a 700-pile group, the calculation only takes about five 
minutes on an IBM 486 personal computer).

6.5.2 Methods of analysis

To facilitate calculation of group settlement, the settlement ratio is rewritten as

 Rs = average group settlement
settlement of a ssingle pile in the group with the same averrage load

 

(6.20)

For groups with less than 16 piles, the Rs can be calculated using the 
pile-head stiffness Pg/(sGLwgng

.5) in Figures 6.6 through 6.8. It has negli-
gible variation with the shape of the group. The figure may thus be used for 
other similar shapes of groups with the same number of piles. As the bases 
of the piles get closer to the rigid layer, the pile-head stiffness increases 
and interaction factor decreases. For groups containing more than 16 piles, 
the group stiffness or settlement influence factors Ig (= wgdEL/Pg) and I 
(= wtroGL/Pt, Chapter 4, this book) may be gained using Figure 6.9, which 
allow the Rs to be estimated using

 R
n

s

g=
I

I
g

(Influence factor for a single pille )
1

2 1( )+ νs

 (6.21)
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Figure 6.6  Group stiffness for 2×2 pile groups. (ai) H/L = ∞. (bi) H/L = 3. (ci) H/L = 1.5 
(i =  1, s/d = 2.5 and i = 2, s/d = 5) (lines: Guo and Randolph 1999; dots: 
Butterfield and Douglas 1981).

www.engbasics.com



Settlement of pile groups 189

   1,000
   3,000,    10,000

s/d = 2.5, H/L = infinite
 = 300,

(a1)
15 20 25 30 35 40 45 500

4

8

12

16

20

Slenderness ratio, L/d 

   1,000
   3,000,    10,000

15 20 25 30 35 40 45 500

4

8

12

16

20

Slenderness ratio, L/d 

s/d = 5.0, H/L = infinite
 = 300,

(a2)

   1,000
   3,000,    10,000

15 20 25 30 35 40 45 500

4

8

12

16

20

Slenderness ratio, L/d 

s/d = 2.5, H/L = 3.0
 = 300,

(b1)

   1,000
   3,000,    10,000

15 20 25 30 35 40 45 500

4

8

12

16

20

Slenderness ratio, L/d 

s/d = 2.5, H/L = 1.5
 = 300,

(c1)

   1,000
   3,000,    10,000

15 20 25 30 35 40 45 500

4

8

12

16

20

s/d = 5.0, H/L = 3.0
 = 300,

(b2) Slenderness ratio, L/d 

   1,000
   3,000,    10,000

15 20 25 30 35 40 45 500

4

8

12

16

20

Slenderness ratio, L/d 

 = 300,

(c2)

s/d = 2.5, H/L = 1.5

P g
/(s

G
Lw

gn
g0.

5 )

P g
/(s

G
Lw

gn
g0.

5 )

P g
/(s

G
Lw

gn
g0.

5 )
P g

/(s
G

Lw
gn

g0.
5 )

P g
/(s

G
Lw

gn
g0.

5 )
P g

/(s
G

Lw
gn

g0.
5 )

Figure 6.7  Group stiffness for 3×3 pile groups (ai) H/L = ∞. (bi) H/L = 3. (ci) H/L = 1.5 
(i  =  1, s/d = 2.5 and i = 2, s/d = 5) (lines: Guo and Randolph 1999; dots: 
Butterfield and Douglas 1981).
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Figure 6.8  Group stiffness for 4×4 pile groups (ai) H/L = ∞. (bi) H/L = 3. (ci) H/L = 1.5 
(i =  1, s/d = 2.5 and i = 2, s/d = 5). (lines: Guo and Randolph 1999; dots: 
Butterfield and Douglas 1981).
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The Rs presented herein captures the impact of the five factors (men-
tioned earlier) on the group settlement wg, and allows the settlement wg 
(= Rswt) to be calculated for a rigid pile-cap (see Figure 6.5). Figure 6.9a 
(for L/d = 40) indicates that the increase in the number of piles in a group 
can reduce the group settlement. However, this becomes increasingly less 
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Figure 6.9 (a) Group stiffness factors. (b) Group settlement factors.
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effective as the number exceeds, say, 81, as is evident in Figure 6.9a for 
more closely spaced piles. For example, with s/d = 3, the value of wgdEL/Pg 
for a 2×2 group is 0.0582, and 0.0393 for a 3×3 group. The reduction in 
settlement is 67.5% by more than doubling the pile numbers. If the group 
is further increased to 5×5 piles, the value of wgdEL/Pg would decrease to 
0.0317, giving a total settlement 54.5% that of 4 piles, but the pile cap size 
(width and breadth) will increase dramatically as well.

The group settlement may be reduced, as the depth to the rigid layer H 
decreases or the size of the pile group increases (Poulos 1968). An increase 
in stiffness of frictional piles leads to an increase in Rs, whereas a reverse 
trend is noted for end bearing piles. For instance, with L/d = 50 and an 
infinitely large H (H/L > 4), the stiffness Pg/(sGLwgng

.5) is about 19.0, 15.0, 
and 12.8 for 4, 9, and 16 piles in a group, respectively, whereas the stiffness 
becomes 20.0, 18.2, and 16.5 for the groups in soil with H/L = 2.

Example 6.1 A comparison of head stiffness

Given a pile slenderness ratio L/d of 40, and a normalized pile 
 center- to-center spacing ratio s/d of 3, a 4×4 group will have a breadth 
Bi of 10d. The ratio Bi/L (see Figure 2.12, Chapter 2, this book) of 
0.25 leads to Pg/(GLwgBi) = 9.0 (Randolph 2003b). On the other hand, 
Figure 6.9 indicates wgdEL/Pg = 0.033 for the group, which can be con-
verted to Pg/(GLwgBi) = 9.0 (with νs = 0.5) as well.

6.5.3 Case studies

Input parameters for each analysis include (a) soil shear modulus distribu-
tion down the pile, Poisson’s ratio, and the ratio of H/L; (b) the dimensions 
and Young’s modulus of the pile; (c) the number of piles in the founda-
tion and pile centre-centre space. In the prediction of Rs, there is no prac-
tical difficulty in using the exact center-center spacing for each pair of 
piles. However, for convenience, an equivalent average pile spacing may be 
assessed for practical prediction. First, irregular plans of large groups are 
converted to equivalent rectangular plans. Second, a mean area per pile is 
obtained, with the total plan area of a pile group being divided by the num-
ber of piles in the group. Finally, taking the mean area as a square, the aver-
age pile “spacing” is thus the length of the side of the square. Ten published 
cases were studied using the current approach. The input parameters are 
summarized in Tables 6.1 and 6.2 (assuming αg = 0 for convenience); typical 
cases are examined in the examples that follow. 

Example 6.2 19-story R. C. building

The 19-story building (Koerner and Partos 1974) was founded on 132 per-
manently cased driven piles, covering an approximately rectangular area, 
about 24 m by 34 m. The piles were cased 0.41 m in diameter and 7.6 m in 
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194 Theory and practice of pile foundations

length, with an expanded base of 0.76 m. Each of the total 132 piles shares 
a mean area of 6.18 m2 and has a pile “spacing” of 2.48 m. The SPT varia-
tion indicates n = 0.5. The shear modulus follows G(MPa) = 16.43z0.5, with 
the ratio of H/L = 2.2. The single pile-loading test shows a secant stiffness 
Pt/wt of 350 kN/mm. Young’s modulus of the pile was measured as 30 
GPa. With these parameters, the GASGROUP predicts a settlement ratio 
(Rs) of 19.85, a single pile settlement of 3.3 mm under the average load of 
1.05 MN, and an average group settlement of 65.5 mm. This prediction 
agrees with the measured average of ~64 mm, ranging from a maximum of 
80 mm near the center to 37 mm near the corners of the building.

Example 6.3 5-story building

A piled raft foundation has been constructed in Japan for a five-story 
building. The plan area was measured 24 m by 23 m. The total work-
ing load of 47.5 MN was supported by a total of 20 piles to reduce the 
settlement (Yamashita et al. 1993). The piles were 16 m in length, 0.7 
and 0.8 m in diameter, and were at a pile center-to-center spacing of 
6.3 to 8.6 times the pile diameter.

The shear modulus profile (Yamashita et al. 1993) may reasonably 
be approximated by G MPa z( ) . .= 10 03 0 8. Assuming Ep = 9.8 GPa, the 
GASGROUP analysis was conducted as shown in Table 6.3. The set-
tlement ratio, Rs, was estimated to be 2.516. Under the average work-
ing load of 2.4 MN, the single pile settlement was ~5.0 mm. Because 
of this, the settlement of the pile group was predicted as 12.6 mm. This 
agrees well with the average settlement of ~14 mm (ranging between 
10 and 20 mm) measured at completion of the building.

Table 6.2 Comparison between predicted and calculated settlement of group piles

Example Description
Modulus 
(MPa)a

Number 
of piles

Observed/
predicted wg 

(mm)

6.2 19-story concrete building G = 16.34z0.5 132 64/65.5
6.3 5-story building G = 10.03z0.8 20 10~20(14)/12.6
6.4 Dashwood house (OCR > 1) G = 18.8z0.4 462 33/37.98
6.5 Jacked piles in London Clay G = 20.53z0.5 3 0.38/0.41
6.6 Stonebridge Park G = 13.8z0.4 351 18/17.7
6.7 Driven piles in Houston clay 

(OCR > 1)
G = 49.5z0.65 9 4.55/6.68

6.8 Napoli: (a) Office Tower 
(b) Holiday Inn

G = 7.195z
G = 7.367z

314
323

20.8/22.0
30.9/30.15

6.9 San Francisco 5-pile G = 43.43 5 5.75/5.56
6.10b Molasses tank G = 0.504z 55 29~30/28.7~29.2
6.11b Ghent terminal silos G = 28.6 697 180/186.3
a Depth z in meters 
b Guo and Randolph (1999)
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Table 6.3 A sample calculation by GASGROUP

Method I (A by Guo and Randolph’s equation):
INPUT DATA FILE of Yamashit.dat
Five-story building (Yamashita et al., 1993)  Non-rectangular
16.,0.4,9800000.,20,0.8,0.3,92210.,1.0 20,0.,6.,12.,18.,24.,0.,6.,12.,18.,24.,0.,6.,12.,18., 
24.,0.,6.,12.,18.,24.

20,0.,0.,0.,0.,0.,6.,6.,6.,6.,6., 11.,11.,11.,11.,11.,23.,23.,23.,23.,23. 2.7 Rigid 1.
A by Guo and Randolph’s equation 5.0

OUTPUT FROM PILE GROUP ANALYSIS PROGRAM - GASGROUP
(Version dated October 1999)
Project name: Five-story building (Yamashita et al., 1993)
Input file name = yamashit.DAT

SOIL AND PILE PROPERTIES
Pile length, L (m) = 16.00   Pile radius, ro (m) = 0.40
Pile Young’s modulus, Ep (kPa) = 0.98E+07 Number of piles in the group, ng = 20
Nonhomogeneity factor, n = 0.80   Modulus distribution factor, Ag (kPa/mn) 

= 10034.18
Poisson ratio of the soil = 0.30  Modulus at just above the base level, 

GL (kPa) = 92210.00
End-bearing non-homogeneity factor, GL/Gb = 1.00
Coordinates for selected piles in the group (m)

Pile 
No. 

X Y Pile 
No. 

X Y Pile 
No. 

X Y Pile 
No. 

X Y

1 0.000— 0.000 2 6.000— 0.000 3 12.000— 0.000 4 18.000—  0.000
5 24.000— 0.000 6 0.000— 6.000 7 6.000—  6.000 8 12.000—  6.000

9 18.000— 6.000 10 24.000—  6.000 11 0.000—  11.000 12 6.000—  11.000
13 12.000— 11.000 14 18.000— 11.000 15 24.000— 11.000 16 0.000— 23.000
17 6.000— 23.000 18 12.000—   23.000 19 18.000— 23.000 20 24.000— 23.000

Ratio of the depth to the underlying rigid layer and L, H/L : 2.70
CONDITIONS FOR THE ANALYSIS
Pile cap is assumed as rigid
Uzing Guo and Randolph’s (1998) expression of “A” to estimate the load transfer factor
Run commenced on 10/27/99 At 23:12:33.75

OUTPUT OF THE ANALYSIS
Pile-pile interaction factor for selected piles, (I,J)

Pile 
I— J, 

Alpha(I,J) Pile 
I— J, 

Alpha(I,J) Pile 
I— J, 

Alpha(I,J) Pile 
I— J, 

Alpha(I,J)

1— 1 1.000000 1— 2 0.108655 1— 3 0.073560 1— 4 0.073484
1— 5 0.073446 1— 6 0.108655 1— 7 0.086154 1— 8 0.073536
1— 9 0.073477 1— 10 0.073443
Load transfer parameter,  A = 1.45 Base load transfer factor = 1.26
Settlement ratio, Rs = 2.516 Settlement factor, Ig = 0.048
Normalized pile-pile spacing (s) by pile diameter (d), s/d = 7.500
Normalized group stiffness, Pg/(wgsGLng

0.5) = 1.614 Group stiffness, Pg/(wgroGL) = 108.257
Input settlement of a zingle pile (mm) = 5.00  Settlement of the pile group, wg (mm) 

= 12.579
Run completed on 10/27/99 At 23:12:36.66
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Example 6.4 Dashwood house

Dashwood House (Green and Hight 1976) is a 15-story, 61-m-high 
building located close to Liverpool Street Station in London. The 
building has a single-story basement resting on a rectangular piled raft 
foundation of 33.8 × 32.6 m. The overall load on the foundation was 
279 MN, and the measured settlement was 33 mm. The pile group 
consisted of 462 (21 × 22) bored piles in a grid of 1.5 m square spacing. 
Each had a diameter of 0.485 m, a length of 15 m, and a Young’s mod-
ulus, Ep, of 30 GPa. The subsoil profile beneath the building was 1 m 
placed compacted gravel, followed by approximately 29 m of London 
clay, and 10 m of Woolwich and Reading beds. The shear modulus G 
(London clay) was estimated as: G = 30 + 1.33z (MPa). Poisson’s ratio, 
νs, was taken as 0.5.

The equivalent n was deduced as 0.2~0.4 in terms of the constant of 
Pt/wt. Under an average working load of 604 kN per pile, settlement of 
a single pile was estimated as 1.17 mm. The results from the two trial 
analyses are as follows: (1) n = 0.2, Ag = 26.1 MPa/m0.2, GL = 44.92 
MPa, Pg/(GLwg ro) = 668.8, Rs = 32.68, and wg is evaluated accordingly 
as 38.2 mm; (2) n = 0.4, Ag = 18.8 MPa/m0.4, GL = 55.51 MPa, Pg/
(GLwg ro) = 543.6, Rs = 32.47, and wg = 38 mm. The estimated settle-
ment of 38~38.2 mm is within 15% of the measured value. This is 
quite satisfactory in view of 462 piles in the group, and the sensitivity 
to any discrepancy between the calculated single pile settlement of 1.17 
mm and the actual one.

Example 6.5 Jacked piles in London clay

A series of field tests was conducted on pile groups embedded in London 
clay (Cooke et al. 1980). Each tubular steel pile has an external radius 
of 84 mm and a wall thickness of 6.4 mm. The piles were embedded 
to a depth of 4.5 m and at a spacing of three pile diameters. The clay 
extends from the mudline to a depth of about 30 m. Shear modulus 
increases linearly from 15.6 MPa (at the surface) to 38.0 MPa (at the 
pile base, GL), taking Poisson’s ratio as 0.5. The measured load-settlement 
curve for pile A (the middle pile) shows a settlement of 0.23 mm at an 
average working load of 33.3 kN. Settlement of the three-pile group 
loaded with a rigid pile-cap was recorded as 0.38 mm under a total 
load Pg of 100 kN.

The measured Pt/wt of 145 kN/mm allows GL = 43.6 MPa and n = 
0.5 (Ag = 20.53 MPa/m0.5) to be back-calculated. The group results are 
Pg/(GLwg ro) = 100.1 and Rs = 1.79. The predicted group settlement is 
0.41 mm, which is close to the measured value of 0.38 mm.

Example 6.6 Stonebridge Park apartment building

The 16-story Stonebridge Park apartment building (Cooke et al. 1981) 
located in the London borough of Brent has a building foundation 
of 43.3 m long by 19.2 m wide that consists of a heavily reinforced 

www.engbasics.com



Settlement of pile groups 197

concrete raft 0.9 m thick resting on 351 cast in situ bored concrete 
piles. The piles are 0.45 m in diameter and 13 m in length, formed at a 
square spacing of 1.6 m. The shear modulus distribution of the subsoil 
is described by G = 20 + 1.44z (MPa).

The average working load per pile was 565 kN as any load car-
ried by the raft was ignored. The settlement of building was mea-
sured ~10.5 mm at the end of construction and increased to 18 mm 
after 4 years. Incremental quick loading tests were carried out on the 
site prior to construction. They provide higher bounds of Pt/wt and 
shear modulus GL of 38.72 MPa (assuming n = 0.4). With Ag = 13.8 
MPa/m0.4, GASGROUP offers Pg/(GLwg ro) = 399.3, Rs = 36.7, and 
wg = 31.9 mm. This estimated settlement of the pile group is larger 
than the measured value of 19 mm. If the underlying rigid layer exist 
at a depth of, say, 20~26 m (thus H/L = 1.5~2.0), the group settlement 
will be well predicted as 17.7~25.2 mm.

Example 6.7 Driven piles in overconsolidated clay

A series of tests were conducted on single piles and a pile group at the 
University of Houston (O’Neill et al. 1982). Each steel pipe pile was 
273 mm diameter and 9.3 mm in wall thickness. The piles were driven 
(closed ended) 13.1 m into stiff overconsolidated clay. A group was 
installed in a 3×3 configuration (nine-pile group) at a center-to-center 
spacing of 6ro and connected to a rigid reinforced concrete block. Two 
separate piles were installed 3.7 m from the center of the group and on 
opposite sides.

The two single piles and the nine-pile group were loaded to failure. 
At the average load of 550 kN per pile, the settlement was recorded as 
2.85 mm (or Pt/wt = 260 kN/mm) from single pile tests. The settlement 
of the 3×3 pile group was measured at 4.55 mm. The shear modulus 
was deduced as increase from 47.9 MPa (at surface) to 151 MPa (at the 
pile base) (νs = 0.5).

Young modulus of an equivalent solid pile was estimated using Ep = 
Esteel [ro

2− (ro − t)2]/ro
2, where E of steel = 200 GPa, ro and t = the out-

side radius and wall thickness of the pile. GL was deduced as 263.57 
MPa using Pt/wt = 269 kN/mm and n = 0.65 (from reported distribu-
tion). The group was featured by n = 0.65, Ag = 49.5 MPa/m0.65, GL = 
263.57 MPa, Pg/(GLwg ro) = 26.28, and Rs = 2.34. The group settle-
ment was estimated as 6.68 mm and ~2 mm higher than the measured 
value. This may be attributed to neglecting the ground-level modulus 
of the highly overconsolidated clay; to the gradual underestimation of 
the modulus at greater depths by using n = 0.65; and the existence of 
any underlying rigid layer. All these factors could reduce the calculated 
settlement, which is not fully considered herein.

Example 6.8 Napoli Holiday Inn and office tower

Parts of the new Directional Center of Napoli were built on rigid foun-
dation slabs with a thickness of 1.2~3.5 m (Mandolini and Viggiani 
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1997). They in turn rest on 314 (Office Tower) and 323 (Holiday 
Inn) auger piles of the “PressoDrill” type to support ~200 MN build-
ing load. Each pile had a diameter of 0.6 m, a length of 20 m, and a 
Young’s modulus of 23 GPa (back-calculated), which caters to an aver-
age permanent load of 670 kN.

The site subsoil from the surface downwards is man-made ground, 
volcanic ashes/organic soils; stratified sands, cohesionless pozzolana, 
and volcanic tuff. The upper soils extend about 16 m and encounter a 
peat layer (with very small values of qc). The thickness of stratified sands 
increases from 5 to 20 m from the Office Tower towards the Inn, being 
“parallel” to the deeper pyroclastic formation from 22 to 37 m below 
the surface.

The piles are arranged in rectangular patterns of 15×20 (Office 
Tower) and 15×21 (Holiday Inn). The Office Tower site is 1,308 m2, 
thus the average single pile area was ~4.36 m2 with a pile spacing of 
~2.18 m for both sites.

6.8.1 Office tower

The site subsoil is underlaid by a volcanic tuff layer ~35 m below the 
surface (i.e., H/L = 1.75). The GL was deduced as 145.2 MPa using a 
Pt/wt = 600 kN/mm (measured from single pile tests). The calculated 
results are: GL = 147.9 MPa (slightly different from single pile using 
GL/Gb = 3.0), Pg/(GLwgro) = 253.4, and Rs = 16.96. The settlement of 
the group is thereby evaluated as 22.0 mm.

6.8.2 Holiday Inn

The rigid layer of volcanic tuff dramatically increases with depth 
across the site with H > 54 m. Taking H/L = 2.7 and GL/Gb = 2.0, a 
GL of 143.9 MPa was deduced from the measured Pt/wt. These allow 
Pg/(GLwgro) = 185.8, Rs = 23.19, and a group settlement of 30.15 mm.

Calculations using a ratio GL/Gb between 1.0 and 3.0 induce a 
less than 1 mm difference in the computed settlement. The predicted 
22.0 mm agrees well with the average of 20.8 mm at the Office Tower, 
with 9.2 mm (at the edge) and 29.1 mm (at the center of the foundation). 
The prediction of 31.15 mm is also confirmed by the measured settle-
ments of 26.9~32.7 mm (an average of 30.9 mm) at the Holiday Inn.

Example 6.9 San Francisco five-pile group

Load tests to failure were performed on a single pile and a five-pile 
group installed in hydraulic-fill sand at a site in San Francisco (Briaud 
et al. 1989). The closed-end steel pipe piles were 273 mm in diam-
eter and 9.3 mm in wall thickness. All piles were driven to a depth of 
9.15 m below the ground surface (through a 300-mm predrilled hole 
to a depth of 1.37 m) at spacing of 6ro. The piles were connected by 
1.8-m, rigid, thick reinforced concrete cap. The subsoil at the site was 
sandy gravel fill (to a depth 1.37 m below the surface), followed by a 
hydraulic-fill layer of clean sand (down to 12.2 m), and further down 
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bedrock (at a depth 14.3 m). Results of CPT indicate a uniform distri-
bution of the modulus (n = 0).

At an average load of 311.5 kN per pile, the single pile settlement 
was measured as 4.56 mm, and the group settlement was 5.75 mm. 
This offers Pt/wt of 222 kN/mm. With Ep = 13.4 GPa, it follows n = 0, 
and GL = Ag = 43.43 MPa; and furthermore, Pg/(GLwgro) = 152.8, Rs = 
1.22, and wg = 5.56 (mm). This estimated 5.56 mm well matches the 
measured value of 5.75 mm.

Finally, the impact of the shear modulus profiles of the subsoil 
on the settlement predictions were examined previously through 
the “Molasses tank” and “Ghent terminal silos” building (Guo and 
Randolph 1999), which are provided here in Tables 6.1 and 6.2 as 
Examples 6.10 and 6.11, respectively.

6.6 COMMENTS AND CONCLUSIONS

A wide variety of geological conditions were encountered for the ten cases 
investigated so far. A comparison between the observed and calculated 
settlements for all cases is provided in the Table 6.2. For normal clay, the 
predictions are within 7% to the measured data. Lack of information may 
be complemented through parametric analysis, such as the affect of the 
H/L in Example 6.6. Below are some key findings in this study.

•	 Using average pile center-to-center spacing has negligible effect on the 
predicted settlement.

•	 Variation of GL/GB from 1 to 3 has limited effect on the predicted 
settlement.

•	 A shallow rigid layer of H/L < 2 will have obvious effect on the 
prediction.

•	 Existing distribution of shear modulus, and also back-estimated one 
(from single pile tests) should be used in calculating settlement of pile 
groups.

•	 Inaccuracies can creep into the back-estimation method due to the 
selection of Pt/wt from a plot, as misinterpretation of the initial gradi-
ent may occur. Prediction of settlement of a single pile is necessary. 
A nonzero ground-level modulus should be adopted for overconsoli-
dated clays to improve the accuracy of the predicted settlement, as 
observed in Examples 6.4 and 6.7. 

•	 The program is efficient with all calculations taking under two min, 
even for a 697-pile group that caters to all important factors such 
as expanded pile bases, varying subsoil profiles, and depths to rigid 
layers.
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Chapter 7

Elastic solutions for 
laterally loaded piles

7.1 INTRODUCTION

Analyzing response of laterally loaded piles and pile groups so far has 
generally been recourse to numerical approaches (Poulos 1971; Banerjee 
and Davies 1978; Randolph 1981b; Chow 1987). These approaches are 
more rigorous, but their practical applications are often limited to small 
pile groups (Guo 1997), and their accuracy is difficult to justify without 
analytical solutions (Guo 2010). Approaches using an empirical load trans-
fer model (Hetenyi 1946; Matlock and Reese 1960) and a two-parameter 
model (Sun 1994) have been proposed by modeling pile–soil interaction 
using a series of independent elastic springs along the shaft.

The elastic springs are generally characterized by the modulus of sub-
grade reaction k (Hetenyi 1946). The modulus was gained through fitting 
with relevant rigorous solutions (Vesić 1961a; Baguelin et al. 1977; Scott 
1981) but is different between matching deflection and moment (Scott 
1981). The modulus for p-y(w) curve is generally based on an empirical 
fitting to relevant measurements (Matlock and Reese 1960). None of them 
seems to incorporate properly the impact of the soil response in radial 
direction on the modulus, which is apparent for vertically loaded piles 
(Randolph and Wroth 1978; Scott 1981; Guo 1997; Guo and Randolph 
1997a; Guo and Randolph 1998; Guo and Randolph 1999; Guo 2000b). 

To resolve the problem, the soil displacement of w(z)ϕ(r), at depth z and a 
distance r from pile axis is correlated to the pile displacement, w(z), by dis-
placement reduction factor ϕ(r) (see Equation 7.1). The functions w(z) and 
ϕ(r) are resolved via total energy of a pile–soil system and linked together 
via a load transfer factor, γb (Scott 1981; Sun 1994; Guo and Lee 2001; 
Basu and Salgado 2008). The solutions provide unique values of modulus 
of subgrade reaction k and fictitious tension Np (which ties together the 
independent springs) using the properly determined factor γb (Jones and 
Xenophontos 1977; Nogami and O’Neill 1985; Vallabhan and Das 1988; 
Vallabhan and Das 1991; Sun 1994).
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The potential energy is gained using the radial displacement u, circum-
ferential displacement v, and their compatible stress components in the 
pile and the soil (Vallabhan and Mustafa 1996). The energy, in light of 
variational approach, allows governing equations and boundary condi-
tions to be established. This generally results in semi-analytical solutions 
(Vallabhan and Das 1991; Vallabhan and Mustafa 1996). Moreover, 
by ignoring higher order components, the stress field may be simplified 
(termed as a “load transfer model”), allowing compact and sufficiently 
accurate closed-form solutions to be obtained (Randolph and Wroth 1978; 
Randolph 1981a) against more rigorous numerical approaches (Guo 1997; 
Guo and Randolph 1998; Guo and Randolph 1999). The use of the load 
transfer model is preferred for a laterally loaded pile, as the two-parameter 
(or Vlasov’s foundation) model (Nogami and O’Neill 1985; Sun 1994) is 
inherently unreasonable at a high Poisson’s ratio of νs ≥ 0.3.

Hetenyi (1946) first developed compact-form solutions for a free-end 
beam of infinite and finite length (underpinned by the subgrade modulus 
k) that is subjected to transverse loading and external axial force N (= Np). 
Sun (1994) provided solutions for fixed- and free-head piles for various base 
conditions using the two-parameter model. Apart from the difference in 
boundary conditions, the latter is more rigorous in determining the two 
parameters, k and Np, using total energy, while the early solutions require 
advanced mathematical skills to obtain compact expressions.

In this chapter, the inherent disadvantage of the two-parameter model 
is circumvented using a simplified stress field. Applying the variational 
approach on total energy of the lateral pile–soil system, a theoretical load 
transfer model is developed. The model is underpinned by the modulus of 
subgrade reaction k and the fictitious tension Np, which in turn are based on 
Bessel functions of the load transfer factor γb. The pile response and the fac-
tor are presented in compact expressions, respectively, along with those for 
estimating critical pile length, maximum bending moment, and the depth 
at which the moment occurs. The stress field and the closed-form solutions 
are verified by the available results for a rigid disc (Baguelin et al. 1977) 
and various numerical approaches (Banerjee and Davies 1978; Randolph 
1981b; Chow 1987), respectively.

7.2 OVERALL PILE RESPONSE

7.2.1  Nonaxisymmetric displacement 
and stress field

The response of a circular pile subjected to horizontal load H and moment 
Mo at the pile-head level (see Figure 7.1a) includes the displacement, w, the 
bending moment, M, and the shear force, Q (see Figure 7.1b). The pile with 
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a length l and radius ro is embedded in a linear elastic, homogeneous, and 
isotropic medium. The displacement and stress fields in the soil around the 
pile are described by a cylindrical coordinate system r, θ, and z as depicted 
in Figure 3.12a in Chapter 3, this book.

A nonaxisymmetric displacement field around the pile is observed with 
dominant radial u and circumferential v displacements and negligible ver-
tical (ws) displacement. The field may be expressed in Fourier series (Sun 
1994; Cook 1995)

 u w z r n v w z r n wn n
n

n n
n

s= = −
=

∞
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∞

∑ ∑( ) ( ) cos ( ) ( )sinφ φθ θ
0 0
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where wn(z) = the n-th component of the pile body displacement at depth, 
z, and in the direction of the n-th loading component; ϕn(r) = the n-th com-
ponent of the attenuation function of soil displacement at a radial distance, 
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Figure 7.1  Schematic of (a) single pile, (b) a pile element, (c) free-head, clamped pile, 
(d) fixed-head, clamped pile, (e) free-head, floating pile, and (f) fixed-head, 
floating pile. (After Guo, W. D., and F. H. Lee, Int J Numer and Anal Meth in 
Geomech 25, 11, 2001.)
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r, from the pile axis; and θ = angle between the line joining the center of the 
pile cross-section to the point of interest and the direction of the n-th load-
ing component. Applying elastic theory (Timoshenko and Goodier 1970) 
on Equation 7.1, the stresses in the soil surrounding the pile are deduced as 
(Guo and Lee 2001)
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where λs = Lame’s constant; G = shear modulus of the soil. With an 
equivalent concentrated load, H, and moment, Mo, at the pile-head (see 
Figure 7.1), only the n = 1 term of the series in Equations 7.1 and 7.2 exist 
(Sun 1994; Cook 1995), which offer identical displacement and stress 
fields to those adopted previously (Sun 1994). Other terms (e.g., n = 2, 3) 
are needed to cater for load and/or moment components in multi-direc-
tions “θ.” A relevant solution for each term (n) may be obtained by 
the procedure detailed in this chapter for n = 1 and then superimposed 
together to yield the final results, seen in Equation 7.1, for the displace-
ments (Cook 1995).

The displacements along with the derived stresses are directly used 
to establish solutions for laterally loaded piles (Sun 1994) and beams 
(Vallabhan and Das 1988; Vallabhan and Das 1991) or along with simpli-
fied stresses by neglecting less important components (Nogami and O’Neill 
1985). The two-parameter model indicates a remarkable impact of a higher 
Poisson’s ratio νs (> 0.3) on pile response, which is, however, not seen in 
numerical analysis (Poulos 1971; Sun 1994). The impact can be readily 
incorporated by using a modulus, G* [= (1 + 3νs/4)G)] (Randolph 1981b) 
and by a simplified stress field deduced using νs = 0 (i.e., Lame’s constant, 
λs = 0) in Equation 7.2 (Guo and Lee 2001). This offers Equation 3.48 
shown in Chapter 3, this book.

The assumed stresses of Equation 7.2 are compared with finite element 
analysis and a simplified (intact model) solution (at the directions of θ = 0 
and π/2) for a rigid disc (Baguelin  et  al. 1977). The stresses σr and τrθ 
exhibit similar trends among the predictions (see Figure 7.2 for νs = 0). 
The constantly low σr compared to the rigid disc reflects the alleviating 
(coupled) interaction from neighboring springs along the pile shaft. The 
zero circumferential stress σθ also matches well with the average stress 
(νs = 0.33) over radial direction of the rigid disc solution. This stress is, 
however, significantly overestimated by the two-parameter model using 
the actual λs.
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7.2.2  Solutions for laterally loaded piles 
underpinned by k and Np

Potential energy of the lateral pile–soil system U is obtained using the dis-
placement field of Equation 7.1 and the stress field of Equation 7.2. The 
variation of the energy, δU, may be expressed as
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Figure 7.2  Soil response due to variation of Poisson’s ratio at z = 0 (FreHCP(H)), Ep/G* = 
44737 (νs = 0), 47695 (0.33). Rigid disc using intact model: H = 10 kN, ro = 
0.22 cm, and a maximum influence radius of 20ro). (a) Radial deformation. (b) 
Radial stress. (c) Circumferential stress. (d) Shear stress. (After Guo, W. D., 
and F. H. Lee, Int J Numer and Anal Meth in Geomech 25, 11, 2001.)

www.engbasics.com



206 Theory and practice of pile foundations

where Ep, Ip = Young’s modulus and moment of inertia of an equivalent 
solid cylinder pile, respectively; ro = radius of an equivalent solid cylinder 
pile; σij and εij = stress and strain components in the surrounding soil of the 
pile, respectively (see Guo and Lee 2001). The virtual work, δW, done by 
the load H and the moment Mo due to a small displacement δy, and rotation 
δ(dw/dz), may be expressed as

 δ δ δW H w M dw dz
z o z

= +
= =0 0

( )  (7.4)

where H and Mo = the concentrated load and moment, respectively, exerted 
at the pile-head level. Equilibrium of the pile–soil system leads to
 

δ δ δU EI
d w

dz

dw
dz

d w

dz
w

d w

dp

o

l

=





−









 +( )

2

2

3

3

4

zz
wdz

r G
dw
dz

w
d w

dz

o

l

o
l

4

2
2

2

δ

π δ

∫












+








 −
∞

δδ δ δw dz k w w dz U
d
drl o

m
ro

∞ ∞ ∞

∫ ∫











+ +









2

φ φ

−− +





−













+
∞

∫ 2 2
2

2
U

d
dr

r
d

dr
U dr Nm n

r
p

o

φ φ φ φδ ddw
dz

w
d w

dz
w dz

o o

δ δ








 −













∞ ∞

∫
2

2

 
(7.5)

The last four components are energy in the surrounding soil, and
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where G = shear modulus of the soil; Uk and UN = energy of unit pile length 
for unit pile movement (w = 1) and unit pile rotation (dw/dz = 1), respec-
tively; Um and Un = energy of unit radial length for unit radial rotation (dϕ/
dr = 1) and unit radial variation (ϕ = 1), respectively. The pairs Uk and Um 
and UN and Un denote the potential energy due to the stress variations in 
radial direction and vertical direction, respectively. Uk, UN could have been 
defined as k and Np, respectively, but for inconsistency with the classical 
elastic theory (Timoshenko and Goodier 1970). Using Equations 7.4 and 
7.5, the condition of δW + δU = 0 allows pertinent conditions and govern-
ing equations to be deduced (Guo and Lee 2001), which are recaptured in 
Table 7.1. 

For instance, the radial attenuation function, ϕ(r), is governed by the first 
equation in Table 7.1. As r → ∞, ϕ(∞) → 0, and at r = ro, ϕ(ro) = 1, the ϕ(r) 
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is resolved as modified Bessel functions of the second kind of order zero, 
Ko(γb) (McLachlan 1955) underpinned by the load transfer factor γb

 γ b o n mr U U=  (7.8)

 φ( ) ( / ) ( )r K r r Ko b o o b= γ γ  (7.9)

The Un = 0 and γb = 0 are noted for a two-dimensional rigid disc. The 
associated ϕ(r) reduces to a logarithmic function that agrees with previous 

Table 7.1 Expressions for governing equations and various conditions
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findings (Baguelin et al. 1977). Using Equation 7.9, Equation 7.6 is simpli-
fied as
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These expressions were also provided in Chapter 3, this book.

7.2.3  Pile response under various 
boundary conditions

The pile displacement, w(z), is governed by (see Table 7.1),
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N

d w

dz
kwp p

4

4

2

2
0− + =  (7.11)

where w(z) is measured in the direction of the applied loading H, and/or 
Mo. Equation 7.11 is identical to that for a straight bar under simultane-
ous axial and transverse loading (Hetenyi 1946; Scott 1981), but for the 
concepts of the modulus of subgrade reaction k and the fictitious tension 
Np. Only the case of Np < 2 kE Ip p  is of practical interest (Scott 1981; 
Yin 2000), for which w(z) is solved from Equation 7.1 in the form of four 
unknown coefficients Ci (i = 1~4) as shown in Table 7.1. For long piles, the 
coefficients C1 and C2 are zero, whereas the C3 and C4 are determined using 
the boundary conditions in Table 7.1. The pile body displacement, w(z), at 
depth z may be written as
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where H(z) and I(z) are functions used to capture pile-head boundary con-
ditions (with subscript “o”), see Figure 7.1, while B(z) and C(z) reflect pile-
base conditions (with “b”). They, along with the factor δ, are provided in 
Tables 7.2, 7.3, 7.4, and 7.5 for free-head, clamped-base piles (FreHCP), 
fixed-head, clamped-base piles (FixHCP), free-head, floating-base piles 
(FreHFP), and fixed-head, floating-base piles (FixHFP), respectively. These 
conditions are illustrated in Figure 7.1, in which M = bending moment, and 
θ = rotation angle. The solutions are featured by the parameters α and β:

 α β= + = −k
E I

N

E I
k

E I

N

E Ip p

p

p p p p

p

p p4 4 4 4
and  (7.13)

The derivatives of w(z), as provided in Table 7.1, offer the profiles of pile 
rotation, bending moment, and shear force.
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The shear force QB at the base of a floating pile was gained as − kN w lp ( ) 
(see Table 7.1, z → ∞, w → 0). It is generally rather small and may be 
ignored in estimating H(z), I(z), B(z), C(z), and δ, (by taking kNp  = 0, 
referred to as “FP excluding base,” although the real values of the k and 
Np are still used in calculating parameters α and β). By setting B(z) = 0 and 
Mo = 0, Equation 7.12 does reduce to the solution for a free-end beam of 
finite length with a concentrated load at one end (Hetenyi 1946).

All the expressions presented have been verified using MapleTM and 
MathcadTM. For floating-base piles, some errors were found in the previous 
solutions (Sun 1994). The solution for the case of Np ≥ 2 kE Ip p  may be 
obtained in a similar way. However, it is not presented herein because of its 
minor relevance to practical design.

7.2.4 Load transfer factor γb

The coupled interaction between the pile and soil [e.g., the displacement, 
w(z), and the radial attenuation function, ϕ(r)] is captured through the load 
transfer factor, γb. Equation 7.8 is rewritten as

Table 7.2 Expressions for free-head, clamped-base piles (FreHCP)

B(z) = C(z) = 0, z′ = l − z, and
H z sh z ch l z sh l( ) ( )[ ( )cos( ) ( ) (= ′ + −β α αβ α β α β α2 2 2 ))sin( )]

sin( )[ ( )cos( ) (

β
α β αβ α β α β

z

z ch z l− ′ + −2 2 22 ) ( )sin( )]sh z lα β

I z sh z sh l z ch l( ) ( ) ( )[ ( )cos( ) (= + ′ − +β α β α β α β α α2 2 ))sin( )]

( )sin( )[ ( )c

β
α α β β β α

z

z sh z+ + ′2 2 oos( ) ( )sin( )]β α α βl ch z l−

δ α β α β α β β α α= + − + +( )[( )( sin ( ) ( ))2 2 2 2 2 2 2 2 22l sh l ββ α β2 2 2( ( ) cos ( ))]ch l l+

At the pile-head level (z = 0) and base level (z = l), it follows 
H(l) = I(l) = 0, and ′ = ′ =H l I l( ) ( ) 0

′′ = = −H H sh l l( ) ( ) [ ( ) sin( )],0 0 0 2 2αβ β α α β

′ = = − + +H I sh l l( ) ( ) ( )[ ( ) sin ( )]0 0 2 2 2 2 2 2α β β α α β

′ = + +I l sh l( ) ( )[ sin( ) ( )]0 2 22 2αβ α β α β β α

Table 7.3 Expressions for fixed-head, clamped-base piles (FixHCP)

I(z) = B(z) = C(z) = 0, z′ = l − z, and

H z sh z ch z sh z( ) ( )[ ( )sin( ) ( )cos(= ′ +α αβ α β β α βl l2 ))]

sin( )[ ( )cos( ) (l− ′ +β αβ α β αz sh z ch2 αα βz)sin( )]l

δ αβ α β α β β α= + +( )[ sin( ) ( )]2 2 2 2l sh l

At the pile-head level (z = 0) and base level (z = l), it follows H l H l( ) ( )= ′ = 0
′ = = − ′′H H sh l l H( ) ( ) ( ) sin ( ) (0 0 0 02 2 2 2β α α β )) ( )( ( ) sin ( ))= − + +α β β α α β2 2 2 2 2 2sh l l
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Table 7.4 Expressions for free-head, floating-base piles (FreHFP)

H z l C zh( ) ( )[ ( )sin( ) ( ) (= + − + −α β α α β β β α β2 2 2 2 2 23 3 )) ( ) ( )]sh l C zhα ′
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2
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l

kN

EI
l

p
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At the pile-head level (z = 0), it follows ′′ = ′′ =H B( ) ( )0 0 0, and
H sh l( ) ( )[ ( ) ( ) ( )si0 3 2 32 2 2 2 2 2= + − + −αβ α β β α β α α α β nn( )]2βl
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Table 7.5 Expressions for fixed-head, floating-base piles (FixHFP)

I(z) = C(z) = 0, z′ = l − z, and
H z l ch z z( ) ( )( )cos( )[ ( )cos(= + − ′α α β β α β α α β2 2 2 23 )) ( )sin( )]
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At the pile-head level (z = 0), it follows ′ = ′ =H B( ) ( )0 0 0, and
H l( ) ( )[ ( )sin ( ) (0 4 3 32 2 2 2 2 2 2 2 2= + − − +α β α β α β α β β α22 2 2

2 2 2 2 2 20 3
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The w(z), k, and Np are interrelated through γb. Nonlinear Equation 7.14 
has been resolved numerically for these boundary conditions. The γb 
obtained is synthesised as a simple power form of pile–soil relative stiffness 
Ep/G* and pile slenderness ratio, l/ro (see Equation 3.54, Chapter 3, this 
book). In particular, with w(l) ≈ 0 for long piles, the γb is dominated by the 
rotation, dw/dz and the lateral displacement, w(z), over the whole length; 
with a combined load and moment simultaneously, the γb may be directly 
estimated by using Equation 7.14 with w(z) by Equation 7.12. It should lie 
in between these for the load H and the moment Mo, and offers a single k in 
light of Equation 7.10. As mentioned in Chapter 3, this book, the superpo-
sition using the two different values of γb (thus k) may be roughly adopted 
for designing piles under the combined loading.

7.2.5  Modulus of subgrade reaction 
and fictitious tension

The current solutions (e.g., Equation 7.12) are underpinned by the two 
energy parameters k and Np. Dependent of loading properties, pile slender-
ness ratio, and pile–soil relative stiffness, they were estimated using Equation 
7.10, and are illustrated previously in Figures 3.22 and 3.23 (Chapter 3, this 
book), due to either the moment (Mo) or the lateral load (H). In particu-
lar, the k and Np for short piles rely primarily on the slenderness ratio, as 
the total energy U, the displacement w, and the rotation dw/dz do.

The k originates from the stress variations in radial direction and reflects 
the coupling effect among the independent springs via the parameter γb. A 
constant w in Equation 7.2 for a two-dimensional disc implies that τzr, and 
τθz and γb reduce to zero. The ϕ (hence k, see Table 7.1) becomes independent 
of variations in vertical directions. Only then does the k become a ratio of 
the local, uncoupled reaction per unit area on the pile, p, over the pile deflec-
tion, w (Figure 7.1b) (i.e., the conventional modulus of subgrade reaction).

The fictitious tension, Np, is due to the stress variations in the vertical 
direction (Equation 7.6) and causes the shear force, QB, at a pile base. It 
may be a pair of equilibrating external forces acting in the center of gravity 
of the end cross-sections of the pile (Hetenyi 1946); or a ratio of the modu-
lus of subgrade reaction, k, over a “shear stiffness” of the pile (Cowper 
1966; Yin 2000). Under lateral loading, real tensile force (e.g., in a steel bar 
of soil nails) (Pedley et al. 1990) is a multiplier of the pile rotation and the 
distance between the bar and the neutral axis (Yin 2000).
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7.3 VALIDATION

The current approach differs essentially from the two-parameter model (Sun 
1994) in using the new stress field and the shear modulus, G*. This is further 
validated in terms of normalized deformation ρG*ro/H (ρ = pile-head defor-
mation) and normalized moment Mmax/HLc (Mmax = the maximum bending 
moment; and Lc = a critical pile length defined next) in the loading direction 
(θ = 0). The impact of Poisson’s ratio, νs, on the pile response is investigated 
using Equation 7.12 and shown in Figure 7.3. The figure indicate: (1) an 
excellent agreement in head- displacement and moment at νs = 0 between cur-
rent predictions and the two-parameter model (Sun 1994), although both are 
slightly lower than the finite element predictions (Randolph 1981b); (2) sim-
ilar bending moment (at νs = 0.5) to the boundary element approach (Poulos 
1971); and (3) significant underestimation of the displacement and moment 
using the two-parameter model (Sun 1994) for νs > 0.3. The current solutions 
offer a better simulation of the response of a single pile–soil system than the two-
parameter model at a Poisson’s ratio higher than 0.3, as further highlighted next.

7.4 PARAMETRIC STUDY

7.4.1 Critical pile length

There exists a critical length, Lc, beyond which pile-head response and maxi-
mum bending moment stay as constants (Hetenyi 1946; Randolph 1981b). 
The modulus, k, may be as high as 10G, thus critical length Lc may be as low as
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Figure 7.3  Comparison of pile response due to Poisson’s ratio (L/ro = 50). (a) Deflection. 
(b) Maximum bending moment. (After Guo, W. D., and F. H. Lee, Int J Numer 
and Anal Meth in Geomech 25, 11, 2001.)
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 L r E Gc o s p≈ +2 1 1 0 75 0 25. [( . ) / ]* .ν  (7.15)

On the other hand, in Equation 7.15 the slenderness ratio of Lc/ro allows a 
critical pile–soil stiffness, (Ep/G*)c, to be gained as
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Given l < Lc, or (Ep/G*) > (Ep/G*)c, the piles are referred to as “short piles,” 
otherwise as “long piles.” It may be shown that the critical pile length for 
lateral loading is generally the shortest, in comparison with vertical or tor-
sional loading (Randolph 1981a; Fleming et al. 1992; Guo and Randolph 
1996); and “Short piles,” as defined herein, are not necessarily equivalent to 
rigid piles, as stubby, rock-socketed piles are (Carter and Kulhawy 1992).

7.4.2 Short and long piles

The pile-head deformation and the maximum bending moment were esti-
mated for various pile slenderness ratios, l/ro, using Equation 7.12 and 
its second derivative. This allows a critical length Lc (i.e, Guo and Lee 
2001) to be directly, albeit approximately, determined for each pile–soil 
relative stiffness ratio. The results compare well with those estimated by 
Equation 7.15 (see Figure 7.4), albeit generally slightly lower than those 
obtained from the finite element analysis (Randolph 1981b). The critical 
stiffness, (Ep/G*)c, increases to four times that of Equation 7.16 in the 
case of free-head clamped piles due to the moment loading, FreHCP(Mo), 
or fixed-head floating piles due to the lateral loading, FixHFP(H), as is 
seen in the load transfer factors or in later figures for the moment or 
rotation response. Thereby, with Equation 7.15, the critical pile length 
should be 41% longer, which, represented by 1.41*Equation 7.15, is illus-
trated in Figure 7.4 as the upper limit of the effective pile length. Overall, 
the critical length may well fall in those estimated by Equation 7.15 and 
1.4*Equation 7.15.

7.4.3  Maximum bending moment 
and the critical depth

Simple expressions for the maximum bending moment, Mmax, and the 
depth, zm, at which the Mmax occurs are developed using Equation 7.12 and 
relevant available solutions.

7.4.3.1 Free-head piles

For free-head piles (no restraints but soil resistance), the depth zm 
and moment Mmax were obtained directly using Equation 7.12. The 
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corresponding normalized values are presented in Figures 7.4 and 7.5b as 
Guo and Lee, which show the following:

 1. The depth zm is 25~30% the critical length Lc (Randolph 1981b)
 2. With Ep/G* < (Ep/G*)c, the zm and the Mmax for long piles may be esti-

mated using Equations 7.17 and 7.18a developed for a semi-infinitely 
long beam (Hetenyi 1946):

 zm =






1
β

β
α

arctan  (7.17)

 M
H

e zm

max ( )
=
− +

−
−α β

α β
α

2 2

2 23
 (7.18a)

  The Mmax may be estimated by Equation 7.18b proposed for an infi-
nitely long beam (Scott 1981):

 M Hmax ( )= − 4α  (7.18b)

  With α given by Equation 7.13, Equation 7.18b compares well with 
the FEM results (Randolph 1981b), although both are slightly higher 
than the current predictions.

107106105104103102
1

10

100

Lc/ro

zm/ro

(Ep/G*)c
= 238,228

Free-head piles
l/ro = 50, s = 0.5

 Floating piles
 Floating piles (excluding base)
 Randolph (1981b)
 Clamped piles
 Equation 7.17,  1.41 Equation 7.15
 Equation 7.15
 Guo and Lee (2001)N

or
m

al
iz

ed
 d

ep
th

 z m
/r

o a
nd

 cr
iti

ca
l l

en
gt

h 
L c

/r
o

Relative stiffness ratio, Ep/G*

Figure 7.4  Depth of maximum bending moment and critical pile length. (After Guo, W. D. 
and F. H. Lee, Int J Numer and Anal Meth in Geomech 25, 11, 2001.)
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 3. Otherwise, if Ep/G* > (Ep/G*)c, the Mmax for floating base, rigid piles 
may be estimated by Equation 7.19 (Scott 1981), whereas Mmax ≈ −Hl 
for clamped base, rigid piles:

 M Hlmax /= −4 27 (7.19)

  Free-head, short, floating piles [FreHFP(H)] may be taken as rigid, 
whereas short, clamped piles [FreHCP(H)] should not, only if, say, 
Ep/G* >108 at l/ro = 50. 

 4. −Mmax/HLc is 0.13 for flexible piles (Randolph 1981b) and 0.148 l/Lc 
for rigid piles.

7.4.3.2 Fixed-head piles

For fixed-head piles, the moment, Mmax, occurs at ground level (zm = 0). 
Equation 7.12 allows Mmax to be simplified as Equations 7.20 and 7.21 for 
clamped [FixHCP(H)] and floating [FixHFP(P)] piles, respectively:
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As shown in Figure 7.6b, using the parameters k and Np of Equation 
7.10, the Mmax by either Equation 7.20 or 7.21 is ~7% smaller than finite 
element results for long piles (Randolph 1981b); and the difference in the 
Mmax between Equations 7.20 and 7.21 is ~20% for rigid piles (e.g., Ep/G* 
≥ 107, given l/ro = 50), with an average Mmax of 0.5Hl and 0.6Hl for floating 
piles and clamped piles, respectively.

7.4.4 Effect of various head and base conditions

The impact of the pile-head and base conditions on the response of maxi-
mum bending moment, Mmax, and the pile-head displacement, ρ, is exam-
ined here.

For free-head, clamped piles [FreHCP(H)], Figure 7.5a and b show at 
a high stiffness Ep/G*, a negligible normalized pile head-deformation 
ρGro/H, and Mmax ≈ Hl. Also, with Ep/G* < (Ep/G*)c, both the normalized 
deformation ρGro/H and moment −Mmax/HLc may be approximated by rel-
evant simple expressions Equations 7.18a and b for the moment Mmax. Free-
head, floating short piles [FreHFP(H)] observe ρkl/H = 4 (Scott 1981). The 
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Figure 7.6  Single (fixed-head) pile response due to variation in pile–soil relative stiffness. 
(a) Deformation. (b) Maximum bending moment. (After Guo, W. D., Proc 8th 
Int Conf on Civil and Structural Engrg Computing, paper 112, Eisenstadt, Vienna, 
2001a.)
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ratio (see Figure 7.5a) agrees with current solution using k only and shows 
the impact of Np against Guo and Lee’s predictions (2001). The impact is 
not seen in the maximum moment (independent of the k) and well captured 
by Equation 7.19.

For fixed-head piles, comparison between Figures 7.5a and 7.6a shows 
the normalized pile-head deformation of FixHCP(H) piles over that of free-
head FreHCP(H) pile ranges from 1/2∼2/3 for long, clamped piles to 1/4 for 
short, floating piles. The deformation for the fixed-head [FixHFP(H)], rigid 
piles (see Figure 7.6a), compares well with other approaches. The maxi-
mum moment for rigid piles differs by 2~7 times due to head and base con-
ditions, as mentioned before from ~0.6Hl (FixHCP) to Hl (FreHCP), and 
from 0.148Hl (FreHFP) to Hl (FreHCP).

7.4.5 Moment-induced pile response

With pure moment, Mo, on the pile-head, the normalized pile-head displace-
ment was calculated using Equation 7.12 and is illustrated in Figure 7.7. It 
compares well with numerical approaches (Poulos 1971; Randolph 1981b) 
for long piles, but it is markedly lower than that for short rigid piles charac-
terized by a limiting displacement, ρ of −6Mo/(kl2) (Scott 1981). The latter 
difference implies the accuracy of the simplified stress field, Equation 7.2, 
and the displacements fields, Equation 7.1. The maximum bending moment 
Mmax (= Mo) occurs at zm = 0, which is not the case for a combined load, H, 
and the moment, Mo. The latter has to be obtained by Equation 7.12.

7.4.6 Rotation of pile-head

The pile-head rotation θo due to either the lateral load H, or the moment 
Mo (at the ground level), has been estimated individually using Equation 
7.12. As presented in Figure 7.7b, the normalized pile rotations θoG*ro

2/H 
and θoG*ro

3/Mo compare well with the FEM results (Randolph 1981b) with 
Ep/G* < 4(Ep/G*)c. Otherwise, they are slightly lower than that gained 
from the limiting rotations, θo of -6H/(kl2), or higher than that calculated 
from θo = 12Mo/(kl3), respectively, for rigid, floating piles due to lateral load 
H or moment Mo

 (Scott 1981).

7.5 SUBGRADE MODULUS AND DESIGN CHARTS

Normalized pile response was estimated using Equation 7.12, in light of 
existing formulae for subgrade modulus including Biot’s k (1937), Vesić’s 
k (1961b), and Bolwes’ k (1997) (see Chapter 3, this book). The results 
are presented in form of ρG*ro/H, Mmax/(HLc), θoG*ro

2/H and θoG*ro
3/Mo 

in Figures 7.5 through 7.7 together with relevant numerical results. These 
figures indicate that
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due to moment or lateral loading. (After Guo, W. D., Proc 8th Int Conf on Civil 
and Structural Engrg Computing, paper 112, Eisenstadt, Vienna, 2001a.)
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•	 For free- or fixed-head piles due to lateral load, the solutions using 
Vesić’s k for beams offer invariably highest values than other results. 
The k is conservative for lateral pile analysis.

•	 The Bowles’ k is close to the current k (Guo and Lee 2001), for fixed- 
and free-head flexible piles. Nevertheless, without the fictitious ten-
sion (Np), both would generally overestimate the displacement and 
Mmax by ~30% compared to relevant numerical results. The Biot’s k is 
in between the Bowles’ k and the current k.

•	 None of the available suggestions are suitable for rigid pile analysis.

Measured distributions of the mobilized front pressure around the cir-
cumference of a pile approximately follows the theoretical prediction 
(Baguelin et al. 1977; Guo 2008). Side shear contributes 88% of soil reaction 
from horizontal equilibrium (Smith 1987), rather than 100% as implicitly 
assumed previously (Kishida and Nakai 1977; Bowles 1997). Therefore, 
the current proposal is more rational than the available suggestions.

Design charts for typical pile slenderness ratios are provided for the 
normalized deflections ρG*ro/H and −ρG*ro

2/Mo (Figure 7.8), normalized 
bending moment, Mmax/(Hl) (Figure 7.9), and rotations θoG*ro

2/H and 
θoG*ro

3/Mo (Figure 7.10). The deflections for a combined lateral load and 
moment can be added together, such as Figure 7.11a and b for some typi-
cal loading eccentricities (e = Mo/H), and with clamped and floating base, 
respectively.

7.6 PILE GROUP RESPONSE

Pile-pile interaction was well predicted using expressions derived from 
Equation 7.9 against the FEM results (at various directions of θ) (Randolph 
1981b), such as in Figure 7.12, and is affected by the pile-head constraints 
(see Figure 7.13).

7.6.1 Interaction factor

The increase in displacement of a pile due to a neighboring pile is nor-
mally estimated by an interaction factor, α (Poulos 1971; Randolph 1981b). 
Generally, the deformation of the i-th pile in a group of ng piles may be 
written as (Poulos 1971)

 w
H

Hi ij
j

n

j

g

=
=
∑ρ α

1

 (7.22)

where αij = the interaction factor between the i-th pile and j-th pile; later it 
may be simply written as α (αij = 1, i = j). Generally, four interaction factors 
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are required (Poulos 1971): αρP and αρM reflect increase in deflection due 
to lateral load (for both free-head and fixed-head) and moment loading, 
respectively; αθP and αθM reflect increase in rotation due to lateral load and 
moment loading (αρM = αθP from the reciprocal theorem), respectively. The 
factors for two identical piles at a pile center-to-center spacing, s, may be 
obtained using Equation 7.2. For instance, αρP may be expressed as

 α φ
σ τ

ρ

θ

P

r r

w z s w z s
Gw z= ′

+













( ) ( ) ( ) ( )
( )φ φ

2 2
 (7.23)
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The expression may be further simplified as

 α θ θ
γ
γρP

o b o

o b

K r s

K
= +sin cos

( )

( )
2 24  (7.24)

Figure 7.12a shows that Equation 7.24 well captures the effect of loading 
direction on the displacement factor, αρP, compared to the FEM (Randolph 
1981b), which is also evident for the particular loading direction θ = π/2 at 
various spacing (Figure 7.12b). At θ = 0, the interaction for the overall pile 
response seems to be influenced mainly by radial stress σr. The normalized 
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stresses (by the values at the pile–soil interface) such as Equation 7.24 
predominately affect the neighboring pile. They are well predicted by 
the current analysis using λs = 0, rather than the two-parameter model 
at a Poisson’s ratio νs > 0.3, despite of underestimating the stress, σr, and 
overestimating the τrθ (e.g., Figure 7.2). A larger pile-pile interaction (see 
Figure 7.12c) is associated with the fixed-head case than the free-head case, 
although the former involves lower stresses than the latter does (Figure 
7.13). The negligible impact of Poisson’s ratio on the interaction factor (not 
shown) is not well modeled using the two-parameter model (see Figure 7.2).
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Figure 7.13  Radial stress distributions for free- and fixed-head (clamped) pile. For 
intact model: νs = 0.33, H = 10 kN, ro = 0.22 cm, Ep/G* = 47695, R = 20ro 
(free-head), 30ro (fixed-head). (a) Radial deformation. (b) Radial stress. (c) 
Circumferential stress. (d) Shear stress.

www.engbasics.com



Elastic solutions for laterally loaded piles 227

In a similar manner, the factors αθP and αθM are deduced, respectively, as

 α θ θ
γ
γθP

b o

b

K r s

K
= +sin cos

( )

( )
2 2 1

1

4  (7.25)
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1

4
γγ γb o bK ( )

 (7.26)

Equation 7.25 compares well with FEM study (Randolph 1981b), as indi-
cated in Figure 7.12d, but Equation 7.26 shows slight overestimation of the 
αθM (not shown here).

7.7 CONCLUSION

This chapter provides elastic solutions for lateral piles, which encompass 
a new load transfer approach for piles in a homogenous, elastic medium; 
and compact closed-form expressions for the piles and the surrounding soil 
that are underpinned by modulus of subgrade reaction, k, and the fictitious 
tension, Np, and the load transfer factor γb linking the response of the pile 
and the surrounding soil. The expressions compare well with more rigorous 
numerical approaches and well capture the effect of the pile-head and base 
conditions to any pile–soil relative stiffness but avoid the unreasonable 
predictions at high Poisson’s ratio using the conventional two-parameter 
model.

The approach can be reduced physically to the available uncoupled 
approach for a beam using the Winkler model, and/or a two-dimensional 
rigid disc. The current parameters k and Np may be used in the available 
Hetenyi’s solutions to gain predictions for long flexible piles. Short piles of 
sufficiently high stiffness, or of free head, floating base, may be treated as 
“rigid piles.” The maximum bending moment for the free-head rigid piles 
is ~7 times that for the fixed-head case.

Complicated loading may be decomposed into a number of components, 
which can be modeled using the current approach for a concentrated load 
and moment.
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Chapter 8

Laterally loaded rigid piles

8.1 INTRODUCTION

Extensive in situ full-scale and laboratory model tests have been con-
ducted on laterally loaded rigid piles (including piers and drilled shafts, 
see Figure  8.1). The results have been synthesized into various simple 
 expressions (see Table 3.7, Chapter 3, this book) to estimate lateral bearing 
capacity. To assess nonlinear pile–soil interaction, centrifuge and  numerical 
finite element (FE) modeling (Laman et al. 1999) have been conducted. 
These tests and modeling demonstrate a diverse range of values for the 
key parameter of limiting force per unit length along the pile (pu profile, 
also termed as LFP). The divergence has been attributed to different stress 
levels and is theoretically incomparable (Guo 2008). With the development 
of mono-pile (rigid) foundation for wind turbine, it is imperative to have 
a stringent nonlinear model for modeling the overall nonlinear response 
at any stage. The model should also allow unique back-estimation of the 
parameters using measured nonlinear response.

In this chapter, elastic-plastic solutions are developed for laterally 
loaded  rigid piles. They are presented in explicit expressions, which 
allow (1) nonlinear responses of the piles to be predicted; (2) the on-pile 
force   profiles at any loading levels to be constructed; (3) the new yield 
 (critical) states to be determined; and (4) the displacement-based pile 
 capacity to be estimated. By stipulating a linear LFP or a uniform LFP, 
the study employs a uniform modulus with depth or a linearly increasing 
modulus.

A spreadsheet program was developed to facilitate numeric calculation 
of the solutions. Comparison with measured data and FE analysis will be 
presented to illustrate the accuracy and highlight the characteristics of the 
new solutions. A sample study will be elaborated to show all the aforemen-
tioned facets, apart from the impact of modulus profile, the back-estima-
tion of soil modulus, and the calculation of stress distribution around a pile 
surface.
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8.2 ELASTIC PLASTIC SOLUTIONS

8.2.1 Features of laterally loaded rigid piles

Under a lateral load, H, applied at an eccentricity, e, above groundline, 
elastic-plastic solutions for infinitely long, flexible piles have been devel-
oped previously (Guo 2006). Capitalized on a generic LFP, these solutions, 
however, do not allow pile–soil relative slip to be initiated from the pile 
tip. Thus, theoretically speaking, they are not applicable to a rigid pile dis-
cussed herein.

With a Gibson pu (a linear LFP), the on-pile force (pressure) profile alters 
as presented previously in Chapter 3, this book, for constant or Gibson k. 
It actually characterizes the mobilization of the resistance along the unique 
pu profile (independent of pile displacement). Given a uniform pu (= Ngsud), 
and constant k [= p/(du)] the profile is shown in Figure 8.2a1–c1 as solid 
lines, which is mobilized along the stipulated constant LFP (Broms 1964) 
indicated by the two dashed lines. As with a Gibson pu, three typical states 
of yield between pile and soil are noted. At the tip-yield state, the on-pile 
force profile follows the positive LFP down to a depth of zo, below which it 
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u* = Ar/ko
[u* = Arzo/k]
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Figure 8.1  Schematic analysis for a rigid pile. (a) Pile–soil system. (b) Load transfer 
model. (c) Gibson pu (LFP) profile. (d) Pile displacement features.
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is governed by elastic interaction (u* = Ngsu/k). In addition, a load beyond 
the tip-yield state enables the limiting force to be fully mobilized from the 
tip as well and to a depth of z1. A maximum load may render the depths zo, 

z1 to merge with the depth of rotation zr (i.e., zo = zr = z1), which is practi-
cally unachievable, but for a fully plastic (ultimate) state (see Figure 8.2c1).
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Figure 8.2  Schematic limiting force profile, on-pile force profile, and pile deformation. 
(ai) Tip-yield state, (bi) Post-tip yield state, (ci) Impossible yield at rotation 
point (YRP) (piles in clay) (i = 1 p profiles, 2 deflection profiles).
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Assuming a constant k, solutions for a rigid pile were deduced previously 
for a uniform pu profile with depth (Scott 1981), and for a linear (Gibson) 
pu profile (Motta 1997), respectively. With a Gibson pu profile, closed-form 
solutions were developed and presented in compact form (Guo 2003) of the 
slip depths (see Table 8.1). The latter allows nonlinear responses to be read-
ily estimated, along with responses at defined critical states (Guo 2008), 
such as the on-pile pu profiles in Figure 8.3. The solutions for Gibson pu and 
new solutions for constant pu are presented in this chapter.

8.2.2  Solutions for pre-tip yield state 
(Gibson pu, either k)

8.2.2.1  H, ug, ω , and zr for Gibson pu and Gibson k

Given a Gibson k featured by p = kodzu, and Gibson pu (= Ardz), the solu-
tions (Guo 2008) are elaborated next. Characterized by u* = Ar/ko and u = 
ωz + ug, the unknown rotation ω and groundline displacement ug of a rigid 
pile are expressed primarily as functions of the pile-head load, H, and the 
slip depth, zo (see Figure 8.1).
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where H  = H/(Ardl2), normalized pile-head load; ug = ugko/Ar), normalized 
groundline displacement; ω = rotation angle (in radian) of the pile; zr = zr/l, 
normalized depth of rotation, z z lo o= , and e e l= . These solutions are 
characterised by:

 1. Two soil-related parameters, ko and Ar, or up to three measurable soil 
parameters, as the ko is related to G (see Equation 3.62, Chapter 3, 
this book); while Ar is calculated using the unit weight γs′, and angle 
of soil friction, ϕ′ with Ar = γs′Ng (see Equation 3.68 and Table 3.7, 
Chapter 3, this book, with Ar = AL/d, n =1).

 2. The sole variable zo/l to capture nonlinear response. Assigning a value to 
zo/l, for instance, a pair of pile-head load H and groundline displacement 
ug are calculated using Equation 8.1 and Equation 8.2, respectively.
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 3. A proportional increase of the H to the pile diameter (width) as per 
Equation 8.1. The ug implicitly involves with the pile dimensions via 
the ko that in turn is related to pile slenderness ratio (l/ro) via the γb 

(Chapter 3, this book).
 4. A free length e of the loading point (H) above ground level, or an e = 

Mo/H to accommodate moment loading Mo at groundline level.

8.2.2.2  H, ug, ω , and zr  for Gibson pu and constant k

As for Gibson pu and constant k (with p = kdu), the solutions are provided 
in Table 8.1 (right column). The equations or results are generally high-
lighted using numbers postfixed with “g” and/or are set in brackets. They 
have similar features to Gibson pu and Gibson k. The difference is that a 
plastic (slip) zone for Gibson k is not initiated (i.e., zo > 0) from groundline 
until the H exceeds Ardl2/(24e/l + 18); whereas the slip for constant k is 
developed upon a tiny loading. The latter implies the need of elastic-plastic 
solutions rather than elastic solutions (Scott 1981; Sogge 1981) in practice.

Salient features of the current solutions are illustrated for two extreme 
cases of e = 0 and ∞. Assuming a Gibson pu and Gibson k, the usage of 
relevant expressions for zo ≤ z* (z* = zo at tip-yield state) (for e < 3.0 practi-
cally) may refer to Table 8.2. Given e = ∞ (or practically e ≥ 3), Equations 
8.1 through 8.4 do reduce to those expressions in Table 8.3 gained for pure 
moment loading Mo (with H = 0), including the normalized ratios for the ug, 
ω, and Mo. For instance, the normalized moment per Equation 8.1 degener-
ates to Mo[= Mo/(Ardl3)] and Mo = He of:

 M
z z

zo
o o

o

=
+ +

+
1 2 3

12 2

2

( )
 (8.5)

Table 8.2 Response at various states [e = 0, Gibson pu and Gibson k/(constant k)]

Items H/(Ardl2)

u k /A

[u k/A l]
g o r

g r

ω
ω
k l/A

k/A
o r

[ ]r Mm/(Ardl3)

zo ≤ z* Equation
Equation g

8 1
8 1

.
[ . ]

Equation
Equation g

8 2
8 2

.
[ . ]

Equation
Equation g

8 3
8 3

.
[ . ]

Equation
Equation g

for

8 22
8 22

.
[ .

]or >M z zm m o

Tip-yielda 0 113
0 118
.

[ . ]
3 383
3 236
.

[ . ]
−
−

4 3831
4 2352

.
[ . ]

0 036
0 038
.

[ . ]

YRPb 0 130
0 130
.

[ . ]

∞ 0 5

0 5

. /

[ . / ]

π
π
k l A

k A
o r

r

0 0442
0 0442
.

[ . ]

a z* = 0.5437/[0.618], zr= 0.772/[0.764], zm= 0.4756/[0.4859], and Cy= 0.296/[0.236]
b At the YRP state, all critical values are independent of k distribution. Thus, zo= zr= 0.7937/

[0.7937], zm= 0.5098/[0.5098].  Also, Mo = 0.
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Assuming a Gibson pu and constant k, the corresponding features are pro-
vided in the Tables 8.2 and 8.3 as well.

8.2.3  Solutions for pre-tip yield state 
(constant pu and constant k)

Given constant pu (= Ngsud) and constant k (= p/du), typical normalized 
expressions were deduced and are shown in Table 8.1 (left column). For 
instance, H , ug are given by

 
H

N s dl

z

z eg u

o

o

=
+

+ +
0 5 1 2

2 3

. ( )
 and (8.6)

 
u k

N s

z e z

z e z
g

g u

o o

o o

=
+ + +
+ + −

2 3 1

2 3 1

2 3

2

( )

( )( )
 (8.7)

The normalized ratios for the ug, ω, and Mo are provided in Table 8.1. Given 
e = 0, the solutions reduce to those obtained previouly (Scott 1981). Similar 
features to those for Gibson pu (see Table 8.1) are noted, such as

•	 A plastic (slip) zone is not initiated (i.e., zo > 0) from groundline until 
the H exceeds 0.5Ardl/(3e/l + 2).

•	 Given e = ∞, the solutions do reduce to those obtained for pure moment 
loading Mo (with H = 0). For instance, the moment Mm degenerates to 
Mo (= He). Its nondimensional form of Mo [= Mo/(Ngsudl2)] is given by:

 M zo o= +( )1 2 6 (8.8)

•	 Finally, the calculation of Mm depends on the relative value between 
zm and zo, although the simple expression Mm for zm ≤ zo is generally 
sufficiently accurate.

Table 8.3  Response at various states (e = ∞, Gibson pu, and 
Gibson k [constant k])

Items ugko/Ar/[ugk/Arl] ωkol/Ar/[ωk/Ar] Mo/(Ardl3)

zo ≤ z* 2

1 2

3

2

+
− +

z

z z
o

o o( ) ( )

[
( )

]
z

z
o

o1 2−

−
− +

3

1 22( ) ( )z zo o

[
( )

( )
]

z z

z
o o

o

−
−

2

1 2

1 2 3

12 2

2+ +
+

z z

z
o o

o( )

[zo/6]

Tip 
yield a 

2.155/[2.0] −3.1545/[−3.0] 0.0752/[0.0833]

YRP b ∞ 0.5πkol/Ar/[0.5πk/Ar] 0.0976/[0.0976]

a z* = 0.366/[0.50], zr= 0.683/[0.667], zm= 0/[0], and Cy= 0.464/[0.333]
b zo= zr= 0.7071/[0.7071], and zm= 0 [0]. 
 Also, H = 0, and Mo = Mm

www.engbasics.com



238 Theory and practice of pile foundations

8.2.4  Solutions for post-tip yield state 
(Gibson pu, either k)

8.2.4.1  H, ug, and zr
 for Gibson pu and Gibson k

Equations 8.1 through 8.4 for pre-tip and tip-yield states are featured by 
the yield to the depth zo (being initiated from groundline only). As illus-
trated in Chapter 3, this book, at a sufficiently high load level, another 
yield zone to depth z1 may be developed from the pile tip as well. Increase 
load will cause the two yield zones to move towards each other and to 
approach the practically impossible ultimate state of equal depths of zo = 
z1 = zr (see Figure 8.2c2). This is termed the post-tip yield state, for which 
horizontal force equilibrium of the entire pile, and bending moment equi-
librium about the pile-head (rather than the tip), were used to deduce the 
solutions. A variable C [= Ar/(ugko)] is introduced as the reciprocal of the 
normalized displacement (see Equation 8.2). It must not exceed its value 
Cy at the tip-yield state (i.e., C < Cy, and ug being estimated using Equation 
8.2 and zo = z*) to induce the post-tip yield state. With this C, the equations 
or expressions for estimating zr, H, and ug (Gibson pu and Gibson k) are 
expressed as follows:

 1. The rotation depth zr is governed by the C and the e/l

 z
C

C
ez

C
er r

3
2

2
2

2

3
2 1

1
4 1

2 3 0+ +
+

−
+

+( ) =
( ) ( )

. (8.9)

  The solution of Equation 8.9 may be approximated by

 z A A Dr = + −0
3

1
3

1 6/  (8.10)

 A D D D D Dj o
j

o o= − + − −( / / ) ( ) [( ) / ] /8 216 1 27 2 17281
3 2

1
3 1 2 (j = 0, 1) (8.11)

 D
C

C
e D

e

Co1

2

2 2

3
1

2 3
1

= +
+

= +
+

 (8.12)

 2. The normalized head-load, H/(Ardl2) and the groundline displace-
ment, ug, are deduced as

 H
C

zr= +






−1
3

0 5
2

2 .  (8.13)

 u A k Cg r o= ( ) (8.14)

 3. The slip depths from the pile head, zo, and the tip, z1, are computed 
using zo = zr(1 − C) and z1 = zr(1 + C), respectively.
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8.2.4.2  H, ug, and zr  for Gibson pu and constant k

As for the constant k (Gibson pu), a new variable C [= Arzr/(ugk)] was defined 
using Equation 8.14g in Table 8.4 as the product of the reciprocal of the 
normalized displacement ugk/Arl and the normalized rotation depth zr/l. 
With this C, the counterparts for Equations 8.9 through 8.14 are provided 
in Table 8.4, and zo [= zr/(1 − C)] and z1 [= zr/(1 + C)] (see Table 8.5).

Table 8.4  Responses of piles with Gibson pu and constant k (post-tip 
yield state) 

Expressions Equations

H

A dl C
z

r
r2 2
20 5

2

1
1=

−
−









.  where C = Arzr/(k ug)

u A z kCg r r= ( )

[8.13g]

[8.14g]

The ratio zr/l is governed by the following expression:

z C ez e Cr r
3 2 2 2 21 51 0 5 0 75 1 0+ − − + − =. ( ) ( . . )( )

Thus, the zr/l should be obtained using

[ . ( . . ) ]

[ . ( . )

− − + +

+ + +

1 5 0 5 0 75

1 5 1 1 5

2 4 4 3eC e C z z

e e

g g r r

CC z eg r
2 2 0 5 0 75 0] ( . . )− + =

 
where Cg = Cl/(kzr). 

[8.9g]

zr  may be approximated by the following solution (Guo 2003):

z C A A er = − + −0 51 2
0

3
1

3. ( )( ) (Iteration required)

A e
e

C

e

C
e

e
j o

j
o= − + +

−





+ − +

−
− + +3

2 2
32 3

1
1

2 3

1
2

2 3

1
( )

−−
















C 2

1 2/

 (j = 0, 1).

It is generally ~5% less than the exact value of zr . Note that 
Equations 8.20, 8.23, and 8.24 are valid for this “Constant k” case.

[8.10g]

[8.11g]

Source: Guo, W. D., Can Geotech J, 45, 5, 2008.

Table 8.5 Expressions for depth of rotation (Gibson pu, either k)

u
Depth of 
rotation Slip depths Figure 

u = ωz + ug
z

u
r

g= −
ω

zo deduced using Equations 8.1~8.4 3.28a

z C z

z z C
r

r

1

1

1

1

= +
= −

( )

[ / ( )]
z z C

z z C
o r

o r

= −
= +

( )

[ / ( )]

1

1

3.28b

z z zo r1 = = 3.28c

Source:  Guo, W. D., Can Geotech J, 45, 5, 2008. 

Note:  ug, ω, zr, zo, z1 refer to list of symbols. C = Ar/(ugko) (Gibson k), C = Arzr/
(ugk) (Constant k).
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Table 8.6 Solutions for H(z) and M(z) for piles (constant k)

Constant pu Gibson pu (Guo 2008)

(1) z e e e* . . .= − +( )+ + +1 5 0 5 0 5 3 6 9 2 z e e e* . . .= − +( )+ + +1 5 0 5 0 5 5 12 9 2

(2) z e e e
C
lr = − + + + −[ . ( ) ] .2 2 0 50 5

1
3

z C A A er = − + −0 51 2
0

3
1

3. ( )( )

where A e D D e Dj
j= − + + − − +( ) ( ) [ ( )] .3

1 1
3

1
0 51 2  (j = 0, 1); D e C1

22 3 1= + −( ) ( ). Iteration 
required for zr , which is ~5% less than the exact value of zr .

(3) z z Cr1 = +  z z Co r= − z z Cr1 1= −/ ( ) z z Co r= +/ ( )1

(4) H zr= −2 1
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−
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8.2.5  Solutions for post-tip yield state 
(constant pu and constant k)

Given constant pu and constant k, the expressions for estimating zr, H, and 
ug at this state are provided in Table 8.6 and highlighted in the following:
 1. The normalized rotation depth zr is governed by the C/l and the e/l

 
z e e e

C
lr = − + + + −



















2

2 0 5

0 5
1
3

.

.

 (8.15)

  where C = zru*/ug, C/l = ratio of the normalized rotation depth zr/l 
over the normalized displacement ug/u*. The variable C must not 
exceed Cy (C at for the tip-yield state) to ensure the post-tip yield state. 
The Cy is obtained using ug, which is calculated by substituting zo = z* 
into Equation 8.7.

 2. The normalized load, H/(Ngsudl), and the groundine displacement, ug, 
are given by

 H zr= −2 1 (8.16)

 u
N s

k

z

Cg

g u r=  (8.17)

 3. The slip depths from the pile head, zo, and the tip, z1, are computed 
using zo = zr − C and z1 = zr + C, respectively.

The pile-head displaces infinitely as the C approaches zero, see Equation 
8.14 or Equation 8.17, offering an upper bound featured by zr = zo. Equation 
8.10 or Equation 8.15 provides the rotation depth, zr (thus zo and z1), for 
each ug. The zr in turn allows the rotation angle ω (= − ug/zr) to be obtained. 
Other normalized expressions for the post-tip yield state are provided in 
Table 8.7, together with those for Gibson pu.

8.2.6  ug , ω, and p profiles (Gibson pu, tip-yield state)

Referring to Figure 3.28 (Chapter 3, this book), the expression of −u* = 
−Ar/ko = ωz1 + ug for tip-yield state (zo = z*) is transformed into the following 
form to resolve the z*, by replacing ug with that given by Equation 8.2, ω, 
with that by Equation 8.3, and z1 with l:

 z e z e z e* * *( ) ( ) ( )3 22 1 2 1 1 0+ + + + − + =  (8.18)

The z*/l was estimated for e/l = 0~100 using Equation 8.18, and it is illus-
trated in Figure 8.4a. With the values of z*/l (the tip-yield state), the responses 
of ugkolm/(Arl) and ωkolm/Ar (note k = kozm, m = 0, and 1 for constant k and 
Gibson k) were calculated and are presented in Figure 8.4b and c, and in 
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Tables 8.2 and 8.3. The counterparts for constant k were obtained using z*/l 
expression (right column in Table 8.6) and are provided in the square [] brack-
ets for e = 0 and ∞ in Tables 8.2 and 8.3 as well. For instance, a Gibson pu 
and constant k at e = 0 would have z* = 0.618l and zr = 0.764l (see Table 8.2); 
and at e = ∞, z* = 0.5l and zr = 0.667l (see Table 8.3). As the e increases from 
groundline (pure lateral loading) to infinitely large (pure moment loading), the 
ug reduces by 36% [38%] and the ω reduces by 28% [29.2%]. These magni-
tudes of reduction of ~38% is associated with ~30% increase in the maximum 
bending monent for Gibson pu and Gibson k (see Example 8.7)

Example 8.1 p profiles at tip-yield state (Gibson pu)

The normalized on-pile force profiles of p/(Arzod) at the tip-yield state 
are constructed using estimated depths zr and z*. Given pu and k pro-
files, a line is drawn from point (0, 0), to (Ardz*, z*), and then to (0, zr), 

Table 8.7 Response of piles at post-tip yield and YRP states (constant k)

Constant pu Gibson pu Equation

Post-tip yield state

z Hr o= +0 5 1. ( )

M H
C
lo o= + − +
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1
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3 1
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2 1 5( ) .

Yield at rotation point (YRP) (z z zo r1 = = , C = 0)

z Hm o= z Hm o= 2 (8.20)

z zm r= −2 1 z zm r= −[ ] .2 12 0 5 (8.23)
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Mo  and Mm at YRP for various loading directions
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Note: z z l1 1= ; i = 1, 2, j = 1; and i = 3, 4, j = 2. (1) i = 1, j = 1 [Ho
+ , Mo

+ ]; (2) i = 2, j = 1 [Ho
+, Mo

− ]; 
(3) i = 3, j = 2 [Ho

−, Mo
+ ]; and (4) i = 4, j = 2 [Ho

−, Mo
− ]
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n = 0, 1 for constant pu and Gibson pu; k = kozm, m = 0 and 1 for constant and 
Gibson k, respectively.
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and finally to (−Ardl, l) to produce the p profile. The first and the sec-
ond coordinates may be normalized by Ard z* and l, respectively. For 
instance, with Gibson pu and constant k, the normalized profiles are 
constructed using z*/l = 0.618 and zr/l = 0.764 (e = 0), and z*/l = 0.5 and 
zr/l = 0.667 (e = ∞), respectively, as shown in Figure 8.3a. The pressure 
at the pile-tip level increases from 1.6Ar z* to 2Ar z*, as the e increases 
from 0 to ∞. Likewise, with a Gibson pu and Gibson k, the normalized 
profiles are obtained using either z* = 0.544l and zr = 0.772l (e = 0, 
Table 8.2) or z* = 0.366l and zr = 0.683l (e = ∞, Table 8.3), as shown in 
Figure 8.3b. The pile-tip pressure increases from 1.84Ar z* to 2.73Ar z*, 
as the e shifts towards infinitely large from 0.

The on-pile force per unit length (p) profile is governed by the gradi-
ent Ar, the slip depths zo (from the head) and z1 (from the tip), and the 
rotation depth zr. The constructed profiles at tip-yield state for e = 0 
and ∞ (see Figure 8.3a and b) well-bracket the test data provided by 
Prasad and Chari (1999). The tri-linear feature of the “Test” profile 
is also captured using the Gibson k. The slight overestimation of zo 
compared to the measured zo (Prasad and Chari 1999) implies a pre-
tip yield state (see Figure 8.4a), as is evident in the reported capacity 
shown later in Figure 8.8a. Other factors may affect the predictions 
such as k profile and its variation with loading eccentricity, lack of 
measured points about the zo, and nonlinear elastic-plastic p-y curve.

8.2.7  ug, ω, and p profiles (constant 
pu, tip-yield state)

Pile-tip yields upon satisfying − = +u l ug
* ω , regardless of pu profile. This 

expression may be expanded, by replacing ug and ω, respectively, with 
those gained from ug and ω (see Table 8.1), in which zo = z*. The z* for a 
constant pu is thus obtained as

 z e e e* . . .= − +( ) + + +1 5 0 5 0 5 3 6 9 2  (8.19)

The z* is different from that for Gibson pu in the square root (see Table 8.1) 
and was estimated for e = 0~100. The z* allows normalized values of ug and 
ω to be calculated in terms of the expressions in Table 8.1. The results (indi-
cated by constant pu) are presented in Figure 8.4a through c. The impact 
of pu profile on ug and ω is illustrated in Figure 8.4e. Typical values are 
provided in Table 8.8 for extreme cases of e = 0 and ∞.

Example 8.2 p profiles at tip-yield state (constant pu)

As with a Gibson pu, the force per unit length p (along normalized depth) 
at the tip-yield state for constant pu and constant k is constructed by 
drawing lines in sequence between adjacent points (Ngsud, 0), (Ngsud, 
z*), (0, zr ), (−Ngsud, z1), and (−Ngsud, 1), resembling Figure 8.2b1. A con-
stant pu is associated with z* = 0.366 and zr  = 0.683 for e = 0. The 

www.engbasics.com



Laterally loaded rigid piles 245

normalized on-pile p  [= p/(Ngsud)] profile is plotted against the normal-
ized depth in Figure 8.3c as the current “CF” (closed-form) solu-
tions, in which Ar = Ngsu and normalized measured p on model piles 
in clay-sand layers (Meyerhof and Sastray 1985) is also provided.

8.2.8 Yield at rotation point (YRP, either pu)

The pile-head displaces infinitely as the C approaches zero (see Equation 8.14), 
or zo approaches zr, the yield at rotation point (YRP). While being practically 
unachievable, the state provides a useful upper bound. At YRP state, with 
Gibson pu, Equation 8.13 reduces to that proposed by Petrasovits and Award 
(1972), as the on-pile force profile does (see Figure 3.28c, Chapter 3, this book). 
The LFP is constructed by linking adjacent points (0, 0), (Ardz*, z*), (−Ardz*, zr), 
and (−Ardl, l). Regardless of the modulus k profile, the zr/l is estimated using 
Equation 8.10, C = 0, Do = 2 + 3e/l, and D1 = 3e/l (from Equations 8.11 and 
8.12) regarding e ≠ ∞; otherwise, it is gained directly using Equation 8.9. For 
instance, at e = 0, Do = 2, and D1 = 0 (from Equation 8.12), Ao = 0.5, and A1 = 0 
(from Equation 8.11), and the zr/l is evaluated as 0.7937; with e = ∞ in Equation 
8.9, the zr/l is directly computed as 0.7071.

As for a constant pu, response of rigid piles at the YRP state (see Figure 8.2) 
is calculated using Equations 8.15 through 8.17 and C = 0. In the case of e = 0, 
we have zo (= zr) = 0.707 and the on-pile force profile shown in Figure 8.3c.

8.2.9  Maximum bending moment 
and its depth (Gibson pu)

8.2.9.1  Pre-tip yield (zo < z*) and tip-yield (zo = z*) states

The depth zm at which the maximum bending moment occurs is given by 
Equation 8.20 if zm ≤ zo, and otherwise by Equation 8.21.

Table 8.8 Critical response at tip-yield state (constant k)

For Constant pu 

z l*
H

N s dlg u

u k

N s
g

g u

ωkl
N sg u

zr/l Cy

e = 0 0.366 0.366 2.155 −3.155 0.683 0.194l
e = ∞ 0 0 1.0 −2.0 0.5 0.5l

For Gibson pu

z l*
H

A dlr
2

u k

A l
g

r

ωk
Ar

zr/l Cy

e = 0 0.618 0.118 3.236 −4.235 0.764 0.236

e = ∞ 0.5 0 2.0 −3.0 0.667 0.333
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 z Hm = 2  (zm ≤ zo) (8.20)
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+
+

 
(zm > zo) 

(8.21)

Equation 8.20 offers H/(Ardl2) = 0.5(zm/l)2. With z* gained from Equation 
8.18, the zm/l at tip-yield state was computed for a series of e/l ratios and is 
plotted in Figure 8.4d against e/l. The calculation shows that the zm gener-
ally follows Equation 8.20 as zm < z* (regardless of e/l) is generally noted, 
but for a low load level (pre-tip yield state) and a small eccentricity e (which 
is generally not a concern). The zm converges to zero, as the e/l approaches 
infinitely large (i.e., pure moment loading) (see Table 8.3).

The zm/l from Equation 8.20 allows the maximum bending moment (Mm) 
(for zm ≤ zo) to be gained as

 M z e Hm m= +( )2 3  (zm ≤ zo) (8.22)

Otherwise, with zm/l from Equation 8.21, the normalized Mm should 
be  calculated using another expression (not shown herein) (Guo 2008). 
Equation 8.22 is generally valid, independent of pile–soil relative stiffness, 
as it is essentially identical to that for a flexible pile (Guo 2006). Likewise, 
the expressions for the zm and Mm for Gibson pu and constant k were derived 
as provided in Table 8.1. Note that Equations 8.20 and 8.22 are indepedent 
of k profile and are actaully valid from the tip-yield state through to the 
ultimate YRP state (with zm < zo). This will be shown in Section 8.5.

Example 8.3 Features of Mmax and Mo at tip-yield state (Gibson pu)

At the tip-yield state, the Mm was calculated using Equation 8.22 for 
Gibson pu and Gibson k, and Gibson pu and constant k, respectively, 
as zm < zo (Figure 8.4a and d). It is presented in Figure 8.5a through c 
in form of Mm/(Ardl3). The main features are as follows:

 1. The normalized maximum moment Mm obtained is higher 
using constant k than Gibson k (see Figure 8.5b, Gibson pu), 
which  indicates the impact of a higher value of normalized H 
for constant k than Gibson k (shown later). At e = 0 (see Table 
8.2), Mm/(Ardl3) = 0.036 [0.038], with z* = 0.5473 [0.618], and 
H/(Ardl2) = 0.113 [0.118]. At e = ∞ (see Table 8.3), zm = 0 [0], 
Mm = He (from Equation 8.22, either k), Mm/(Ardl3) = 0.0752 
[0.0833] with z* = 0.366 [0.50], and H = 0 [0].

 2. Mm gradually approaches Mo with increase in e, until Mm ≈ Mo at 
a ratio e/l >3. Typically, Mm = 1.08Mo given e/l = 2 and Gibson k 
(see Figure 8.5a and b). The Mm and Mo have an identical upper 
limit (dotted line) of e = ∝ (for the corresponding k) obtained 
using Equation 8.5 (Gibson k) or z*/6 (constant k, Table 8.3).
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8.2.9.2 Yield at Rotation Point (Gibson pu)

At the YRP state, the relationships of H versus zm and H versus Mmax are still 
govened by Equations 8.20 and 8.22 (zm ≤ zo, pre-tip yield), respectively, as 
mentioned earlier. For instance, zm= (2H)0.5 is obtained by substituting C = 0 
into Equation 8.13, as the depth zm and the zr relationship is correlated by

 z zm r= −[ ] .2 12 0 5 (8.23)

where zr/l is still calculated from Equation 8.9 or 8.10. Equation 8.23 was 
derived utilizing the on-pile force profile depicted in Chapter 3, this book, 
and shear force H(zm) = 0 at depth zm. With the H , the normalized maxi-
mum bending moment is deduced as

 M He zm m= + 1
3

3  (8.24)

The normalized Mm was computed using Equation 8.24. It is plotted in 
Figure 8.5a as “YRP (either k)” as equations at YRP state are independent 
of the k profiles. The moment of Mo (= He) is also plotted in the figure.

Example 8.4 Mm response at YRP state (Gibson pu)

At the YRP state, the zo/l (= zr/l) of 0.7937 (e = 0) and 0.707 (e = ∞) 
offer zm/l = 0.5098 and 0; and accordingly H/(Ardl2) = 0.130 (e = 0) 
and 0 (e = ∞); also Mm/(Ardl3) = 0.0442 (e = 0) and 0.0976 (e = ∞) from 
Equation 8.24; and Mm/(Ardl3) = [1 − 2(zr/l)3]/3 in light of moment 
equilibrium about ground line and the on-pile force profile for e = ∞ 
(see Figure 3.28c1, Chapter 3, this book).

8.2.10  Maximum bending moment and 
its depth (constant pu)

8.2.10.1  Pre-tip yield (zo < z* ) and tip-yield (zo = z*) states

In contrast to those for Gibson pu, the depth zm and maximum bending 
moment Mm are given by (zm ≤ zo):

 z Hm =  (zm ≤ zo) (8.25)

 M H e Hm t= +( . )0 5  (zm ≤ zo) (8.26)

Example 8.5 Mm at tip-yield state (constant pu)

Nonlinear response of the Mm and its depth zm for constant pu is cap-
tured by the slip depth zo, as with Gibson pu (see Table 8.1), and with a 
power-law increase pu for flexible piles (Guo 2006). At tip-yield state, 
the normalized Mm and zm were computed for a series of e . Typical 
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values concerning e = 0 and ∞ are tabulated in Table 8.9, which shows 
(1) At e = 0, Mm/(Ngsudl2) = 0.067, zm= z* = 0.366, and Ho/Ngsudl = 
0.366 (Ho denotes H at tip-yield state, and also at the YRP state, or at 
onset of plastic state); and (2) At e = ∞, Mm = 0.1667, with zm = 0, z* = 0, 
and H = 0, or directly from Equation 8.8.

The zm is plotted in Figure 8.4d against the e . As with the remarks about 
Gibson pu, Figure 8.4 together with Table 8.9 indicate that zm is generally 
less than z* (see Figure 8.4a and d), and may be computed using zm = H 
(see Table 8.1); and it does reduce to groundline, as the e  approaches infi-
nitely large. The normalized maximum moment Mm is plotted in Figure 
8.5c, which shows the Mm of 0.067 (e = 0) ~0.1667 (e = ∞) for constant pu 
exceeds 0.038~0.0833 for Gibson pu, as the average pu at the YRP state 
for the constant pu may be twice that for the latter. The Mm is larger than 
Mo until Mm≈ Mo at a higher e  (> 3) (note that Mm = 1.02Mo at e  = 2).

8.2.10.2  Yield at rotation point (constant pu)

The depth zm (= 2zr − l) was deduced utilizing the on-pile force profile (see 
Figure 8.2c1) along with Hi(zm) = 0 (see Table 8.6). The depth zm and maxi-
mum bending moment Mm for constant pu are given by

Table 8.9 Critical response for tip-yield and YRP states

Gibson pu and Gibson k (Constant k) (Guo 2008)
zo/l zm/l Ho/(Ardl2) Mm/(Ardl3) Mm Difference (%)
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b Constant k (tip-yield state).
c either k for YRP state
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 z zm r= −2 1 (8.27)

 M M Hm o o= + 0 5 2.  (8.28)

Example 8.6 Mm at YRP state (constant pu)

Equations 8.25 and 8.26 for calculating zm and Mm are supposedly 
valid from the pre-tip yield state through to YRP state with zm ≤ zo 

(Guo 2008), with which the normalized Mm at YRP state was esti-
mated for a spectrum of e . For instance, with zo (= zr ) = 0.707 and 
0.5, H/(Ngsudl) is estimated as 0.414 and 0 for e = 0 and ∞; and Mm/
(Ngsudl2) as 0.086 (e  = 0) and 0.25 (e = ∞), respectively. The normalized 
Mo (= H e ) is then calculated. The Mmand Mo are plotted in Figure 8.5c 
together with those for tip-yield state.

Figure 8.5c demonstrates that the Mm increases by 28.4~50% 
(e = 0~100), as tip-yield state (see Figure 8.2a1 and a2) moves to YRP 
state (see Figure 8.2c1 and c2); and by 149~191% (at tip-yield to YRP 
state), as the free-length e ascends from 0 to 3l. The eccentricity has 
4~5 times higher impact on the values of Mm than yield states. These 
percentages of increase are 1.5~2 times more evident than those gained 
for Gibson pu (see Table 8.9 and Example 8.7). The YRP state featured 
by zo = z1 = zr would never be attained. A pile may rotate about a depth 
zr outside the depth (0.5~0.794)l and around a stiff layer or pile-cap. 
The depth zr may be used as the optimum load attachment point for 
suction caisson. This does alter the Mm, Mo relationship, as illustrated 
later using lateral-moment loading locus.

Example 8.7 Impact of pu, eccentricity, and yield states on Mm 

Figure 8.5c demonstrates that first, from the initiation of slip at pile 
base (tip-yield) to full plastic state (YRP), Mm/(Ardl3) (Gibson pu 
and Gibson k) increases by 22.8% (from 0.036 to 0.0442) at e = 0 
(see Table 8.2) or by 29.9% (from 0.0752 to 0.0976) at e = ∞ (see 
Table 8.3). (A  slightly smaller increase in percentage is observed 
using constant k.) The Mmax increase is ~30% in general. Second, as 
pure lateral load (e = 0) shifts to pure moment loading (e = ∞), the 
Mm increases by ~120%, with 109% at tip-yield state (from 0.036 
to 0.0752), and 120% at rotation-point yield state (from 0.0442 to 
0.0976). The eccentricity yields ~4 times higher values of Mmax than 
the states of yield. The impact of pu on zm and Mm is shown in Figure 
8.4d and f, respectively.

8.2.11  Calculation of nonlinear response

Regardless of the pu or k profiles, the response of rigid piles is character-
ized by two sets of expressions concerning pre- (zo < z*) and post- (zo > z*) tip 
yield  states. For instance, the response for Gibson pu and Gibson k may 
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be calculated by two steps: (1) A slip depth zo (< z*, pre-tip yield state) is 
specified to calculate load (H), displacement (ug), and rotation (ω) using 
Equations 8.1, 8.2, and 8.3, respectively; and furthermore, the moment 
(Mm) using Equation 8.22 or 8.24. (2) The calculation step 1 is repeated 
for a series of zo (< z*) to gain overall response prior to tip yield state. (3) A 
value of C (0 ≤ C ≤ Cy, post-tip yield state) is assigned to calculate a rota-
tion depth zr using Equation 8.10 (e ≠ ∞) otherwise Equation 8.9 (e = ∞); a 
load and a displacement using Equations 8.13 and 8.14, respectively; and a 
rotation angle ω (= −ug/zr), and the Mm using Equation 8.22 or 8.24. (4) The 
calculation step 3 is repeated for a series of C (< Cy) to gain overall response 
after the tip-yield state. The calculation steps 1–4 allow entire responses of 
the pile-head load, displacement, rotation, and maximum bending moment 
to be ascertained. Likewise the calculation for other pu and k profiles may 
be conducted.

Example 8.8 Nonlinear pile response (Gibson pu either k)

Nondimensional responses were predicted for a pile having l/ro = 12, 
and at six typical ratios of e/l, including ugko/Ar [ugk/Arl], ωkol/Ar [ωk/
Ar], Mm/(Ardl3) and H/(Ardl2), and those at tip-yield state (zo = z*), 
assuming a Gibson pu (= Ardzn, n = 1) and Gibson k (also constant 
k). The ultimate moment at YRP state and e/l = 0 was also predicted 
using Equation 8.24. The response and moment are shown in Figure 
8.6a1 through c1, which demonstrate a higher impact of k profile on 
the normalized ug and ω than on the normalized Mmax (prior to tip 
yield). This implies a good match between two measured responses 
[e.g., H~ug and H~Mmax (or ω) curves] and the current solutions will 
warrant unique values of Ar and k to be back-figured in a principle 
discussed for a flexible pile (Guo 2006) (see Chapter 9, this book), as 
is illustrated later in Section 8.5.

Example 8.9 Nonlinear pile response (impact of pu profiles, constant k)

The rigid pile of Example 8.8 was predicted again using a constant 
pu (= Ngsudzn, n = 0) and is depicted in Figure 8.6a2 through c2. The 
average pu over pile embedment was identical to that for the Gibson 
pu [i.e., Ar = 2pu/(ld)]. In particular, the resulted H and Mm (Gibson 
pu and constant k) are twice those presented previously for Ar = pu/d 
(Guo 2008) with H = H/(pul) (constant pu) and H = H/(2pul) (Gibson 
pu). The effect of pu profile on the response is evident in the normal-
ized curves of H~ug (or ω) and H~Mm. Consequently, it is legitimate to 
deduce Ng (or Ar thus pu) and k by matching two measured responses 
with the current solutions underpinned by either constant pu or 
Gibson pu (Guo 2006; Guo 2008).

To gain profiles of shear force H(z) and bending moment M(z), the normal-
ized expressions in Table 8.6 for either pu profile may be used. Under the 
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Figure 8.6  Normalized response of (ai) pile-head load H and groundline displacement 
ug . (bi) H and rotation ω. (ci) H and maximum bending moment Mmax (sub-
script i = 1 for Gibson pu and constant or Gibson k, and i = 2 for constant 
k and Gibson or constant pu). Gibson pu (= Ardzn, n = 1), and constant pu 
(= Ngsudzn, n = 0). (Revised from Guo, W. D., Can Geotech J 45, 5, 2008.)
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combined loading, and with the determined groundline displacement ug, 
limiting u*, and rotation ω, the distribution profiles of H(z) and M(z) can be 
ascertained as to zones covering depths 0~zo, zo~z1, and z1~l, respectively. 
For instance, after tip-yield (with zo> z*) occurs, the response consists of 
three components of H1(z), M1(z) (z ≤ zo), H2(z), M2(z) (zo < z ≤ zl), and H3(z), 
M3(z) (z1 < z ≤ l), respectively.

Example 8.10 Pile response profiles

As an illustration, with respect to the tip-yield and the YRP states, 
the normalized distribution profiles along the pile of Figure 8.6a2 
through c2 for five typical ratios of e/l were predicted. They are plot-
ted in Figure 8.7a and b and Figure 8.7c and d, concerning constant 
pu and Gibson pu, respectively. The figures demonstrate that constant 
pu (Figure 8.7a) at YRP state renders bilinear variation of shear force 
with depth, which is not observed for Gibson pu (Figure 8.7c); and the 
normalized H z( ) shifts more evidently from the tip-yield to the YRP 
states for constant pu (Figure 8.7a) than it does for Gibson pu (Figure 
8.7c), so does the M z( ) (see Figure 8.7b and d).

8.3  CAPACITY AND LATERAL-MOMENT 
LOADING LOCI

8.3.1  Lateral load-moment loci at tip-
yield and YRP state

Given Gibson pu (constant k), the Mo for the tip-yield state is obtained by 
replacing zo in Equation 8.1 with z* of Table 8.1:

 M H Ho o o= − −( )1 8 4 122  (8.29g)

where Ho = H  at tip-yield state. This Mo allows the Mm and zm from Table 
8.1 (right column) to be recast into

 M H H
H

z Hm o o
o

m o= − − + =1
12

1 8 4
2

3
22

1 5

( )
( ) .

 (8.30g)

These expressions are provided in Table 8.1. At the YRP state (with C = 0 
in the post-tip yield state), again for Gibson pu, it is not difficult to gain the 
following:

 M Ho o= + −2
3

0 5
1
3

1 5( . ) .  (8.31)

 M M Hm o o= + 1
3

2 1 5( ) .  (8.32)
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in view of z zm r= −[ ] .2 12 0 5, and z Hm o= 2 . These expressions are furnished 
in Table 8.7. Likewise, the solutions for Mo and Mm were deduced concern-
ing constant pu. They are presented in Tables 8.1 and 8.7 as well for either 
yield state. These solutions are subsequently compared respectively with 
existing solutions, experimental data, and numerical solutions.
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Figure 8.7  Normalized profiles of H z( ) and M z( ) for typical e/l at tip-yield and YRP 
states (constant k): (a)–(b) constant pu; (c)–(d) Gibson pu.
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8.3.2  Ultimate lateral load Ho 
against existing solutions

The ambiguity regarding Ho and Ar was highlighted previously in Chapter 
3, this book, which may be removed by redefining the capacity Ho as the H 
at (a) tip-yield state or (b) yield at rotation point state. For instance, with a 
Gibson pu and Gibson k, the Ho for tip-yield state is obtained by substitut-
ing z* from Equation 8.18 for the zo in Equation 8.1; whereas the Ho for the 
YRP state is evaluated using Equation 8.13, in which the zr is calculated 
from Equation 8.10 and C = 0.

The normalized values of Ho for Gibson pu at the two states (Guo 
2008) are plotted in Figure 8.8a and b across the whole e  spectrum. The 
sets of Ho for constant pu are obtained using Equation 8.6 with z* from 
Equation 8.19 (tip-yield state) and Equations 8.15 through 8.17 for YRP 
state. They are presented in the figures as well. Figure 8.8a also provides 
the normalized capacities of Ho gained from 1 g (g = gravity) model pile 
tests in clay (Meyerhof and Sastray 1985) (see Table 8.10) and in sand 
(Prasad and Chari 1999), and from centrifuge tests in sand (Dickin and 
Nazir 1999).

The figure demonstrates that (1) the highest measured values of Ho for 
rigid piles in sand tested in centrifuge (e = ~6) are just below the curve 
of tip-yield state (constant pu and constant k) and may exceed those for 
Gibson pu and k; (2) the highest measured values of Ho from the tests in 
clay (e = ~0.06) match up well with the YRP state; (3) the lowest mea-
sured values of Ho for piles in sand, perhaps obtained at pre-tip yield 
state, are slightly under the solutions based on Gibson pu. These conclu-
sions are also observed in our recent back-estimation against measured 
response of ~50 piles. Overall, constant pu is seen on some rigid piles. 
For example, z*/l at the tip-yield state (Gibson pu, constant k) is obtained 
as 0.618 with e = 0. Regardless of the e, substituting 0.618 for the zo/l in 
right Equation 8.1g, a new expression of Ho/(Ardl2) = 0.1181/(1 + 1.146 e) 
is developed (see Table 3.7, Chapter 3, this book), which is also close to 
the YRP state (not shown herein).

The groundline displacement may be accordingly estimated using 
Equation 8.2 (or Equation 8.7) concerning the tip-yield state, given ko 
(or k); whereas it is infinitely large upon the YRP state.

Example 8.11 Comments on Broms’ method

Broms (1964a) used simple expressions (see Table 8.10) to gain the ulti-
mate Mm, Ho, and ug concerning a set of e/d = 0, 1, 2, 4, 8, and 16. The 
normalized Mm, Ho are compared with current solutions for tip-yield 
state in Figures 8.9 and 8.10 for piles in clay and sand, respectively, 
and the normalized uo (= ug at tip-yield state) in Figure 8.11. The simple 
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expressions (Broms 1964a) (see Table 8.10) were used to gain the ulti-
mate Mm and Ho concerning a set of l/d = 3, 4, 5, 6, 10, and 20. The 
normalized ultimate Mm and Ho are plotted as dashed lines in Figures 
8.5c and 8.8b, respectively. Comparing with current solutions using a 
constant pu to a Gibson pu, the figures indicate that Broms’ solutions 
underpredict the Mm and Ho given l/d < 3, but offer similar Ho and Mm 
at l/d = 3~20.
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8.3.3  Lateral–moment loading locus

Yield loci are obtained for lateral (Ho) and moment (Mo) loading, and the 
induced maximum bending moment (Mm) to assess safety of piles subjected 
to cyclic loading.

8.3.3.1  Impact of pu profile (YRP state) on Mo  and Mm

Yield loci Mo and Mm
 at the YRP state were obtained in light of the expres-

sions of Moi and Mmi in Table 8.7 (the subscript i = 1~4 indicates moment 
directions). With constant pu, they are plotted in Figure 8.12, such as Mo1, Mo2, 
Mo3, and Mo4 for fcb′cgc, acbcec, acb′cec; and fcbcgc.; and Mm1, Mm2, Mm3, and 
Mm4 for b′cdc, bcdc, b′cd′c, and bcd′c., respectively. The figure shows the fol-
lowing features:

•	 Two values of Mm exisit for Ho > 0 and zr > 0.5, (e.g., points ec and dc 
in Figure 8.12d and e. It is noted Mm = Mo over the track acec but for 
Mm

 (= 0.0625~0.25) > Mo on bccc (Ho
 ≤ 0.414). The latter indicates a 

possible bending failure owing to Mm rather than Mo.
•	 Reversing Ho direction only would render the locus acbcecb′ce′c in the 

second and the fourth quadrants to relocate on fcbcgcb′cfc in the first 

Table 8.10 Typical Relationships for Ho, Mo and Mm (Independent of k Profiles)
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and the third quadrants, with typical points ac(−1.0, 0.5), bc(0, 0.5), 
cc(0.414, 0.086), dc(1, 0), and ec(1.0, −0.5).

•	 On-pile force profiles induced by Ho and Mo vary with rotation depth zr 
that may be at a stiff layer or pile cap. Impossible to attain the YRP state 
of zo = z1 = zr, a pile is likely to rotate about a depth outside (0.5~0.707)
l for which Mo = Mm

, otherwise Mm > Mo with zr = (0.5~0.707)l.
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Figure 8.9  Tip yield states (with uniform pu to l) and Broms’ solutions (with uniform 
pu between depths 1.5d and l). (a) Normalized Ho. (b) Ho versus normalized 
moment (Mmax).
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Likewise, the loci Mo and Mm  at YRP state for Gibson pu were constructed 
under the same average pressure over pile embedment as the constant pu. 
They are plotted in Figure 8.13 along with those for constant pu, in form of 
Mo = Mo/(pul2) and Ho = Ho/(pul) (with the Ar and pu relationsip in Example 
8.9). The figure indicates similar features between either pu profile but for 
the following:
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•	 Mm  = Mo along the track ageg but for Mm  (= 0.0343~0.098) > Mo on 
track bgcg at Ho < 0.171, with ag(−1.0, 0.667), bg(0, 0.1952), cg(0.260, 
0.0884), dg(1.0, 0), and eg(1.0, −0.667), twice higher values gained 
from Ar = 2pu/ld.

•	 Mm  > Mo would not occur if piles rotate about a depth outside 
(0.707~0.794)l.
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Point ac (ag) or point ec (eg) is unlikely to be attained as the resistance near 
the rotation point at ground level cannot be fully mobilized, as is observed 
in numerical results (Yun and Bransby 2007). The new Ho − Mo loci reveal 
the insufficiency of Ho − Mo loci (Poulos and Davis 1980). The loci for YRP 
state are independent of the k profile. Note the Ho − Mo locus matches well 
with the quasi-linear relationship deduced from laboratory tests for piles in 
clay (Poulos and Davis 1980; Meyerhof and Yalcin 1984) and for piles in 
sand (Meyerhof et al. 1983).

8.3.3.2 Elastic, tip-yield, and YRP loci for constant pu

Given constant k and pu, new loci were generated concerning onset of plas-
tic state and tip-yield states, respectively, and are plotted Figure 8.14, in 
which:

ac: zr/l = 0.
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cc: zr/l = 0.707
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Figure 8.12  Normalized load Ho-moment Mo  or Mm at YRP state (constant pu).
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•	 Onset of plastic state (see Figure 8.14a) is indicated by the diamond 
e1e2e3e4 (maximum elastic core). It was obtained using ± 2Ho ± 3Mo = 0.5 
(to reflect four combinations of directions of loading Ho and Mo), or 
Equation 8.6 with zo = 0.

•	 At tip-yield state, as shown in Figure 8.14a, (1) the Mm
 locus is the 

“hexagon” t1t2t3t4t5t6 gained by using the expression shown in Table 
8.7; and (2) the Mo locus is a “baby leaf” consisting of the paths hce1ic 
and ice3hc.

•	 Line Ofc (with an arrow) indicates a typical loading path of Mo/(Hl) = 1 
and e = 1, which would not cause plastic response until outside the 
diamond e1e2e3e4.
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Figure 8.13  Impact of pu profile on normalized load Ho-moment Mo  or Mm  at YRP state.
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Likewise, with Gibson pu, the yield loci Mo and Mm were obtained at 
the tip-yield state (note elastic core does not exist for either k). They are 
depicted in Figure 8.14b, together with those for YRP. The figure shows 
that the normalized Mo at the tip-yield state is equal to or slightly less 
than that at the YRP state, and the “open dots” on the sides t1t2 and t3t4 
of the diamond indicate Mm of 0.038~0.0833 at the tip-yield state (see 
also Figure 8.5b).

In brief, Mm exceeds Mo once the piles rotate about the depth zr of 
(0.5~0.707)l (constant pu) or (0.707~0.794)l (Gibson pu), which needs to be 
considered in pertinent design.

8.3.3.3 Impact of size and base (pile-tip) resistance

The shear resistance on the pile-tip is ignored in gaining the current expres-
sions, but it is approximately compensated by using the factor Ng or Ar 
gained from entire pile–soil system. A unique yield locus for YRP state is 
obtained for a given pu profile. Yun and Bransby (2007) conducted finite 
element (FE) analysis on footings with various dimensions. They show that 
yield loci may rotate slightly with changing ratios of l/d. The currently pro-
posed single locus is, however, sufficiently accurate for practical design, as 
explained below.

The impossible YRP state requires the rigid pile lie horizontally. 
Furthermore, if a gap forms between the pile and soil on one side, the pile 
would actually resemble a “slender” footing. With respect to scoop and 
scoop-slide failure modes (see inserts of Figure 8.15) of the footing, charts 
of Ho−Mo loci (using different normalizers) were drawn for typical sizes 
of l/d = 0.2, 0.5, and 1.0 (l = embedment depth and d = width for foot-
ing) (Yun and Bransby 2007). The locus rotates clockwise as l/d increases 
towards unity. The Ho−Mo loci for l/d = 0.2 and 1 are replotted in Figure 
8.15a and b, respectively, using the current normalizer Ngsu [Ng  = 2.6 
(constant pu), or 2.7 (Gibson pu), and suL = su at pile-tip level]. The Ng 
was selected from 2.5~3.5 (Aubeny et al. 2003) for gap formed behind 
piles. The loci at YRP state were subsequently obtained using Equations 
8.30g and 8.31g and are plotted in the figure as well. As anticipated, the 
current loci without base resistance are much skinnier than the footing 
ones. If 33% moment (due to base resistance) is added to the current solu-
tion for the point of pure moment loading (Ho = 0), the current Mo locus 
may match the footing one. This large portion of base resistance drops 
remarkably for piles with L/d > 2.5, which can be well catered to by 
Ng = 4.5 as noted previously. A larger yield locus than the current one is 
also observed under an inclined (with vertical and horizontal) loading, 
which is beyond the scope of this chapter. Nevertheless, the parabolic 
relationship between Mo and Ho (e.g., Equation 8.29g, Table 8.1) agrees 
with laboratory test results (Meyerhof et al. 1983).
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8.4 COMPARISON WITH EXISTING SOLUTIONS

The current solutions have been implemented into a spreadsheet program 
called GASLSPICS operating in Windows EXCELTM. The results presented 
thus far and subsequently were all obtained using this program.

Example 8.12 Comparison with model tests and numerical solutions

Nazir (Laman et al. 1999) conducted three centrifugal tests: Test 1 at 
a centrifugal acceleration of 33 g on a pier with a diameter d = 30 mm 
and an embedment length l = 60 mm; Test 2 at 50 g on a pier with d = 
20 mm and l = 40 mm; and Test 3 at 40 g on a pier with d = 25 mm 
and l = 50 mm, respectively. They are designed to mimic the behavior 
of a prototype pier (d = 1 m, l = 2 m, Young’s modulus = 207 GPa, 
and Poisson’s ratio = 0.25) embedded in dense sand (bulk density γs′ = 
16.4 kN/m3 and frictional angle ϕ′ = 46.1°). The prototype pier was 
gradually loaded 6 m (= e) about groundline and to a maximum lateral 
load of 66.7 kN (i.e., M0 = 400 kNm). In the 40 g test (Test 3), lateral 
loads were applied at a free-length (e) of 120 mm above groundline 
(Laman et al. 1999) on the model pier. It offers pier rotation angle (ω) 
under various moments (M0) during the test, as is plotted in Figure 
8.16a in prototype scale. Tests 1 and 2 show the modeling scale effect 
on the test results as plotted in Figure 8.16c.

Laman et al. (1999) conducted three-dimensional finite element 
analysis (FEA3D) to simulate the tests, adopting a hyperbolic stress-
strain model with stress-dependent initial and unloading-reloading 
Young’s moduli. The predicted moment (M) is plotted against rotation 
(ω) in Figure 8.16a and c. It compares well with the median value of 
the three centrifugal tests, except for the initial stage.

The current predictions was made using an Ar of 621.7 kN/m3 
(=  γs′Kp

2, γs′ = 16.4 kN/m3, and ϕ′ = 46.1°), and a modulus of sub-
grade reaction kd of 34.42 MPa (d = 1 m, Test 3), or kd of 51.63 MPa (d = 1 m, 
Test 2) (see Table 8.11). The kd was estimated using kd = 3.02G (or 
1.2E) using Equation 3.62 (Chapter 3, this book), and initial and 
unloading-reloading Young’s modulus, E, of 25.96 MPa, and 58.63 
MPa, respectively. First assuming a constant k, the values of H and 
ω were estimated via right Equations 8.1g and 8.3g, respectively. 
The Mo (= He) obtained is plotted against ω in Figure 8.16a and c 
as “Current CF,” which agrees well with the measured responses for 
Tests 2 and 3. The tip-yield occurred at a rotation angle of 3.8° (see 
Table 8.11). Second, assuming a Gibson k with ko = 17.5 kN/m3/m, 
and Ar of 621.7 kN/m3, the M0 and ω were calculated using Equations 
8.1 and 8.3 and are plotted in Figure 8.16a. The prediction is also 
reasonably accurate. Third, the displacement ug was calculated using 
Equation 8.2 and the right Equation 8.2g, respectively, and is plotted 
in Figure 8.16b against the respective H. The Gibson k solution is 
much softer than the uniform k, indicating the ug is more sensitive to 
the k profile than the Mo is, as is noted for flexible piles (Chapter 9, 

www.engbasics.com



Laterally loaded rigid piles 267

this book). A slightly higher Ar than 621.7 kN/m3 for Test 2 would 
achieve a better prediction against the measured (Mo~ω) curve (see 
Figure 8.16c). The current solutions are sufficiently accurate, in terms 
of capturing nonlinear response manifested in the tests and the 3-D 
FE analysis (FEA3D).
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H versus mudline displacement ug. (c) Mo versus rotation angle ω (effect 
of k profiles, tests 1 and 2). (Revised from Guo, W. D., Can Geotech J 45, 
5, 2008.)
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8.5 ILLUSTRATIVE EXAMPLES

Nonlinear response of rigid piles can be readily captured using the current 
solutions. This is illustrated next, following the procedures elaborated pre-
viously (Guo 2008).

Example 8.13 Model tests

Prasad and Chari (1999) conducted 15 tests on steel pipe piles in dry 
sand. Each model pile was 1,135 mm in length, 102 mm in outside 
diameter (d), and 5.6 mm in wall thickness. Each was installed to a 
depth (l) of 612 mm. The sand was made to three relative densities 
(Dr): a loose sand with Dr = 0.25, γs′ (bulk densities) = 16.5 kN/m3, and 
ϕ (frictional angle) = 35°, respectively; a medium sand with Dr = 0.5, 
γs′ =  17.3 kN/m3, and ϕ = 41°, respectively; and a dense sand with 
Dr = 0.75, γs′ = 18.3 kN/m3, and ϕ = 45.5°, respectively.

Lateral loads were imposed at an eccentricity of 150 mm on the 
piles until failure, which offers (1) distribution of σr across the pile 
diameter at a depth of ~0.276 m (shown in Figure 3.25, Chapter 3, this 
book), with a maximum σr = 66.85 kPa; (2) pressure profile (p) along 
the pile plotted in Figure 8.3 as “Test Data”; (3) normalized capacity 
Ho/(Ardl2) versus normalized eccentricity (e/l) relationship, denoted as 
“Prasad and Chari (1999)” in Figure 8.8a; (4) lateral pile-head load 
(H) ~ groundline displacement (ug) curves in Figure 8.17a; and (5) shear 
moduli at the pile-tip level (GL for Gibson k) of 3.78, 6.19, and 9.22 
MPa (taking νs as 0.3) for Dr = 0.25, 0.5, and 0.75, respectively, which, 
after incorporating the effect of diameter, were revised as 0.385 MPa 
(= 3.78d), 0.630 MPa (= 6.19d), and 0.94 MPa (= 9.22d). The revision 
is necessary, compared to 0.22~0.3 MPa deduced from a model pile of 
similar size (having l = 700 mm, d = 32 mm or 50 mm) embedded in a 
dense sand (Guo and Ghee 2005).

Responses 2 and 3 were addressed previously. Only the H~wg, Mm, 
and zm are studied in the subsequent Examples 8.14 through 8.16 to 
illustrate the use of the current solutions and the impact of the k profiles.

Example 8.14 Analysis using Gibson k

The measured H~ug relationships (see Figure 8.14a) were fitted using the 
current solutions (Gibson k), following the procedure in “Calculation 

Table 8.11 Pile in dense sand

Input parameters (l = 2 m, d = 1 m) Output for tip-yield state (Test 3)

Ar (kN/m3) k (MN/m3) γs′ (kN/m3) Angle (deg.) zr/l M (kNm)
621.7 34.42a/51.63b 16.4 3.83 0.523 338.4

Source: Laman, M., G. J. W. King, and E. A. Dickin, Computers and Geotechnics, 25, 1999. 
a Test 3
b Test 2
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www.engbasics.com



270 Theory and practice of pile foundations

of Nonlinear Response.” This offers the parameters ko and Ar (see 
Table 8.12) for each test in the specified Dr as deduced from match-
ing the initial elastic gradient and subsequent nonlinear portion of the 
measured H~ug curve. (Two measured curves would be ideal to deduce 
the two parameters.) The kod and Ar permit shear modulus GL, the 
maximum bending moment Mm and the depth zm to be evaluated. The 
Mm is plotted in Figure 8.17b against H, and Figure 8.17c against zm.

The study indicates (1) an Ar of 244.9 kN/m3, 340.0 kN/m3, and 
739. kN/m3 for Dr = 0.25, 0.5, and 0.75 respectively, which is within 
± ~15% of γs′Kp

2; (2) a GL of 0.31 MPa, 0.801 MPa, and 1.353 MPa, 
which differ by −19.48%, 27.7%, and 43.9% from the revised mea-
sured moduli for Dr = 0.25, 0.5, and 0.75, respectively; (3) the tip-yield 
for Dr = 0.5 and 0.75 occurred around a displacement ug of 0.2d (see 
Figure 8.17a), but for Dr = 0.25 occurred at a much higher displace-
ment ug of 39.5 mm than 0.2d, and a higher load Ho of 0.784 kN than 
the measured 0.529 kN observed at 0.2d; (4) the tip-yield associated 
with a rotation angle of 2.1~4.0 degrees (see Table 8.12), conforming 
to 2~6° (see Dickin and Nazir 1999) deduced from model piles tested 
in centrifuge.

The calculation for the test with Dr = 0.25 (Ar = 244.9 kN/m3 and 
ko = 18.642 MPa/m2) is elaborated here, concerning four typical yield-
ing states (see Tables 8.13 and 8.14), shear modulus, and distribution 
of stress σr across the pile diameter.

 1. The z*/l (tip-yield) is obtained as 0.5007 using Equation 8.18, 
from which relevant responses are calculated and are tabulated in 

Table 8.12  Parameters for the model piles (Gibson k/
Constant k)

Dr 0.25 0.50 0.75

Ar (kN/m3) 244.9 340. 739.

k

k
o
c

[ ]
18 64
3 88

.
[ . ]

48 2
12 05

.
[ . ]

81 43
16 96

.
[ . ]

Predicted GL (MPa) 0 31
0 105

.
[ . ]

0 801
0 327

.
[ . ]

1 353
0 461
.

[ . ]

Measured GL (MPa)a,b 0 385

0 193

.

[ . ]

a

b

0 631
0 316

.
[ . ]

0 94
0 47
.

[ . ]

Angle at z* (deg.) 3 94
14 0

.
[ . ]

2 11
10 6

.
[ . ]

2 72
14 4

.
[ . ]

Source: Guo, W. D., Can Geotech J 45, 5, 2008.
a Via multiplying the values of 3.78, 6.19, and 9.22 with the 

diameter d (0.102m), or
b Via multiplying by 0.5d.
c ko in MPa/m2, [k] in MPa/m.

Numerator: Gibson k
Denominator: Constant k
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Table 8.13. (a) H/(Ardl2) = 0.0837 from Equation 8.1; and H = 0.784 
kN (= 0.0837 × 244.9 × 0.102m × 0.6122 kN/m); (b) ugko/Ar = 3.005 
using Equation 8.2, and ug = 39.5 mm (= 3.005 × 244.9/18642 m); 
(c) zm/l = 0.4093 using Equation 8.20, as zm (= 0.251 m) < zo (= 0.306 
m); and (iv) in view of zm < zo, Mm/(Ardl3) = 0.0434 [= (2/3 × 0.4093 
+ 0.245) × 0.0837] using Equation 8.22 and Mm = 0.248 kNm. The 
tip-yield state is plotted in Figure 8.17a through c. The moment is 
of similar order to that recorded in similar piles tested under soil 
movement (Guo and Ghee 2005).

 2. Two zo/l of 0.3 and 0.5 for pre-tip yield state are considered: At 
zo/l = 0.3 (<z*/l), the zm/l is computed as 0.364 using Equation 
8.21, which offers H = 0.605 kN, ug = 22.3 mm, zm = 0.223 m, 
and Mm = 0.18 kNm using the right Mm for zm > zo in Table 8.1. 

Table 8.13 Response of model piles (any Dr, Gibson k/[Constant k])

Items zo/l

u k /A

[u k/A l]
g o r

g r H/(Ardl2)

ω
ω
k l/A

k/A
o r

r[ ] zm/l
Mm/

(Ardl3)

Pre-tip 
yield 

0.30 1 695
0 5517

.
[ . ]

0 0647
0 0494
.

[ . ]
−
−

2 318
0 8391

.
[ . ]

0 364
0 3151

.
[ . ]

0 031
0 0225

.
[ . ]

0.50 3 005
1 691
.

[ . ]
0 0838
0 0773
.

[ . ]
−
−
4 005
2 382
.

[ . ]
0 409
0 3931

.
[ . ]

0 0434
0 0392
.

[ . ]

0 535

0 5885

.

[ . ]

a

b

3 426
2 86
.

[ . ]
0 087
0 0885

.
[ . ]

−
−
4 530
3 86
.

[ . ]
0 4171
0 4208

.
[ . ]

0 0453
0 0465
.

[ . ]

YRP zr/l = 0.774, zm/l = 0.445, H/(Ardl2) = 0.099, and Mm/(Ardl3) = 0.0536.

Source: Guo, W. D., Can Geotech J, 45, 5, 2008.
a Post-tip yield
b Tip-yield state

Table 8.14 k Profiles on predictions (Gibson k/[constant k]) 

zo/l ug (mm) H (kN) ω (degree) zm(m) Mm (kNm)

0.30 22 3
21 3

.
[ . ]

0 605
0 462
.

[ . ]
−
−
0 050 2 85

0 053 3 03

. ( . )

[ . ( . )]

o

o

0 223
0 193
.

[ . ]
0 181
0 129

.
[ . ]

0.50 39 5
65 3

.
[ . ]

0 783
0 723
.

[ . ]
−
−
0 087 4 93

0 15 8 61

. ( . )

[ . ( . )]

o

o

0 251
0 241
.

[ . ]
0 248
0 224
.

[ . ]

0 535

0 5885

.

[ . ]

a

b

45 0
110 4

.
[ . ]

0 814
0 8285

.
[ . ]

−
−

0 097 5 57

0 244 13 95

. ( . )

[ . ( . )]

o

o

0 255
0 257
.

[ . ]
0 261
0 266

.
[ . ]

YRP ∝ 0.926 π/2 (90°) 0.272 0.307

Source: Guo, W. D., Can Geotech J, 45, 5, 2008.
a Post-tip yield
b Tip yield state
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As zo/l increases to 0.5, H increases to 0.783 kN, Mm to 0.248 
kNm, and zm to 0.251 m. The two points, each given by a pair of 
Mm and zm, are plotted in Figure 8.17e.

 3. The value of Cy (at tip-yield state) is calculated as 0.3326 
[=  244.9/(0.0395 × 18,642)] with ug = 39.5 mm. Assigning 
C = 0.2919 (< Cy), for instance, the zr/l is calculated first, and 
followed by these responses:

 i. The zr/l is evaluated in steps (see Table 8.15), using D1 = 
0.6968 and D0 = 2.52049 from Equation 8.12, and A1 = 
3.9127 × 10-6, and A0 = 0.627 from Equation 8.11, and 
finally zr/l = 0.756 (= 0.6271/3 + 3.91271/3 × 0.01 − 0.6968/6) 
using Equation 8.10.

 ii. The H is calculated as 0.814 kN, as H/(Ardl2) = 0.087 using 
Equation 8.13, ug = 45 mm [= 244.9/(18642 × 0.29193)], as 
per Equation 8.14, zo/l = 0.535 [= (1 − 0.29193) × 0.7555], 
zm = 0.255 m with zm/l = 0.4171 [= (2 × 0.087)0.5] per 
Equation 8.20, and Mm = 0.261 kNm with Mm/(Ardl3) = 
0.0453 from Equation 8.22.

 4. At YRP state, the zr/l is calculated as 0.774 (= 0.681/3 + 0.017 − 
0.735/6) with C = 0 and the estimated values of D1, Do, Ao, and 
A1 in Table 8.15. The zm/l, H/(Ardl2), and Mm/(Ardl3) are calcu-
lated as 0.445 (< zo/l), 0.099, and 0.0536, respectively (see Table 
8.13) using Equations 8.20, 8.23, and 8.24. Upon YRP state, it 
follows H = 0.926 kN, zm = 0.272 m, and Mm = 0.307 kNm.

 5. The bending moment M(z) and the shear force H(z) with depth 
were determined using the expressions in Table 8.6 (Guo 2008). 
With the ratios of zo/l = 0.3 and 0.5, the predicted profiles are 
plotted in Figure 8.17e and f, and agree with the Mmax and zmax 
predicted before (Figure 8.17a through c). For instance, the H(z) 
profile at zo = 0.5l was gained using ω = −0.087, ug = 39.5 mm 
(see Table 8.14), and Equations 8.33 and 8.34:

 H z A d z z k d l z k du l zr o o o o g o( ) . /= −( )+ −( ) + −(0 5 32 2 3 3 2 2ω )) / 2 (z ≤ zo)
(8.33)

 H z k d l z k du l zo o g( ) / /= −( ) + −( )ω 3 3 2 23 2 (z > zo) (8.34)

Table 8.15 Calculation of zr/l for Post-Tip and/or YRP States

Gibson k 
(for any Dr)

Equation 8.12 Equation 8.11 Equation 8.10

C Do D1 Ao A1 zr/l

Post-tip yield 0.2919 2.5205 0.6968 0.627 3.912 × 10-6 0.756
YRP 0 2.735 0.735 0.680 4.969 × 10-6 0.774
Constant k 
(for any Dr)

Equation 8.11g Equation 
8.10g

C Ao A1 zr/l

YRP 0 5.4405 3.975 × 10-5 0.774

Source: Guo, W. D., Can Geotech J, 45, 5, 2008.
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  Local shear force H(z) ~ displacement u(z) relationships were 
predicted (Guo 2008), using expressions in Table 8.6, for the 
normalized depths z/l of 0, 0.3, 0.5, 0.62, and 0.9. They are plot-
ted in Figure 8.17d.

 6. The shear modulus GL (at the pile-tip level) is equal to 0.310 MPa 
(= 2 �G), as the �G is estimated as 0.1549 MPa (= 0.5kodl/3.757), 
in light of ko = 18.642 MPa/m2 in Table 8.12, l = 0.612m, and 
d = 0.102m, with Equation 3.62, Chapter 3, this book.

 7. The measured σr on the pile surface occurred at a local displace-
ment u of 21.3 mm, or a ground displacement ug, of 57 mm (zo = 
0.361 m and zr = 0.470 m, post-tip yield).

The discussion for Equation 3.62 (Chapter 3, this book) indicates γb = 
0.178 and K1(γb)/K0(γb) = 2.898. The �G = 0.1549 MPa and u = 21.3 mm, 
thus allow the maximum σr (with r = ro = 0.051 m and θp = 0) to be 
obtained using Equation 3.48 (Chapter 3, this book), with σr = 2 × 
154.9 × 0.0213 × 0.178/0.051 × 2.898. The stress σr across the diameter 
is predicted as σr = 66.85cosθp (compared to τrθ = −33.425sinθp) in light 
of Equation 3.48. It compares well with the measured data (Prasad and 
Chari 1999), as shown in Figure 3.25 (Chapter 3, this book).

The maximum σr was cross-examined using pu = Arzd. The predicted 
total net pressure of 52.5 kPa (Guo 2008) compares well with 67.6 kPa 
(= 244.9 × 0.276) from Arz, in view of the difference between the mea-
sured and predicted force (see Figure 8.17a).

 Other features noted are: (1) the moment Mm locates below the slip 
depth (zm > zo = 0.3l = 0.1836 m) under H = 0.605 kN, and moves 
into upper plastic zone (zm < zo = 0.5l = 0.306 m) at H = 0.783 kN 
(see Figure 8.17); (2) during the test, the pile rotates about a depth 
(zr) largely around 0.62l, at which a negligible displacement of u is 
evident (see Figure 8.17d), though an opposite direction of force below 
the depth is observed, as with some field tests; (3) the nondimensional 
responses [e.g., H/(Ardl2)] are independent of the parameters Ar and ko 
and are directly applicable to other tests.

Example 8.15 Analysis using constant k

The solutions for a constant k and Gibson pu [in Table 8.1 (right col-
umn) and Table 8.4] were matched with each measured pile-head and 
groundline displacement (H ~ ug) curve, as indicated by the dashed 
lines in Figure 8.17a. The k thus deduced (using the same Ar as that 
for Gibson k), and the shear modulus G (= GL) and the angle at tip-
yield are furnished in Table 8.12. The associated curves of Mmax~H 
and Mmax~zm are also plotted in Figure 8.17b and c, respectively. This 
analysis indicates:

•	 The shear moduli deduced are 0.105 MPa (Dr = 0.25), 0.327 MPa 
(0.5), and 0.461 MPa (0.75), respectively, exhibiting −45.6%, 
3.5%, and −1.9% difference from the revised measured values of 
0.193 MPa, 0.316 MPa, and 0.470 MPa, respectively.
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•	 The tip-yield (thus pile-head force Ho; see Figure 8.17a), occurs 
at  a displacement far greater than 0.2d (= 20.4 mm) and at a 
rotation angle ~5 times those inferred using a Gibson k (i.e., 
10~15 degrees, see Table 8.12).

In parallel to the Gibson k, the calculation for Dr = 0.25 was elabo-
rated with Ar = 244.9 kN/m3 and k = 3.88 MN/m3 (Guo 2008) and 
was focused on the difference from the Gibson k analysis. The results 
encompass H, ug, zm, and Mm at the tip-yield state, at zo/l of 0.3 and 
0.5, and at post-tip yield state; profiles of bending moment, M(z), and 
shear force, H(z), at the slip depths of zo = 0.3l and 0.5l (see Figure 
8.17e and f), and local shear force-displacement relationships at five 
different depths (see Figure 8.17d). The conclusions are that the two 
points given by the pairs of Mm and zm, from Equation 8.20g and the 
right Mm for zm > zo in Table 8.1 agree well with the respective M(z) 
profiles. Upon the rotation point yield, an identical response to that 
for a Gibson k (see Table 8.15) was obtained. The G was estimated 
as 0.105 MPa (= 3.88 × 0.102/3.757 MPa) using Equation 3.62 and 
a head-displacement ug of 92 mm (prior to tip yield) was needed to 
mobilize the radial pressure σr of 66.85 MPa at a local displacement 
u of 31.3 mm, with identical distribution of the σr to that for Gibson 
k. In brief, the results presented in Figure 8.17d, e, and f for constant 
k largely support the comments on Gibson k about the Mm, zm, zr, and 
the nondimensional responses. The underestimation of the measured 
force at ug of 92 mm (see Figure 8.17a) indicates the impact of stress 
hardening. The actual k should be bracketed by the uniform k and 
Gibson k.

Example 8.16 Effect of k profiles

The impact of the k profiles is evident on the predicted H ~ ug curve; 
whereas it is noticeable on the predicted Mm only at initial stage 
(see Figure 8.17). The latter is anticipated, as beyond the initial low 
load levels, the Mm is governed by the same value of Ar and the same 
Equations 8.20 and 8.22. The Ar deduced is within ± ~15% difference 
of γs′Kp

2. The k deduced (constant) is within ± ~3.5% accuracy against 
the revised measured k, except for the pile in Dr = 0.25, and those 
deduced from Gibson k, which are explained herein.

Assuming Gibson k, the local displacement u of 21.3 mm for induc-
ing the measured σr involves 64% [= (u − u*)/u = (21.3 − 13)/13] plas-
tic component, as u > u* (= 13 mm = 244.9/18640 m). Stipulating a 
constant k, the local u of 31.3 mm required encompasses 68% [= (31.3 
− 18.6)/18.6] plastic component, as u > u* (= 18.6 mm = 244.9 × 
0.276/3880 m). The actual local limit u* may be higher than 13.0~18.6 
mm adopted, owing to the requirement of a higher Ar (thus pu) than 
244.9 kPa/m adopted to capture the stress hardening exhibited (see 
Figure 8.17a) beyond a groundline displacement ug of 57 mm. With 
stress σr ∝ ku (i.e., Equation 3.48, Chapter 3, this book) and good 
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agreement between measured and predicted σr, the k may supposedly 
be underestimated by 64~68% to compensate overestimation of the 
“elastic” displacement u (no additional stress induced for the plastic 
component). The hardening effect reduces slightly the percentage of 
plastic components. Thus the actual underestimation of the measured 
modulus (Table 8.12, Dr = 0.25) was 19.5~45.6%, and the predicted 
GL was 0.105~0.31 MPa.

In contrast to Dr = 0.25, overestimation of the (Gibson) k is noted 
for Dr = 0.5~0.75, although the displacement of 0.2d and the angle 
(slope) for the capacity Ho are close to those used in practice. Real k 
profile should be bracketed by the constant and Gibson profiles.

In brief, the current solutions cater for net lateral resistance along 
the shaft only, and neglect longitudinal resistance along the shaft, 
transverse shear resistance on the tip, and the impact of stress harden-
ing (as observed in the pile in Dr = 0.25). They are conservative for very 
short, stub piers that exhibit apparent shear resistance (Vallabhan and 
Alikhanlou 1982). The linear pu profile is not normally expected along 
flexible piles, in which the pu ∝ z1.7 (Guo 2006), and a uniform pu may 
be seen around a pile in a multilayered sand. The modulus varies with 
the pile diameter.

8.6 SUMMARY

Elastic-plastic solutions were developed for modeling nonlinear response 
of laterally loaded rigid piles in the context of the load transfer approach, 
including the expressions for pre-tip and post-tip yield states. Simple expres-
sions for determining the depths zo, z1, and zr were developed for construct-
ing on-pile force profiles and calculating lateral capacity Ho, maximum 
moment Mm, and its depth zm. The solutions are provided for typical ratio 
of e/l (e.g., e = 0 and ∝). The solutions and expressions are underpinned by 
two parameters, k (via G) and Ar (via su, or ϕ and γs′). They are consistent 
with available FE analysis and relevant measured data. They were com-
plied into a spreadsheet program (GASLSPICS) and used to investigate a 
well-documented case. Comments are made regarding estimation of lateral 
capacity. Salient features are noted as follows:

 1. The on-pile force (p) profile is a result of mobilization of slip along 
the pu profile (LFP). It may be constructed for any states (e.g., pre-tip 
yield, tip-yield, post-tip yield, and rotation-point yield states), as the 
pu profile is unique, independent of the loading level.

 2. Nonlinear, nondimensional response (e.g., load, displacement, rota-
tion, and maximum bending moment) is readily estimated using 
the solutions by specifying the slip depth zo (pre-tip yield) and rota-
tion depth zr (via a special parameter C, post-tip yield). Dimensional 
responses are readily gained for a given pair of k and Ar (or k and 
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Ngsu). Conversely, the two parameters can be legitimately deduced 
using two measured nonlinear responses (or even one nonlinear 
curve) as stress distributions along depth and around pile diameter 
are integrated into the solutions.

 3. For the investigated model piles in sand, the deduced Ar is generally 
within ±∼15% of γs′Kp

2 and the shear moduli is only ∼±3.5% discrep-
ancy from the measured data, although ∼46% underestimation of the 
modulus is noted for the stress hardening case, owing to the plasticity 
displacement for the rigid pile. With piles in clay, Ng ranges from 2.5 
to 11.9, depending on pile movement modes as discussed elsewhere 
by the author.

 4. Maximum bending moment raises 1.3 times as the tip-yield state 
moves to the YRP state and 2.1∼2.2 times as the e increases from 0 to 
3l at either state (N. B. Mmax ≈ Mo given e/l >3) with a Gibson pu. The 
raise becomes 1.3∼1.5 times and 2.5∼2.9 times, respectively, assum-
ing a constant pu. The eccentricity has 1.5∼2 times higher impact on 
the Mmax for constant pu compared to Gibson pu.

The impact of the pu profiles on the response is highlighted by the constant 
and Gibson pu. The longitudinal resistance along the shaft and transverse 
shear resistance on the base (or tip) are neglected. As such, the current 
solutions are conservative for short, stub piles. Rotation point alters 
from footings to rigid piles under the combined lateral-moment loading, 
depending to a large extent on boundary constraints (e.g., pile-head and 
base restraints), and depth of stiff layers. The maximum bending moment 
changes remarkably, as such its evaluation is critical to assess structural 
bending failure. Further research is warranted to clarify mechanism of fix-
ity at different depths on pile response. The current solutions can accom-
modate the increase in resistance owing to dilation by modifying Ar, while 
not able to capture the effect of stress-hardening.
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Chapter 9

Laterally loaded free-head piles

9.1 INTRODUCTION

Piles are often subjected to lateral load exerted by soil, wave, wind, and/
or traffic forces (Poulos and Davis 1980). The response has been exten-
sively studied using the p-y curves model (Reese 1958) in the framework 
of load transfer model, in which the pile–soil interaction is simulated 
using a series of independent (uncoupled) springs distributed along the 
pile shaft (Matlock and Reese 1960). Assuming nonlinear p-y curves at 
any depths, the solution of the response of the piles has been obtained 
using numerical approaches such as finite difference method (e.g., 
COM624; Reese 1977). The solutions, however, often offer different 
predictions against 3-dimensional (3-D) continuum-based finite element 
analysis (FEA) (Yang and Jeremi  2002). Assuming a displacement mode 
for soil around the pile, Guo and Lee (2001) developed a new coupled 
load transfer model to capture the interaction among the springs. The 
model also offers explicit expressions for modulus of subgrade reaction, 
k, and a fictitious tension, Np (see Chapter 7, this book). The coupled 
model compares well with the finite element analysis, but it is confined 
to elastic state.

The maximum, limiting force on a lateral pile at any depth is the sum of 
the passive soil resistance acting on the face of the pile in the direction of 
soil movement, and sliding resistance on the side of the pile, less any force 
due to active earth pressure on the rear face of the pile. The net limiting 
force per unit length pu with depth (referred to as LFP) mobilized is invari-
able. A wealth of studies on constructing the LFP (or pu) has been made to 
date, notably by using force equilibrium on a passive soil wedge (Matlock 
1970; Reese et al. 1975), upper-bound method of plasticity on a conical 
soil wedge (Murff and Hamilton 1993), and a “strain wedge” mode of soil 
failure (Ashour and Norris 2000). All these are underpinned by stipulat-
ing a gradual development of a wedge around a pile near ground level and 
lateral flow below the wedge. For instance, Reese et al. (1974, 1975) devel-
oped the popular pu (thus the LFP) for piles in sand using force equilibrium 
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on a wedge. However, the accuracy of the pu is not warranted for large 
proportion of piles (Guo 2012), especially for large-diameter piles. Perhaps 
the scope of the wedge should be associated with rotation center for a rigid 
pile at one extreme (see Chapter 8, this book) and would not occur for 
some batter (or capped) piles at the other extreme. Guo (2006) developed 
a nonlinear expression of LFP that are independent of soil failure modes.

An ideal elastic-plastic load transfer (p-y) curve at any depth is 
assumed, with a gradient of the k deduced from the coupled model 
(Chapter 3, this book) and a limiting pu. The transition from the initial 
elastic to the ultimate plastic state actually exhibits strong nonlinearity, 
such as those proposed for soft clay, stiff clay, and sand (Matlock 1970; 
Reese et al. 1974; Reese et al. 1975). These forms of p-y curves are 
proven very useful in terms of instrumented piles embedded in uniform 
soils (Reese et al. 1975) but are insufficiently accurate for a large propor-
tion of piles. In addition, to synthesize the curves, a number of param-
eters are required to be properly determined (Reese et al. 1981), which is 
only warranted for large projects. In contrast, a simplified elastic-plastic 
p-y curve is sufficiently accurate (Poulos and Hull 1989) and normally 
expeditious.

A rigorous closed-form expression should be developed, as it can be 
used to validate numerical solutions and develop a new boundary ele-
ment. Elastic, perfectly plastic solutions (typically for free-head piles) 
have been proposed for either a uniform or a linearly increase-limiting 
force profile (Scott 1981; Alem and Gherbi 2000) using the (uncoupled) 
Winkler model. The solutions were nevertheless not rigorously linked 
to properties of a continuum medium such as shear modulus. The two 
LFPs have limited practical use, as the LFPs reported to date is generally 
non-uniform with depth even along piles embedded in a homogeneous 
soil (Broms 1964a). Guo (2006) developed a new elastic-plastic solution 
to the model response of a pile (e.g., load-deflection and load-maximum 
bending moment relationships), which is consistent with continuum-
based analysis. The solution also allows input parameters to be back-
estimated using measured responses of a pile regardless of mode of soil 
failure.

This chapter presents simple design expressions to capture nonlinear 
response of laterally loaded, free-head piles embedded in nonhomogeneous 
medium. First, new closed-form solutions are established for piles under-
pinned by the two parameters k and pu. Second, the solutions are verified 
using the 3-D FE analysis for a pile in two stratified soils. Third, guide-
lines are established for determining the input parameters k and pu in light 
of back-estimation against 52 pile tests in sand/clay, 6 piles under cyclic 
loading, and a few typical free-head pile groups. The selection of input 
parameters is discussed at length, which reveals the insufficiency of some 
prevalent limiting force profiles.
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9.2  SOLUTIONS  FOR PILE–SOIL SYSTEM

The problem addressed here is a laterally loaded pile embedded in a non-
homogenous elastoplastic medium. No constraint is applied at the pile-
head and along the effective pile length, except for the soil resistance. The 
free length (eccentricity) measured from the point of applied load, H, to 
the ground surface is written as e. The pile–soil interaction is simulated 
by the load transfer model shown previously in Figure 3.27 (Chapter 3, 
this book). The uncoupled model indicated by the pu is utilized to repre-
sent the plastic interaction and the coupled load transfer model indicated 
by the k and Np to portray the elastic pile–soil interaction, respectively. 
The two interactions occur respectively in regions above and below the 
“slip depth,” xp. The following hypotheses are adopted (see Chapter 3, 
this book):

 1. Each spring is described by an idealized elastic-plastic p-y curve (y 
being written as w in this chapter).

 2. In elastic state, equivalent, homogenous, and isotropic elastic proper-
ties (modulus and Poisson’s ratio) are used to estimate the k and the 
Np.

 3. In plastic state, the interaction among the springs is ignored by taking 
the Np as zero.

 4.  Pile–soil relative slip occurs down to a depth where the displacement 
wp is just equal to pu/k and net resistance per unit length pu is fully 
mobilized.

 5. The slip (or yield) can only occur from ground level and progress 
downwards.

All five assumptions are adopted to establish the closed-form solutions pre-
sented here. Influence of deviation from these assumptions is assessed and 
commented upon in the later sections.

In reality, each spring has a limiting force per unit length pu at a depth x 
[FL−1] (Chapter 3, this book). If less than the limiting value pu, the on-pile 
force (per unit length), p, at any depth is proportional to the local displace-
ment, w, and to the modulus of subgrade reaction, k [FL−2]:

 p = kw (9.1)

 p A xu L o
n= +( )α  (9.2)

where k, AL, and αo are given by Equation 3.50, 3.68, and other expres-
sions in Chapter 3, this book. The AL and αo are related to Ng and 
Nco by Ng = AL/(�sud

1-n) or Ng = AL/( ′γ sd
2-n) and Nco = Ng(αo/d)n, as used 

later on.

www.engbasics.com



280 Theory and practice of pile foundations

9.2.1  Elastic-plastic solutions

Nonlinear response of the lateral pile is governed by two separate dif-
ferential equations for the upper plastic (denoted by the subscript A), 
and the lower elastic zones (by the subscript B), respectively (Chapter 
3, this book). Within the plastic zone (x ≤ xp), the uncoupled model 
offers

 E I w A xp p A
IV

L o
n= − +( )α  (0 ≤ x ≤ xp) (9.3a)

where wA = deflection of the pile at depth x that is measured from ground 
level; wA

IV = fourth derivative of wA with respect to depth x; Ip = moment of 
inertia of an equivalent solid cylinder pile. Below the depth xp (elastic zone, 
xp ≤ x ≤ L), the coupled model furnishs the governing equation of (Hetenyi 
1946; Guo and Lee 2001)

 E I w N w kwp p B
IV

p B B− ′′ + = 0 (0≤ z ≤ L-xp) (9.3b)

where wB = deflection of the pile at depth z (= x − xp) that is measured from 
the slip depth; wB

IV, ′′wB = fourth and second derivatives of wB with respect 
to depth z. Equation 9.3b reduces to that based on Winkler model using Np = 0. 
By invoking the deflection and slope (rotation) compatibility restrictions 
at x = xp (z = 0) for the infinitely long pile, Equations 9.3a and 9.3b were 
resolved (Guo 2006), as elaborated next.

9.2.1.1  Highlights for elastic-plastic response profiles

Integrating Equation 9.3a for plastic state yields expressions for shear force, 
QA(x), bending moment, MA(x), rotation, ′wA (x) [i.e., θA(x)], and deflection, 
wA(x) of the pile at depth x, as functions of unknown parameters C3 and 
C4, which are then determined from the conditions for a free-head pile 
(at x = 0). They are provided in Table 9.1. Some salient steps/features are 
explained next by rewriting the critical response in nondimensional form, 
such as
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Table 9.1 Expressions for response profiles of a free-head pile

Responses in plastic zone (x ≤ xp)
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In elastic zone with subscript “B” (x > xp), they are given by the following:
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where ′′wp  and ′′′wp  are values of 2nd and 3rd derivatives of w(x) with respect to 
z (= x − xp).
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In particular, at n2 = 1 (stable layer, Chapter 12, this book), the following simple 
expressions are noted:
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where C3, C4 = unknown parameters; H  (= Hλn+1/AL), normalized load, 
and H = a lateral load applied at a distance of e above mudline; λ = the 
reciprocal of characteristic length, λ = k E Ip p( )44 ; Mo(= Heλn+2/AL), nor-
malized bending moment, with Mo = He, bending moment at ground level; 
x (= xλ) normalized depth from ground level; and αo= αoλ. The free-head 
conditions are:

 − = ′′′ = − = ′′ =Q E I w H M E I w HeA p p A A p p A( ) ( ) , ( ) ( )0 0 0 0  (9.6)

In particular, at the transition (slip) depth x = xp, we have w x xA p( )=  = wp, 
′ =w x xA p( ) = ′wp, ′′ =w x xA p( ) = ′′wp , ′′′ =w x xA p( ) = ′′′wp , and ′ =w x xA

IV
p( ) = wp

IV. The 
′′wp  and ′′′wp  are provided in Table 9.1.
Equation 9.3b for the elastic state may be solved as (N kE Ip p p< 2 ),

 w z e C z C zB
z( ) ( cos sin )= +−α β β5 6  (9.7)

where C5, C6 = constants and α, β are given by the following:

 α β= + = −k E I N E I k E I Np p p p p p p p( ) ( ) ( )4 4 4 (( )4E Ip p  
(9.8)

Equation 9.7 offers w zB
IV ( ), ′′′w zB ( ), ′′w zB( ), and ′w zB( ) in Table 9.1.

The constants Ci (i = 3~6) are determined using the compatibility condi-
tions at the slip depth x = xp (z = 0) from elastic to plastic state.

Conditions of ′′′ = = ′′′w z wB P( )0  and ′′ = = ′′w z wP P( )0  may be written as two 
expressions of the unknown constants C5 and C6, which were resolved to 
yield

 C
E I

k
w wp p

P P5
2 22 3= ′′′+ − ′′[ ( ) ]α α β  (9.9)

 C
E I

k
w wp p

P P6
2 2 2 23= − ′′′ + − ′′

β
α β α α β[( ) ( ) ] (9.10)

Conditions of ′ = = ′ =w x x w zA p B( ) ( )0  and w x x w zA p B( ) ( )= = = 0  allow C3 
and C4 to be determined, respectively, as
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where e = eλ and xp= xpλ. Substituting Equations 9.9 and 9.10 into Equation 
9.11, a normalized C3 is derived as
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F x x F F x F
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p p N p
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( ) ( , ) [

+

− + + − + +

2 1

2 1 2 1 0 2 1 22 2

F x

x x F x x
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N p p p N pα α ++ +2( ) ]αN px e H

 

(9.13)

where αN = α/λ. In light of Equations 9.9 and 9.13, the normalized form of 
C4 is obtained
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(9.14)

At ground level, with Equation 9.4, the rotation wg′ (θg) and ground-level 
deflection wg are expressed, respectively, in normalized form of ′wg and wg as

 ′ =
′

= − +
− −

w
w k

A
F

C k

Ag

g
n

L

n

L

λ λ1

3
1

4 3 0( , )  and (9.15)

 w
w k

A
F

C k

Ag

g
n

L

n

L

= = − +
λ λ

4 4 0 4( , )  (9.16)

Conditions of ′ = = ′w z wB P( )0  and w z wB P( )= =0  allow the normalized 
rotation and deflection at the slip depth to be written, respectively, as

 
′

= − +
w k

A

C k

A

C k

A
p

n

L

n

L

n

L

λ
α

λ
β

λ5 6   and (9.17)

 
w k

A

C k

A
p

n

L

n

L

λ λ
= 5  (9.18)

Conditions of w z wB
IV

P
IV( )= =0 , ′′′ = = ′′′w z wB p( )0 , and ′′ = = ′′w z wB P( )0  ren-

der the following relationship at the slip depth to be established:

 0 5 02. w w wP
IV

P P+ ′′′+ ′′ =α λ  (9.19)
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Responses of the pile along its length are predicted separately using elas-
tic (x > xp) and plastic solutions, with Equations 9T1, 9T2, 9T3, and 9T4 
(see Table 9.1 for these equations) for deflection, rotation, moment, and 
shear force, respectively in plastic zone; otherwise, Equations 9T5 through 
9T8 in Table 9.1 should be employed, as derived from Equations 9.7, 9.9, 
and 9.10.

The solutions allow response of the pile at any depth to be predicted 
readily. In particular, three key responses were recast in dimensionless 
forms and are discussed next.

9.2.1.2  Critical pile response

 1. Lateral load: In terms of Equation 9.3a, normalized ′′′wP , and ′′wP , the 
normalized load H  of Equation 9T12 (see Table 9.2) is deduced from 
Equation 9.19 and presented in the explicit form. A slip depth under 
a given load may be computed, which is then used to calculate other 
pile response.

 2. Groundline deflection: The normalized pile deflection at ground level 
is obtained as Equation 9T13 using Equations 9.16 and 9.14 and H. At 
a relative small eccentricity, e, pile-head deflection wt may be approxi-
mately taken as wg + e × ′wg, where ′wg = mudline rotation angle (in 
radian) obtained using Equation 9.15.

 3. Maximum bending moment: The maximum bending moment, Mmax, 
occurs at a depth xmax (or zmax) at which shear force is equal to zero. 
The depth could locate in plastic or elastic zone, depending on ψ(xp), 
which is deduced from QB(zmax) = 0 (see Table 9.1):

 ψ β α λ( ) ( )x w wp N N P P= + ′′ ′′′2  (9.20)

 z xpmax tan ( ( ))= −1 ψ β (9.21)

Where βN = β/λ, and the depth zmax is given by Equation 9.21. More spe-
cifically, if ψ( )xp  > 0, then zmax > 0. The depth of maximum moment Mmax 
is equal to xp + zmax. The value of Mmax may be estimated using Equation 
9T15 by replacing z with zmax, Mmax = MB(zmax). However, if ψ( )xp  < 0, 
then zmax < 0 (normally expected at a relatively high value of xp). The Mmax 
locates at depth xmax, with xmax (= xmaxλ) of

 x n Ho
n n

omax
/( )[( ) ( ) ]λ α λ α λ= + + −+ +1 1 11  (9.22)
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The Mmax may be calculated using Equation 9T14, derived from Equation 
9.7 by replacing x with xmax. The Mmax of Equation 9T14 is not written in 
dimensional form to facilitate practical prediction. However, normalized 
Mmaxλn+2/AL will be used later to provide a consistent presentation from 
elastic through to plastic state.

In summary, response of the laterally loaded piles is presented in explicit 
expressions of the slip depth, at which the maximum pu normally occurs. 
The expressions are valid for an infinitely long (L > Lc + max xp, max xp = 
slip depth xp under maximum imposed load H) pile embedded in a soil of a 
constant modulus (k) with depth. The solutions are based on the pu profile 
rather than mode of soil failure. The impact of the failure mode is catered 
for by parameters and/or free-head or fixed-head (Guo 2009) solutions.

Table 9.2 H, wg , and M x( ) of a free-head pile

(a) Normalized pile-head load, H

H
F x

x e

F x F F xp N

p N

p N p= −
+

+ +
+

− +( , )( ) ( , ) ( , ) ( ,1 0 2 2 0 1α
α

α )) . ( , )+
+ +

0 5 0F x

x e
p

p Nα  (9T12)

Given xp= 0, the minimum head load to initiate slip is obtained.

(b) Normalized mudline deflection, wg

w F x x F x F C Fg p p p N m= − − + − +4 4 3 4 0 4 1 22[ ( , ) ( , ) ( , )] [ ( ) ] (α ,, )

[( ) ] ( , ) [ ] (
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x C F x x C F

p

N p N m p N p m+ − + + + + +2 4 1 1 2 22α α α 00
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x C F x x x
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p N m p p+ − − + + − −α pp N mC F+α ) ] ( , )1 0  
(9T13)
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13 2 2α
α

.

(c) Normalized bending moment, M x( ) (x < xp) offers the following:
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(9T14)

− = +−M z e C x z C x zB
z

p p( ) [ ( )cos ( )sin ]α β β1 2  (9T15)

 and C x E I w Ap p p
n

p L1
2( ) /= ′′+λ , C x E I w w Ap p p

n
P P L2

2( ) ( ) / ( )= ′′′+ ′′+λ α β

where MB(z) = bending moment at depth z that is derived as

 
z w w wP P Pmax tan ( / [ ])= ′′′ ′′′+ ′′−1

21 2

β
β α λ

 
(9T16)

 x n Ho
n n

omax
/( )[( ) ( ) ]λ α λ α λ= + + −+ +1 1 11  (9T17)

Source: Guo, W. D., Computers and Geotechnics, 33, 1, 2006.

Note: The constants Cj are determined using the compatibility conditions of Q(x ), 
M(x ), ′w x( ), and w(x ) at the normalized slip depth, xp  [x=xp  or z  = 0]. Elastic solutions 
validated for Ng < 2(kEpIp)0.5 are ensured by L being greater than the sum of Lc and the 
maximum xp. Pile-head rotation angle is given by Equation 9.15.
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9.2.2  Some extreme cases

The normalized slip depth under lateral loads may be estimated using 
Equation 9T12 that associates with the LFP (via AL, αo, n), and the pile–
soil relative stiffness (via λ). The minimum load, He, required to initiate the 
slip at mudline (xp= 0) is given by

 H A ee
n

L o
n

Nλ α λ α+ = +1 2( ) [ ( )] (9.23)

Under the conditions of αo = 0, and αN = 1 (i.e., βN = 1), the current solu-
tions may be simplified (for instance, Equation 9T12 may be replaced with 
Equation 9.24)
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(9.25)
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With the same conditions, the constants C1(xp), and C2(xp) for bending 
moment in Equation 9T15 may be replaced with
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  C x xp p

n
2 0 5( ) .=  (9.27)

Equation 9.26 offers a critical normalized slip depth, xp (rewritten as x′), 
at ψ(x′) = 0:

 ′ = − +
+

+ +
+

+ +x
n

n
e

n
n

e n
0 5 2

1
0 5

2
1

2 22. ( )
. [ ] ( ) (9.28)

The condition of xp
 > x′ is equivalent to ψ( )xp  < 0 and renders the maxi-

mum bending moment to occur above the slip depth. Equation 9.24 may 
also be rewritten as

 ( ) .
( )

( )(
x H A M A x

x n x

np
n

L o
n

L p
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+ +
+

+ +1 0 5
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1 2
1 2λ λ
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n)
 (9.29)
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With ψ( )xp  ≥ 0, a normalized ratio of the maximum moment M(zm) over the 
load H (≠ 0) can be obtained

 − = +−M z H e D x z D x zm
z

p m p m
m( ) [ ( ) cos( ) ( )sin( )]λ λ λλ

1 2  (9.30)

where

 D x C x Hp p1 1( ) ( ) /=  and D x C x Hp p2 2( ) ( ) /=   (9.31)

Equations 9.27 through 9.31 can be used to deduce some available expressions.

 1. Imposing n = e = 0, αN = 1, and αo = 0, Equations 9T12 and 9.25 
reduce to Equations 9.32 and 9.33, respectively

 H A xL pλ = +( )1 2 (9.32)

 w k A x xg L p p/ [( ) ( ) ]= + + + +1
6

1 2 1 34  (9.33)

  Equations 9.32 and 9.33 are essentially identical to those brought 
forwarded previously (Rajani and Morgenstern 1993) using Winkler 
model (Np = 0) for a pipeline that is embedded in a homogenous soil 
and has a constant (n = 0) limiting force (resistance) along its length.

 2. Mmax = H2/(2AL) and xmax = H/AL (n = 0), while Mmax = 8 93H AL  

  and xmax = 2H AL  (n = 1), with Mmax being obtained from Equation 
9T14 and xmax from Equation 9.22 by setting αo = 0 and e = 0, which 
were put forwarded previously (Ito et al. 1981).

 3. Introducing xp = 0 (elastic state) and at e = 0, Equation 9T11 offers
′′wp  = 0. Furthermore, using Np = 0 in Equations 9T15 and 9T16, zmax 

and Mmax obtained, respectively, are virtually identical to the results 
obtained using Winkler model (Rajani and Morgenstern 1993).

Example 9.1 Elastic-plastic solutions for n = 0 and n = 1.0

Elastic-plastic solutions were developed for a homogenous limiting 
force profile (LFP), or a linear increasing LFP profile between pile and 
soil. Such profiles are seldom observed in practice on flexible piles. 
However, they are useful as extreme cases of the current solutions for 
piles in nonhomogeneous LFP, as illustrated below. To allow such com-
parisons, nondimensional parameters of the following for n = 0 were 
introduced (Hsiung 2003):

 y H Ap L= 2 λ , H N yc c p= 0 5. , and y M Mm o c=  (9.34)

where Mc = 2EpIpλ2wp. As wp
 = pu/k, the Mc can be rewritten as Mc = 

AL/(2λ2).
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9.1.1 Slip Depth under a Given Load

Setting n = 0 in Equation 9.24, the normalized slip depth xp under the 
load H is derived as

 x H A H A M Ap L L o L= − + + +1 22 2λ λ λ( )  (9.35)

Equation 9.35 is consistent with the previous expression (Alem and 
Gherbi 2000). Taking n = 1 and e = 0 in Equation 9.24, a nonlinear 
equation for xp results from which the xp is derived as

 x H Ap L= −( ) cos( )/8 12 1 2λ  (9.36)

where cos(ϖ) is gained from H using cos(3ϖ) = (32Hλ2/AL)-3/2. Equation 
9.36 is applicable to any load levels. Equation 9.36 can be rewritten in 
another form (Motta 1994).

9.1.2 Piles in Homogenous Soil (n = 0) due to Lateral Load H

Equation 9.33 can be converted to the following expression (Rajani 
and Morgenstern 1993):

 w k A H Hg L = + +1
2

2
3

8
3

4 or w k A
H

N

H

Ng L
c

c

c

c

= + +










1
2

2
3

8
3

4

 

(9.37)

Setting n = 0 in Equation 9.28, the critical value, ′x  (rewritten as ′xo) 
may be expressed as

 ′ = − + +x e eo ( ) /1 2 1 2
 (9.38)

A characteristic load, H*, was previously defined as (Alem and Gherbi 
2000):

 H H H e* ( )= + −2 1  (9.39)

In light of Equation 9.35, the condition of H* < 0 is equivalent 
to that of xp < ′xo. “ψ( )xp  ≥ 0” is equivalent to xp ≤ ′xo, requiring 
that the applied force, H*, be equal to the total limiting (probably not 
shear) force developed in the plastic zone, H*= AL × ′xp. Together with 
Equation 9.35, this equilibrium offers a unit value of ′xo, identical to that 
obtained from Equation 9.38 at e = 0.

Under ψ( )xp  ≥ 0 or xp ≤ ′x , setting n = e = 0 in Equation 9.26, the 
ψ( )xp  is simplified as

 ψ( )x
x

xp

p

p

=
−
+

1

1
 (9.40)
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Equation 9.40 in conjunction with Equation 9.21 allow tan(λzm) to be 
determined, which in turn gives

 cos( ) ( ) ( )λz x xm p p= + +1 2 1 2
 (9.41)

Equation 9.41 allows the bending moment of Equation 9T15 at n = 0 
to be rewritten as

 − = +−M z
A

e xm
L z

p
m( ) . . ( )0 5 0 5 1

2
2

λ
λ  (9.42)

Equation 9.42 may be written as

 − = − +−M z
A

e y ym
L z

p p
m( ) . ( )0 25 2 4 4

2
2

λ
λ  (9.43)

Using Equation 9.24 and setting n = 0 in Equation 9.31, the D1 and D2 

are simplified as

 D x N Hg c c1 1 0 5( ) .= − , D x N Hg c c2 0 5( ) .=  (9.44)

The D1 and D2 allow Equation 9.30 to be rewritten in the form given 
previously (Rajani and Morgenstern 1993).

The maximum bending moment may occur at a depth xm offered by 
Equation 9.22, and locate within the plastic zone, thus

 x H Am L=  (9.45)

The moment furnished by Equation 9T14 can be rewritten as

 − + =( ) . ( )M He A H Am L L0 5 2 (9.46)

At e = 0, Equations 9.45 and 9.46 are identical to those proposed 
before (Hsiung 2003).

9.1.3 Piles in Homogenous Soil (n = 0) due 
to Moment Loading Only (e = ∞)

Substituting H = n = 0 into Equation 9.29, we obtain

 M A xo L pλ2 20 5 1= +. ( )  (9.47)

Substituting Mc with AL/(2λ2), Equation 9.47 allows the ym (= Mo/Mc) 
to be established

 y xm p= +( )1 2
 (9.48)

From Equation 9.25, at e = ∞, the normalized displacement may be 
rewritten as
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 w k A xg L p= + +0 5 0 5 1 4. . ( )  (9.49)

Therefore, 

 w k A yg L m= +0 5 0 5 2. .  (9.50)

Equation 9.50 is consistent with the previous expression (Hsiung 
2003).

9.1.4 Piles in Gibson Soil (n = 1.0) due to Lateral Load H Only (e = 0)

Considering z = x – xp, Equation 9T15 can be expanded in terms of the 
normalized slip depth xp, thus

 − = +−M z E I e C x x C x xp p
x

p p( ) ( ( ) cos( ) ( )sin( ))2 2
5 6λ λ λλ  (9.51)

Substituting 2EpIpλ2 with k/(2λ2), the coefficients C5 and C6 can be 
written as

 C x e
A

k
C x x C x xp

x L
p p p p

p

5 1 2

2
( ) ( ( )cos( ) ( )sin( ))= −λ

λ
λ λ  and  (9.52)

 C x e
A

k
C x x C x xp

x L
p p p p

p

6 1 2

2
( ) ( ( )cos( ) ( )sin( ))= +λ

λ
λ λ  (9.53)

Provided that n = 1 and e = 0, the C1(x) and C2(x) given by Equation 
9.27 can be simplified as

 C x
x x
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L

p

L p

λ
( ) =  (9.56)

With Equations 9.55 and 9.56, Equation 9.51 can be transformed into 
the expressions derived earlier (Motta 1994), though a typing error is 
noted in the latter.

9.1.5 Piles in Gibson Soil (n = 1.0) due to Moment Loading Only

Setting n = 1 and e = ∝ in Equation 9.25, the normalized pile-head 
displacement is

 w k A x x x x xg L p p p p pλ = + + + +( )4 3 25 10 10 5 5 (9.57)
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Similarly, from Equation 9.29, the normalized bending moment is 
rewritten as

 M A x x xo L p p pλ3 2 3 3 6= + +( )  (9.58)

Example 9.2 A lateral pile with uniform pu profile 

For the example pile (Hsiung 2003), let’s estimate the deformation and 
maximum bending moment for the following two cases: In Case A, the 
free-head pile is subjected to a lateral load H of 400 kN and a moment 
Mo of 1,000 kN-m. In Case B, the free-head pile is subjected to a lateral 
load H of 280 kN, together with a moment Mo of 700 kN-m.

The following parameters were known: k = 40 MPa, λ = 0.4351/m, 
wp = 0.01 m, AL = wpk = 0.01 × 40 MPa = 400 kPa, and e = 1,000/400 = 
2.5 (Case a) or e = 700/280 = 2.5 (Case b). First, from Equation 
9.24, the minimum load to initiate a slip is found to be 220.17 kN 
[= 0.5AL/(λ(1 + eλ)]. The given loads (H) for both cases are greater 
than 220 kN, therefore, the elastic-plastic solution presented herein 
is applicable.

Case A: Equation 9.29 may be transformed into the following form:

 ( ) ( )x
H
A

x
M

Ap
L

p
o

L

+ − + − =1 2 1 2 02
2λ λ

 

Input H = 400 kN, Mo = 1,000 kN-m and other parameters, it follows: 
xp = 0.5009. In Equation 9.25, because e = 1.088 (= 2.5 × 0.4351), the 
normalized displacement is obtained as

 

w k Ag L = +
+

+1.0875
1.0875

(( . ) )
( . )

.

1 5009 1
2 1 5009

1 500

4

99 1 5009 2 1 5009 3
6 1 5009

2 3465
4(( . ) . )

( . )
.

+ × +
+

=
1.0875

 

Therefore, the displacement wg is about 23.5 mm.
Using Equation 9.26, the ψ(xp) is estimated to be −0.0618. With 

Equation 9.38, the ′x  is found as 0.1926. Either ψ(xp) < 0 or xp > 
′x  means that the maximum bending moment should occur in plastic 

zone. The depth xm is 1 m as determined from Equation 9.22. The 
moment is 1,200 kN-m as estimated below using Equation 9T14:

−Mm = 0.5(H/AL)2 × AL+ He = 0.5 × 400 + 400 × 2.5 = 1,200 kN-m.

Case B: With H = 280 kN and Mo = 700 kN-m, it follows: xp = 0.17368; 
thus wg is 13.24 mm. 

From Equation 9.26, ψ(xp) = 0.223, and using Equation 9.38, the ′x  
maintains at 0.1926. The condition of ψ(xp) > 0 or xp < ′x  implies that 
the maximum bending moment should occur at a depth of zm + xp below 
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the ground level (xp = 0.1737/0.4351 = 0.399 m). From Equation 9.21, 
the depth zm is found to be 0.504 m (= arctan(0.223)/0.4351). Thus, 
λzm is equal to 0.21495. The coefficient C1(xp) is given by Equation 
9.27:

C x1 0 5
0 17368 1 0 17368 1 0878 1 2 0 1736

( ) .
( . ) . . ( .= + × + × + × 88

1 0 17368 1 0878
0 36911

)
. .

.
+ +

=

Thus, the moment can be estimated by Equations 9T15 and 9.27:

− = ×−M z em( )
.

( . cos( ..400

0 4351
0 36911 0 1495 180

2

0 1495 ππ

π

)

. sin( . ))+ ×0 5 0 1495 180

Thereby, M(zm) is 795.88 kN-m that occurs at a depth of 0.903 m 
below the ground level.

Finally, the statistical relationship between load and displacement 
(Hsiung and Chen 1997) compares well with the analytical solution 
only when their normalized displacement is less than 8, otherwise it 
underestimates the displacement. Similar discussion can be directed 
toward fixed-head piles. In summary, even for piles in a homogenous 
soil, the closed-form solution can be presented in various, complicated 
forms.

9.2.3  Numerical calculation and 
back-estimation of LFP

Although they may appear complicated, the current solutions can be 
readily estimated using modern mathematical packages. They have been 
implemented into a spreadsheet operating in EXCELTM called GASLFP. At 
αo = 0 and αN = 1, simplified Equations 9.24, 9.25, 9.26, and 9.27 are also 
provided.

Using Equation 9T12, the slip depth xp for a lateral H may be obtained 
iteratively using a purposely designed macro (e.g., in GASLFP). Conversely, 
slip depth xp may also be assigned to estimate the load H. Either way, 
normalized slip depth xp is then calculated with the λ, which allows the 
ground-level deflection, wg, and the ψ( )xp  to be calculated. The latter in 
turn permits calculation of the maximum bending moment, Mmax, and its 
depth, xmax. The calculation is repeated for a series of H or assumed xp, 
each offers a set of load H, deflection wg, bending moment Mmax, and its 
depth xmax, thus the H-wg, Mmax-wg, and xmax-Mmax curves are determined. 
These calculations are compiled into GASLFP and are used to gain numeri-
cal values of the current solutions presented subsequently (except where 
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specified). For comparison, the predictions using simplified expressions are 
sometimes provided as well.

With available measured data, the three input parameters Ng, Nco, and 
n (or AL, αo, and n) may be deduced by matching the predicted wg, Mmax, 
and xmax (using GASLFP) across all load levels with the corresponding mea-
sured data, respectively. They may also be deduced using other expressions 
shown previously, for instance, Equation 9.15 for rotation, the solutions for 
a shear force profile, or displacement profile (see Chapter 12, this book). 
The values obtained should capture the overall pile–soil interaction rather 
than some detailed limiting force profile (in the case of a layered soil). 
The back-estimated parameters will be unique, so long as three measured 
curves are available (Chapter 3, this book, option 6). However, if only one 
measured (normally wg) response is available, Ng may be back-estimated 
by taking Nco as 0 ~ 4 and n as 0.7 and 1.7 for clay and sand, respectively. 
Should two measured (say wg and Mmax) responses be known, both Ng and 
n may be back-estimated by an assumed value of Nco. Measured responses 
encompass the integral effect of all intrinsic factors on piles in a particular 
site, which is encapsulated into the back-figured LFP. The LFP obtained for 
each pile may be compared, allowing a gradual update of nonlinear design.

Example 9.3 Validation against FEA for piles in layered soil

Yang and Jeremi  (2002) conducted a 3-D finite element analysis (FEA) 
of a laterally loaded pile. The square aluminium pile of 0.429 m in 
width, 13.28 m in length, and with a flexural stiffness EpIp of 188.581 
MN-m2, was installed to a depth of 11.28m in a deposit of clay-sand-
clay profile and sand-clay-sand profile, respectively. The pile was sub-
jected to lateral loads at 2 m above ground level. The clay-sand-clay 
profile refers to a uniform clay layer that has a uniform interlayer of 
sand over a depth of (4~8)d (or 1.72~3.44 m, d = width of the pile). 
Conversely, the clay layer was sandwiched between two sand layers (i.e., 
the sand-clay-sand profile). In either profile, the clay has an undrained 
shear strength su of 21.7 kPa, Young’s modulus of 11 MPa, Poisson’s 
ratio νs of 0.45, and a unit weight γs′ of 13.7 kN/m3. The medium-dense 
sand has an internal friction angle ϕ of 37.1°, shear modulus of 8.96 
MPa at the level of pile base, νs = 0.35, and γs′ = 14.5 kN/m3.

The FE analysis of the pile in either soil profile provided the follow-
ing results: (1) p-y curves at depths up to 2.68 m; (2) pile-head load (H) 
and mudline displacement (wg) relationship; (3) wg versus maximum 
bending moment (Mmax) curve; and (4) profiles of bending moment 
under ten selected load levels. With the p-y curves, the limiting pu at 
each depth was approximately evaluated, thus the variations of pu with 
depth (i.e., LFP) was obtained (Chapter 3, this book, option 4) and is 
shown in Figure 9.1a1 and a2 as FEA. Using the bending moment pro-
files, the depths of maximum bending moment (xmax) were estimated 
and are shown in Figure 9.1c1 and c2.
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First, closed-form solutions were obtained for the clay-sand-clay 
profile. An average shear modulus of the soil �G (bar “∼”denotes aver-
age) was calculated as 759.5 kPa (= 35su; Poulos and Davis 1980). The 
k and Np were estimated as 2.01 MPa, and 892.9 kN using Equations 
3.50 and 3.51 (Chapter 3, this book), respectively. In light of Chapter 3, 
option 5 for constructing LFP for a stratified soil, Reese LFP (C) and 
LFP(S) (see Table 3.9, Chapter 3, this book) were obtained using prop-
erties of the clay and sand, respectively. The pu of the clay layer over a 
depth x of (2~4)d was then increased in average by 30 percent due to 
the underlying stiff sand layer, while the pu of the sand at z = (4~6)d 
was reduced by 20 percent due to the overlying weak clay layer (Yang 
and Jeremić 2005). The overall pu from the upper to the low layer is 
fitted visually by n = 0.8 (see Figure 9.1). As the maximum xp (max xp, 
gained later) will never reach the bottom clay layer, the bottom layer 
is not considered in establishing the LFP. The LFP for the pile in the 
stratified soil is described by n = 0.8, Ng = 6, and αo = 0.

The CF predictions using the LFP are plotted in Figure 9.1 a1 through 
c1, which compares well with the FEA results, in terms of displace-
ment wg and moment Mmax (Figure 9.1b1). The depth of the Mmax, xmax 
is, however, overestimated by up to 20 percent (Figure 9.1c1), which 
is resulted from using an equivalent homogeneous medium (Matlock 
and Reese 1960). A stratified profile reduces the depth xmax. The max 
xp (under the maximum pile-head load) reaches 4.63d, which locates at 
a distance of 3.37d (= 8d − 4.63d) above the bottom layer. The current 
pu over x = (1.5~8)d slightly exceeds that obtained using the previous 
instruction (Georgiadis 1983) for a layered soil (not shown here), and it 
is quite compatible with the overall trend of FEA result within the max 
xp. Interestingly, replacing the current Guo LFP with the Reese LFP(C), 
the current solutions still offer good predictions to 30 percent of the 
maximum load, where the response is dominated by the upper layer.

Next, the current solutions were conducted for the piles in the sand-
clay-sand profile. Shear modulus G was equal to 1.206 MPa by aver-
aging the sand modulus at mid-depth (= 0.5 × 8.96 MPa) and the clay 
modulus (= 0.759 MPa), and thus k = 3.33 MPa and Np = 5.731MN. 
Again, both Reese LFP(S) (also Broms LFP) and Reese LFP(C) were 
ascertained. Importantly, the effect of the bottom sand layer on LFP is 
considered in this case, as the interface (located at x = 8d) is less than 2d 
from the max xp of 6.75d obtained subsequently. The pu was maintained 
similar to Broms LFP over x = (0~4)d and reduced approximately by 
20% over x = (6~8)d. For instance, pu/(γs′d2) at x = 8d was found to be 
70.0. An overall fit to the pu of the top layer and the point (70, 8) offers 
the current Guo LFP described by n = 0.8, Ng = 16.32 [= 14.5 × tan4(45° + 
37.1°/2)], and αo = 0. The current predictions are presented in Figure 
9.1a2 through c2. They agree well with the FE analysis in terms of the 
mudline displacement wg and the maximum bending moment Mmax 
(Figure 9.1b2). Only the depth of the Mmax was overestimated (Figure 
9.1c2) at H < 270 kN, for the same reason noted for the clay-sand-clay 
profile. The max xp reaches 6.75d at H = 400 kN. The Guo LFP is close 
to the overall trend of that obtained from FEA within the max xp.
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Figure 9.1  Comparison between the current predictions and FEA results (Yang and 
Jeremić 2002) for a pile in three layers. (ai) pu. (bi) H-wg and wg-Mmax. (ci) Depth 
of Mmax (i = 1, clay-sand-clay layers, and i = 2, sand-clay-sand layers). (After 
Guo, W. D., Computers and Geotechnics 33, 1, 2006.)
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With the pile in sand-clay-sand profile, at the depth of 4d (of 
clay-sand interface), the wp is calculated as 25.2 mm (= 9 × 21.7 × 
0.429/3.33) using the clay strength; or as 39.7mm (= 85.71 × (4 × 
0.429)0.8/3330) using the sand properties and AL = 85.71 kN/m1.8. 
The pile–soil relative slip occurred in the clay before it did in the over-
lying sand. This sequence is opposite to the assumption of slip pro-
gressing downwards. This incomparability does not affect much the 
overall good predictions, which indicate that response of the pile is 
dominated by the overall trend of the LFP within the max xp and the 
sufficient accuracy of the LFP for the stratified soil; and the limited 
impact of using the sole xp to represent a transition zone that should 
form for a nonlinear p-y curve (Yang and Jeremić 2002). Initially, a 
“deep” layer exceeding a depth of 8d may be excluded in gaining a 
LFP. Later, the sum of 2d and the max xp should be less than the depth 
(of 8d), otherwise the “deep” layer should be considered in construct-
ing the LFP. These conclusions are further corroborated by the facts 
that Broms LFP or Reese LFP(S) also offer excellent predictions up to 
a load of 400 kN, but for a gradual underestimation of the displace-
ment wg and the moment Mmax at higher load levels. A 10% reduction 
in the gradient of the LFP would offer better predictions against the 
FEA results.

9.3  SLIP DEPTH VERSUS NONLINEAR RESPONSE

Nonlinear responses of a laterally loaded pile are generally dominated by 
the LFP within the maximum slip depth. The responses of H , wg, Mmax, and 
xmax are obtained concerning n = 0.5 ~ 2.0, αoλ < 0.3, and xp< 2.0, which 
are related to practical design.

Figure 9.2 indicates that (1) H  normally increases with decrease in n, 
and/or increase in αoλ (xp < 2.0) and H  < 2; (2) wg = ~20H  (< 50); for 
instance, at xp = 2.0 (n = 0.5, αoλ = 0), it is noted that H  = 1.38 and wg = 
21.1, respectively; (3) wg follows an opposite trend to H  in response to n 
and αoλ; (4) Mmax and wg are similar in shape to the load H ; (5) Mmax < 5.0 
and xmax < 3.0; (6) at xp = 2 and n = 1, as αoλ increases from 0 to 0.2, H  
increases by 20% (from 1.47 to 1.77) and Mmax by 13% (from 1.68 to 1.90); 
and (7) wg and Mmax are more susceptible to xp than H  and xmax are, as 
demonstrated in Table 9.6, discussed later.

9.4  CALCULATIONS FOR TYPICAL PILES

9.4.1  Input parameters and use of GASLFP

The closed-form solutions or GASLFP (Guo 2006) are for an infinitely 
long pile (i.e., pile length > a critical length, Lcr in elastic zone), otherwise 
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Figure 9.2  Normalized (ai) lateral load~groundline deflection, (bi) lateral load~maximum 
bending moment, (ci) moment and its depth (e = 0) (i = 1 for α0λ = 0, n = 0, 
0.5, and 1.0, and i = 2 for α0λ = 0 and 0.2). (After Guo, W. D., Computers and 
Geotechnics 33, 1, 2006.)
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the solutions for rigid piles (Guo 2008) should be employed. A number of 
expressions are available for determining the Lcr. To be consistent with the 
current model, Equation 9.59 is used (Guo and Lee 2001):

 L d E Gcr p= 1 05 0 25. ( / ) .  (9.59)

With a pile–soil relative stiffness Ep/G between 102 and 105 (commonly 
seen), Lcr is equal to (3.3~18.7)d. Over the length Lcr, using an average G, 
it is recursive to determine Lcr using Equation 9.59. The procedure for con-
ducting a prediction for piles in clay (e.g., using GASLFP; Guo 2006) may 
be summarized as

 1. Input pile dimensions (d, L, t), flexural stiffness of EpIp (and equiva-
lent Ep), loading eccentricity, e.

 2. Calculate shear modulus G using an average su (�su) over the critical 
length Lcr estimated iteratively using Equation 9.59 (assuming Lcr = 
12d initially, and a Poisson’s ratio, νs).

 3. Compute the k and the Np by substituting the G into Equations 3.50 
and 3.51, respectively (Chapter 3, this book).

 4. Estimate �su over a depth of 8d for wg = 0.2d (or a depth of 5d for wg = 
0.1d) and the parameters αo, n, and Ng.

Likewise, the procedure is applicable to piles in sand. The modulus G, 
however, is averaged initially over a depth of 14d (guessed Lcr) and may be 
correlated with SPT (Chapter 1, this book). The process can be readily done 
(e.g. in GASLFP). The input parameters such as αo, n, and Ng are discussed 
amply in later sections (e.g. n = 0.7, αo = 0.05 ~ 0.2 m, and Ng = 0.6 ~ 3.2 for 
piles in clay), which may be used herein. They may be deduced by matching 
prediction with measured data.

The studies on four typical piles using the current solutions are presented 
next, which are installed in a two-layered silt, a sand-silt layer, a stiff clay, 
and a uniform clay, respectively. The best predictions or match with mea-
sured data are highlighted in bold, solid lines in the pertinent figures. They 
yield parameters Ng, Nco, and n (thus the LFPs) and are provided in Table 
9.3. These predictions are elaborated individually in this section.

Example 9.4 Piles in two-layered silt and sand-silt layer

Kishida and Nakai (1977) reported two individual tests on single piles 
A and C driven into a two-layered silt and a sand-silt layer, respec-
tively. Each pile was instrumented to measure the bending strain down 
the depth.

Pile A was 17.5 m in length, 0.61 m in diameter, and had a flexural 
stiffness EpIp of 298.2 MN-m2. The pile was driven into a two-layered 
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silt, with a uniform undrained shear strength (su) of 15 kPa to a depth 
of 4.8 m, and 22.5 kPa below the depth. Assuming G = 121su (su = 
15 kPa) (Kishida and Nakai 1977), Lc/ro was estimated as 26.06, and 
the pile was classified as infinitely long.

The shear modulus G of 1.82 MPa offers Ep/G* of 18,588. The factor 
γb, modulus of subgrade reaction, k, and normalized fictitious tension, 
Np/(2EpIp), were obtained as 0.0835, 5.378 MPa, and 0.0169 using 
Equations 3.54, 3.50, and 3.51 (Chapter 3, this book), respectively. 
The stiffness factors α and β were calculated using Equation 9.8 and 
the definition of the λ. All of these values for the elastic state are sum-
marized in Table 9.4. The pu for the upper layer (su = 15 kPa) was deter-
mined using Reese LFP(C). Likewise, for the lower layer (x ≥ 7.87d = 
4.8 m), the pu was taken as a constant of 9d × 22.5 kN/m [with pu/
(sud) = 13.5, taking su (upper layer) = 15 kPa as the normalizer]. Using 
Chapter 3, this book, option 5, the overall LFP for the two-layered soil 
is found close to the Reese LFP(C) near the ground level and passes 
through point (13.5, 7.87), as indicated by “n = 0.5” in Figure 9.3a1. 
The LFP is thus expressed by n = 0.5, AL = 53.03 kPa/m0.5, and αo = 
0.32 m in Equation 9.2 (or Ng = 4.53, Nco = 3.28, and n = 0.5). The 
higher strength su of 22.5 kPa of the lower layer renders 0~50% (an 
average of 25%) increase in the pu over x = (4~7.87)d, which resembles 
the effect of an interlayer of sand on its overlying clay deposit (Murff 
and Hamilton 1993) (Yang and Jeremić 2005).

The set of parameters offer excellent predictions of the pile response, 
as shown in Figure 9.3. Critical responses obtained are shown in Table 
9.4, including minimum lateral load, He, to initiate the slip at ground 
level; lateral load, H**, for the slip depth touching the second soil layer, 
as shown in Figure 9.3; maximum imposed lateral load, Hmax; and slip 
depth, xp, under the Hmax.

Those critical loads (He, H**, and Hmax) and the slip depth are useful 
to examine the depth of influence of each soil layer. Pile–soil relative 
slip occurred along the pile A at a low load, He of 54.6 kN, and devel-
oped onto the second layer (i.e., xp = 4.8 m) at a rather high load, H** 
of 376.9 kN. Influence of the second layer on the pile A is well captured 
through the LFP. This study is referred to Case I. Further analysis indi-
cates that as n increases from 0.5 to 0.7, Ng drops from 4.53 to 3.2, 

Table 9.3 Parameters for the “bold lines” predictions in Figures 9.3 and 9.4

Figs. 
�su (kPa) 
or (N)a

αc or 
(G/N)b

E pIp 
(MN-m2) e (m) L (m) ro (m) Ng/Nco Nc/αoλ n

9.3 15 121 298.2 0.1 17.4 0.305 4.53/3.28 5.8/.08 0.5
9.3 (12)a (640)b 169.26 0.2 23.3 0.305 8.3/4.67 _____ 1.0
9.4 153 545.1 493.7 0.31 14.9 0.32 0.85/0.0 1.67/0 1.5

Source: Guo, W. D., Computers and Geotechnics, 33, 1, 2006.
a values of SPT blow count.
b G/N (shear modulus over N) in kPa.
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αo reduces from 0.31 to 0.1, and G/su increases from 109 to 131 in 
order to gain good match with measured data. The LFP is well fitted 
using Hensen’s expression with c = 6 and ϕ = 16°.

9.4.1 Hand calculation (Case II)

The simplified Equations 9.23 through 9.28 (referred to as “S. 
Equations”) were used to predict the response of the pile A (Case II), as 
indicated in Table 9.5. The LFP (assuming αo = 0) reduces to the trian-
gular dots shown in Figure 9.3a1. The calculation was readily under-
taken in a spreadsheet. It starts with a specific xp followed by xp, H, wg, 
and Mmax

 as shown in Table 9.6. This calculation is illustrated for two 
typical xp = 1 m, and xp = 5 m (for e = 0 m). With λ = 0.2591/m (Table 
9.4), xp (at xp = 1 m) is equal to be 0.2591. Using n = 0.5 (Table 9.3) 
and e = 0, x′ is computed as 1.118 from Equation 9.28, thus Equations 
9.26, 9.24, and 9.25 offer the following:

ψ( )
. . . .

[ . . .
xp = − × × + ×

× + × ×
2 1 5 0 2591 2 5 1 5

2 0 2591 2 2 5 0

2

2 22591 2 5 1 5
0 6020

+ ×
=

. ] .
.

 
H
AL

λ1 5 0 50 5 0 2591 1 5 2 5 2 0 2591 2 5 0 2. .. . [ . . . ( . .= × × + × × + 5591
1 2591 1 5 2 5

0 2792
)]

. . .
.

× ×
=

and

w k

A
g

L

λ0 5

3 5
22

3
0 2591

2 0 2591 2 0 5 10 0
.

..
. ( . )

=
× + × + × .. . .

. . .

( .

2591 0 5 9 0 5 20
1 2591 2 5 4 5

2 0 259

2+ + × +
× ×

+
× 11 2 0 2591 1 0 2591

1 2591
0 6796

2 0 5+ × + ×
=

. ) .
.

.
.

Table 9.4 Parameters for the “bold lines” (Examples 9.4 and 9.5)

Piles EP/G* γb

k 
(MPa)

NP/
(2EpIp)

α 
(m-1) β (m-1) λ (m-1)

A 18,587.7 .0856 5.378 .0169 .2750 .2422 .2591

C 2,739.2 .1382 26.400 .0674 .4808 .4047 .4444

Plastic

Input parameters Predictions

Ng and ϕ AL (kN/
mn+1)

αo (m) He (kN) H** 
(kN)

Hmax 
(kN)

xp(xp) at 
Hmax

A Ng = 4.53 53.03 .320 54.57 376.9 393. 8.36d(1.32)

C ϕ′ = 28° 83.58 .563 48.90 244.4 440. 4.72d(1.28)

Source: Guo, W. D., Computers and Geotechnics, 33, 1, 2006.

Note: G = 1.82 and 7.68 MPa for piles A and C, respectively. If Np = 0, then α = β = λ.

He = H at xp = 0; He** = H at the slip depth xp shown in Figure 9.3. ′γ s= 16.5 (kN/m3).
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Figure 9.3  Calculated and measured (Kishida and Nakai 1977) response of piles A and C. 
(ai) pu. (bi) H-wg and H-Mmax. (ci) Depth of Mmax (i = 1, 2 for pile A and pile C). 
(After Guo, W. D., Computers and Geotechnics 33, 1, 2006.)
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As xp < x′ [ψ( )xp  > 0], the maximum bending moment occurs below 
the slip depth. Substituting ψ( )xp  = 0.602, and β = λ into Equation 
9.21, zmax is calculated as 2.091 m, tan(λzmax) = 0.602, and cos(λzmax) = 
0.8567. Also Equation 9.27 offers

C xp1

1 50 5 2 5 2 0 2591 0 2591
2 5 1 2591

0( )
. ( . . ) .

. .

.

= × + × ×
×

= ..06323

C xp2
0 50 5 0 2591 0 25451( ) . . ..= × =

Table 9.5 Sensitivity of current solutions to k(Np), LFP, and e

Cases Limiting force profiles Remarks References

Pile A Figure 9.3

I Ng, Nco, and n provided in 
Table 9.3

Using Guo LFP n = 0.5 

II Ng = 4.53, Nco = 0, and 
n = 0.5

Using e = Np = 0 n = 0.5 
(S. Equations)

III Ng, Nco, and n provided in 
Table 9.3

Np = 0 n = 0.5 (Np = 0)

IV Ng = 4.79, Nco = 3.03, and 
n = 0.4

Same total force as that 
using Reese LFP(C) over 
the max xp

n = 0.4 

Pile C Figure 9.3

I Ng, Nco, and n provided in 
Table 9.3

Using Guo LFP n = 1

II Ng = 3Kp, Nco = 0, and 
n = 1.0 

Using Broms LFP Broms LFP

III Ng = 8.3, Nco = 0, and 
n = 2 

e = 0.31m, G = 7.68 MPa n = 2

VI With e = Np = 0. n = 2 
(S. Equations) 

Source: Guo, W. D., Computers and Geotechnics, 33, 1, 2006.

Table 9.6 Response of pile A using simplified expressions and e = 0 (Figure 9.3) 

xp 
(m) xp

H
A

n

L

λ +1 w k

A
g

n

L

λ
−

+M

A

n

L

maxλ
2

H 
(kN)

wg 
(mm)

−Mmax 
(kN-m) xmax (m)

1 0.2591 0.2792 0.6797 0.1079 112.3 13.2 167.4 3.09
3 0.7774 0.5851 2.3435 0.3218 235.2 45.4 501.1 3.65
5 1.2957a 0.8982 6.1526 0.6574 361.1 119.2 1020.0 4.71
8 2.0730a 1.4187 20.327 1.3716 570.4 393.8 2185.1 6.38

Source: Guo,  W. D., Computers and Geotechnics, 33, 1, 2006.
a xp  >1.118 and Mmax in the upper plastic zone (i.e., xmax < xp).
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The values of C1 and C2 allow the normalized moment to be estimated 
using Equation 9T15 as

 

− = + ×+ −M z A eB
n

L( ) ( . . .max
.λ 2 0 54188 0 06323 0 25451 0 602))

. .× =0 8567 0 10785

Assigning xp = 5 m (e = 0), xp is equal to 1.2957, and, thus, Hλ1 5. /
AL = 0.8982 and w kg λ0 5. /AL = 6.1526. As xp > x′, the depth of xmax is 
calculated directly from Equation 9.22 as

 x mmax
/ .( . . ) / . . ( )= × =1 5 0 8982 0 2591 4 711 1 5

The moment Mo (=H × e) is zero. Thus, the normalized maximum 
moment is estimated from Equation 9T14 as

 − = × =+M An
Lmax

. / .( . . ) / . .λ 2 2 5 1 51 5 0 8982 2 5 0 6574

With Np = 0 and α0 = 0, the predicted responses are indicated by 
“(S.  Equations)” in Figure 9.3. They are close to those bold lines 
obtained earlier (α0 ≠ 0, Np ≠ 0).

9.4.2 Impact of other parameters (Cases III and IV)

To examine the effect of the parameters on the predictions against 
Cases I and II, the following investigations (Table 9.5) are made: 

Case III: Taking Np as 0, the responses obtained are shown in Figure 
9.3 as “n = 0.5 (Np = 0),” which are slightly softer (higher wg) than, 
indicating limited impact of the elastic coupled interaction.

Case IV: A new LFP of n = 0.4 (with Ng = 4.79, Nco = 3.03, and n = 
0.4) is utilized, which offers a similar total resistance on the pile to 
that from the Reese LFP(C) profile to the maximum xp of 8.36d. This 
LFP offers very good predictions against the measured data, indicat-
ing limited impact of the n value on the prediction. The n value may be 
gauged visually for layered soil.

Example 9.5 Pile C in sand-silt layer

Pile C with L = 23.3 m, d = 0.61 m, and EpIp = 169.26 MN-m2, was 
driven through a sand layer (in depth z = 0~15.4 m) and subsequently 
into an underlying silt layer with a su of 55 kPa. The blow count of 
SPT, N of the sand layer was found as: 12 (z = 0~11.0 m), 8 (11.0~13.8 m), 
and 16 (13.8~15.4 m), respectively. The effective unit weight ′γ s was 
16.5 kN/m3. The shear modulus, G, and angle of friction of the sand, 
ϕ′, were estimated using the blow count by (Kishida and Nakai 1977) 
G = 640N kPa, and ϕ′ = 8 4 20( )N − + , respectively. They were esti-
mated to be 7.68 MPa and 28°, respectively, with N = 12. This offers 
Lc/ro of 15.8, and the pile is classified as infinitely long. With the effec-
tive pile length Lc located within the top layer, the problem becomes a 
pile in a single layer.
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As with pile A (Example 9.4), the parameters for elastic state were 
estimated and are shown in Table 9.4. An apparent cohesion was 
reported in the wet sand near the ground level around the driven pile, 
which is considered using Nco = 4.67 (of similar magnitude to �Nc). 
As Ng = 8.31 (Equation 3.66, Chapter 3, this book) and n = 1.0, AL 

was computed as 83.58 kPa/m and αo as 0.563 m. The LFP is then 
plotted as n = 1 in Figure 9.3a2. The G and LFP offer close predic-
tions of the pile responses to the measured data (Figure 9.3b2 and c2). 
The responses at a typical slip depth of 2.5d (= 1.52 m) are also high-
lighted. The critical values are tabulated in Table 9.4, including He = 
48.9 kN and xp = 2.88 m upon Hmax = 440.1 kN.

In the study, the n = 1 and Nco > 0 are divergent from n = 1.3 ~ 1.7 
and Nco = 0 normally employed for sand, which are examined (Table 
9.5) as follows:

•	 Case II: Ignoring the apparent cohesion, the n = 1.0 LFP then 
reduces to the Broms LFP (Figure 9.3a2), which incurs overes-
timation of displacement (Figure 9.3b2) against measured data. 
The Reese LFP(S) (with depth corrections) happens to be nearly 
identical to the Broms’ one, which results in overestimation of 
wg, as noted previously (Kishida and Nakai 1977) and maximum 
bending moment, Mmax, and depth of the Mmax (not shown).

•	 Case III: Use of αo (Nco) = 0 and n = 2 leads to a lower limiting 
force than that derived from the n = 1 LFP (see Figure 9.3a2) 
above a depth of 1.8d and vice versa. This slightly overestimates 
the deflection, Figure 9.3b2, and bending moment, Figure 9.3c2, 
up to a load level of 380 kN, to which the total limiting force in 
the slip zone reaches that for the n = 1 case, Figure 9.3a2.

•	 Case IV: By changing e to zero in Case III, the predictions using the 
simple expressions are slightly higher than those obtained earlier.

Example 9.6 A pipe pile tested in stiff clay

Reese et al. (1975) reported a test on a steel pipe pile in stiff clay near 
Manor. The pile was 14.9 m in length, 0.641 m in diameter, and had a 
moment of inertia, Ip, of 2.335 × 10−3 m4 (thus EpIp = 493.7 MN-m2). 
The undrained shear strength su increases linearly from 25 kPa at the 
ground level (z = 0) to 333 kPa at z = 4.11 m. The submerged unit 
weight γs′ was 10.2 kN/m3. The test pit was excavated to 1 m below the 
ground surface. The average undrained shear strength over a depth of 
5d and 10d was about 153.0 and 243 kPa, respectively. Lateral loads 
were applied at 0.305 m above the ground line. The instrumented pile 
offered measured responses of H-wg, H-Mmax, and Mmax-xmax. The αc 
(=G/su) was back-estimated as 545.1 by substituting k of 331.3 MPa 
(Reese et al. 1975) into Equation 3.50 (Chapter 3, this book). With Lc/ro = 
10.8, the pile was infinitely long. The pu profile was estimated by using 
Equation 3.67 (Chapter 3, this book) with J = 0.92 and modified using 
the depth factor (Reese et al. 1975). The LFP thus obtained was fitted 
using Ng = 0.961, Nco = 0.352, and n = 1.0. It is plotted in Figure 9.4a1 
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Figure 9.4  Calculated and measured response of: (ai) pu, (bi) H-wg, and H-Mmax, and (ci) 
bending moment profile [i = 1, 2 for Manor test (Reese et al. 1975), and Sabine 
(Matlock 1970)]. (After Guo, W. D., Computers and Geotechnics 33, 1, 2006; 
Guo, W. D. and B. T. Zhu, Australian Geomechanics 40, 3, 2005a.)
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as “Stiff clay (J = 0.92)” in which an average su of 153 kPa was used 
to gain the pu/(dsu). This LFP renders good predictions of the pile 
responses to a load level of 450 kN against the measured data (Figure 
9.4b1 and c1).

In view of the similarity in the strength profile between stiff clay 
and sand, an “n = 1.5” was adopted to conduct a new back-estimation 
(with excellent match with measured data), which offered Ng = 0.854, 
and Nco = 0 (n = 1.5). This verifies the use of “n = 1.5 ∼ 1.7” for a linear 
increasing strength profile. The max xp of 2.71 m implies the rational 
of the back-figured LFP. Bending moment profiles were computed for 
lateral loads of 179.7, 317.7, 485.6, and 606.2 kN, respectively, using 
Equations 9T3 and 9T7. They exhibit, as depicted in Figure 9.4c1, an 
excellent agreement with the measured profiles, despite overestimating 
the depth of influence by ~1 m (compared to the measured ones).

Assuming a constant k in the current solutions, the limiting deflec-
tion wp should increase with depth at a power n of 1.5 from zero at 
mudline, compared to a conservative, linearly increasing k (=150x, 
MPa) (adopted in the COM624P) (Reese et al. 1975). The average k 
over the maximum slip depth of 2.71 m is 203.3 MPa (αc = 348.4). 
Using this k value, the predicted H-wg is shown in Figure 9.4b1 as 
“Different αc.” Only slight overestimation of mudline deflection is 
noted in comparison with those obtained from the “n = 1.5” case uti-
lizing k = 331.3 MPa (see Table 9.7). Thus, the effect of k on the predic-
tions is generally not obvious. The pronounced overestimation using 
characteristic load method (based on COM624P) for this case may 
thus be attributed to the LFP (Duncan et al. 1994).

The sensitivity of this study to the parameters was examined against 
the two measured relationships of H-Mmax and H-wg shown in Figure 
9.4. With νs = 0.3 and αο = 0.1 m, values of n = 1.7 and Ng = 0.6 were 
deduced by matching GASLFP with the measured relationships. The 
value of G of 76.5 MPa was taken as 500 times the average shear 
strength su within a depth of 5d. Increases in the n from 1.5 to 1.7 and 
the αο from 0 to 0.1 lead to a drop of Ng from 0.854 to 0.6. A good 
prediction by Reese et al. (1975) is also noted.

Table 9.7 Effect of elastic parameter αc on the Manor test (Figure 9.4)

Input parameters Calculated elastic parameters

Cases n αo(m) AL(kN/mn+1) αc Ep/G* k (MPa) NP/(2EpIp)

Stiff claya 1.0 0.234b 147.0 545.1 551.20 331.28 0.1683
n = 1.5c 1.5 0 163.3 545.1 551.16 331.31 0.1683

Different αc 1.5 0 163.3 348.4 862.44 203.30 0.1234

Source: Guo, W. D., Computers and Geotechnics, 33, 1, 2006.
a LFP for stiff clay (J = 0.92)
b Corresponding He

 is 24.5 kN
c Maximum xp = 4.23d and xp = 1.73

For all cases: γs′ = 10.2 kN/m3
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At the maximum load H of 596 kN, the calculated Mmax was 
1242.3 kN-m (less than the moment of initial yield of 1,757 kN-m) 
and the maximum xp was 2.71 m (4.24d). Within the maximum xp, 
the LFP is remarkably different from the Matlock LFP obtained 
using J = 0.25, but it can be fitted well by using Hansen LFP along 
with two hypothetical values of c = 0 kPa and ϕ = 46°. The similar 
shape of the current Guo LFP to that for sand was attributed to the 
similar increase in the soil strength with depth (Guo and Zhu 2004). 
The critical length Lcr was found to be 3.56 m (≈5.5d, close to the 
assumed 5d used for estimating the G). Thus the pile was “infinitely 
long” and the use of GASLFP was correct.

Example 9.7 A pile in uniform clay (CS1)

Matlock (1970) presented static and cyclic, lateral loading tests, respec-
tively, on two steel pipe piles driven into soft clay at Sabine, Texas. 
Each pile was 12.81 m in length, 324 mm in diameter, 12.7 mm in 
wall thickness, and had a bending stiffness of 31.28 MN-m2 (i.e., Ep = 
5.79 × 104 MPa). The cyclic loading test can be modeled well by the 
method described later in this chapter. The static test is analysed here. 
The pile (extreme fibers) would start to yield at a bending moment of 
231 kN-m and form a fully plastic hinge at 304 kN-m (Reese and Van 
Impe 2001). As the critical bending moment is higher than the value 
of Mmax (under maximum load) calculated later, and crack would not 
occur. The bending stiffness is taken as a constant in the current solu-
tions (see Chapter 10, this book). The Sabine Pass clay was slightly 
overconsolidated marine deposit with su = 14.4 kPa, and a submerged 
unit weight ′γ s of 5.5 kN/m3. Lateral loads were applied at 0.305 m 
above the ground line. The measured H-wg curve and bending moment 
profiles for four typical loading levels are plotted in Figure 9.4b2 and c2.

The shear modulus G was 1.29 MPa (=90su), νs = 0.3, and k/G = 
2.81. As Ep = 5.79 × 104 MPa, Lcr is equal to 4.96 m (15.3d) (i.e., 
an “infinitely long” pile). The best match between the predicted and 
the measured three responses was obtained (see Figure 9.4), which 
offered n = 1.7, αo = 0.15 m, and Ng = 2.2. The corresponding Guo 
LFP is depicted in Figure 9.4a2, along with the Matlock LFP (J = 0.5) 
(see Table 3.9, Chapter 3, this book). The Guo LFP is well fitted by 
the Hansen LFP (with a fictitious cohesion c of 4 kPa and an angle of 
friction ϕ of 16°). The predicted wg, Mmax and the moment distribu-
tion (using GASLFP) are presented in Figure 9.4b2 and c2, together 
with the measured data and Reese and Van Impe’s (2001) prediction. 
The CF prediction (GASLFP) is rather close to the measured data 
compared to that by Reese and Van Impe (2001). The maximum load 
H of 80 kN would induce a Mmax of 158.9 kN-m (less than the bend-
ing moment of yielding of 231 kN-m, no crack occurred as expected, 
see Chapter 10, this book) and a maximum slip depth xp of 2.86 m 
(8.83d). Within this max xp, the average limiting force was close to 
that from the Matlock LFP.
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9.5  COMMENTS ON USE OF CURRENT SOLUTIONS

The current solutions (in form of GASLFP) were used to predict response 
of 32 infinitely long single piles tested in clay and 20 piles in sand due to 
lateral loads. Typical piles in clay showed that Ng = 0.3 ~ 4.79 (clay); Nco = 
0 ~ 4.67 [or αoλ < 0.8 (all cases), and αoλ < 0.3 (full-scale piles)]; (c) n = 0.5 
~ 2.0 with n = 0.5 ~ 0.7 for a uniform strength profile, n = 1.3 ~ 1.7 for a 
linear increase strength profile (similar to sand); xp = 0.5 ~ 1.69 at maxi-
mum loads [or xp = (4 ~ 8.4)d]; and αc = 50 ~ 340 (clay) and 556 (stiff clay).

These magnitudes are consistent with other suggestions for piles in clay. 
For example, (a) Ng = 2 ~ 4 for n = 0 (Viggiani 1981); (b) Nco = 2 for a 
smooth shaft (Fleming et al. 1992), 3.57 for a rough shaft (Mayne and 
Kulhawy 1991), and 0.0 for a pile in sand; (c) “n > 1” from theoretical solu-
tion (Brinch Hansen 1961), and the upper bound solutions for layered soil 
profiles (Murff and Hamilton 1993); and the values of n tentatively deduced 
against the reported pu profiles (Briaud et al. 1983); and finally, (d) αc = 80 ~ 
140 (Poulos and Davis 1980); 210 ~ 280 (Poulos and Hull 1989); 175 ~ 360 
(D’Appolonia and Lambe 1971), 330 ~ 550 (Budhu and Davies 1988), and 
the αc values summarized previously (Kulhawy and Mayne 1990).

Each combination of n, Ng, and Nco produces a specific LFP. The 
existing Matlock LFP, Reese LFP(C) and LFP(S) may work well for 
relevant piles. They need to incorporate the impact of a layered soil 
profile (Figure 9.3), an apparent cohesion around a driven pile in sand 
(Figure 9.3) and so forth. By stipulating an equivalent, homogeneous 
modulus (elastic state), and the generic LFP (plastic state), the current 
solutions are sufficiently accurate for analyzing overall response of lat-
eral piles in layered soil, regardless of a specific distribution profile of 
limiting force. The analysis indicates that k = (2.7~3.92)G with �k = 
3.04G; G = (25~340)su with �G= 92.3su; and n = 0.7, α0 = 0.05~0.2 m ( �αo= 
0.11 m), and Ng = 0.6~4.79 (1.6) may be used for an equivalent, uniform 
strength profile.

Study so far on 20 piles installed in sand shows that k = (2.4~3.7)G with 
�k = 3.2G; G = (0.25~0.62)N (MPa) with �G = 0.5N (MPa); and n = 1.7, α0 = 
0, and Ng = (0.4~2.5) Kp

2 for an equivalent uniform sand.

9.5.1  32 Piles in clay

Table 9.8 summarized the properties of the 32 piles in clay, which encom-
pass (1) a bending stiffness EpIp of 0.195~13,390 MN-m2 (largely 14~50 
MN-m2); (2) a diameter d of 90~2,000 mm; and (3) a loading eccentricity 
of 0.06~10 m. Table 9.9 provides the subsoil properties, such as (1) und-
rained shear strength su of 14.4~243 kPa; (2) a shear modulus G of (25~ 
315)su (with �G = 92.3su) (Guo 2006); and (3) the values of k, α0, and Ng 
deduced using GASLFP and n = 0.7 (but 1.7 for CS2).
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Salient features noted are as follows (Guo and Zhu 2005): (1) �G may 
be calculated over a depth Lcr = (5.5~17.6)d with �Lcr= 12.5d. (2) At a dis-
placement wg (x = 0, ground level) of 0.2d: (a) max xp = (4.1~10.1)d with 
�xp = 7.2d, with 47% of the �xp values ≤ 6.5d (see Figure 9.5c); (b) xmax (depth 
of Mmax) =  (4.3~8.1)d with �xmax = 6.5d; and (c) θg (the slope at x = 0) = 
(2.12~4.22%) with �θg  = 2.91%. Thereby, the AL and �su may be estimated 
over a depth of 5d (or 10d) concerning wg of 0.1d (or 0.2d) or θg = 1.5% 
(3%), respectively.

The deduced parameters offer the λ and AL, which render the deduced 
Guo LFP, and the normalization of the measured pile deflection wg (or wt) 
and bending moment Mmax for each pile. The LFP for each pile is plotted in 
Figure 9.5 to the max depth of xp mobilized under the maximum test load. 
A comparison between the deduced pu profile and the calculated LFPs using 
pertinent methods (see Chapter 3, this book) for each of the 32 piles (with 
a normalized eccentricity eλ of 0~1.43) was made, which demonstrates that 
Matlock’s method (J = 0.25) well predicts the average pu for 8 piles (CSs 9, 
14, 16~17, 19, 22, 24, and 32) (see Figure 9.5b), and the pu for 5 piles (CSs 
12, 13, 20, 23, and 27) using J = 0.5~0.75 [thus closer to Reese LFP(C)], 
but significantly overestimates the pu for 19 piles (CSs 1~8, 10~11, 15, 18, 
21, 25~26, and 28~31, Figure 9.5c) despite using a small J = 0.25, especially 
for the large diameter piles (CSs 29~31 with d ≥1.5 m). The API code or 
Matlock LFP underestimates the deflection but overestimates the bending 
moments of nineteen piles. If CS2 (stiff clay), and the large diameter piles 
are removed from the data base, the Matlock LFP with J = 0.25 seems to 
offer a reasonable average pu (see Figure 9.5) for all piles with average values 
of �d = 0.28 m and �su = 43.3 kPa. However, this would not warrant a suf-
ficiently accurate prediction of individual pile response. Hensen’s method 
consistently predicts the pu of each pile well, with the “stipulated” cohesion 
c and angle of internal friction ϕ in Table 9.9.

The normalized wg or wt, and Mmax of the measured data are plotted in 
Figure 9.6 and Figure 9.7 respectively, together with the simple solutions of 
Equations 9.24, 9.25, 9T15, and 9T14 for eλ = 0~1.43, αo = 0, and Np = 0. 
These figures indicate negligible impact of simple solutions using αo = 0 and 
the  remarkable impact of loading eccentricity. In particular, the deduced 
Young’s modulus E is plotted against USC qu (=2su, in MPa) previously in 
Chapter 3, this book, together with those deduced from six rock-socketed 
shafts. The data may be correlated with E = (60~400)qu, which strikingly 
resembles that proposed for vertically loaded piles (Rowe and Armitage 
1987).

9.5.2  20 Piles in sand

Table 9.10 shows the 20 piles in sand, which have an EpIp = 8.6 × 10-5~527.4 
MN-m2 (largely 20~70 MN-m2), d = 18.2~812.8 mm, and were loaded at 
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Figure 9.6  Normalized load, deflection (clay): measured versus predicted (n = 0.7). 
(After Guo, W. D., J Geotech Geoenviron Engrg, ASCE, 2012.)
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Figure 9.7  Normalized load, maximum Mmax (clay): measured versus predicted (n = 0.7). 
(After Guo, W. D., J Geotech Geoenviron Engrg, ASCE, 2012.)
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an eccentricity e of 0.01~2.2 m (i.e., eλ = 0~1.12). The parameters G, Ng, 
and k for each pile were deduced using an excellent match with one mea-
sured curve for eight piles of PSs 9, 14~20 or with three measured curves 
for the rest piles. The parameters are tabulated in Table 9.11. Typical high-
lights are as follows:

•	 G = 0.3~0.45 MPa (model piles), G = 3.2~18.0 MPa (prototype piles) 
with SPT N = 9~35; and G = (0.25~0.62)N (MPa) with �G = 0.50N 
(MPa) (Guo 2006).

•	 Lcr = (6.7~15.9)d with �Lcr= 9.5d. At wg = 0.2d, max xp = (2.22~6.39)d; 
�xp= 4.61d and 50% �xp being less than 3d; �Lc + �xp = 14d; xmax = (3.85 ~ 
6.55)d, with �xmax= 4.67d; and θg = (2.85~5.41)% with �θg= 4.03%. The 
�G may be calculated over a depth of 14d.

•	 �γ s and �φ may be averaged over a maximum slip depth of 5d to construct 
the LFP concerning wg = ~0.2d. Angle of internal friction ϕ is 29.6~43°.

These features resemble those obtained for free-head piles in calcareous 
sand (Guo and Zhu 2005b). In particular, the features of the deduced G 
(recast as E using v = 0.25) and pu are as follows:

•	 E = (0.65~1.6)N (MPa) deduced is accord with E = (0.5~1.5)N (MPa) 
(Kulhawy and Mayne 1990) and E = (1.4~1.8)N (MPa) (Kishida and 
Nakai 1977).

•	 The average sg (=Ng/Kp
2) of 1.27 exceeds sg of 1.0 (Barton 1982; 

Zhang et al. 2002) by 27%. The sg distribution is: (1) sg = 0.4~1.0 
for the bored pile (PS14) or the open-ended pipe piles (PSs 1, 2, 7, 19, 
and 20); (2) sg = 1.1~2.5 for the driven pipe piles (PSs 3, 4, 12, 13, and 
15~18), including pile PS3 (sg = 2.5, xp = 1.7d), PS6 (1.5, 3.6d), PS12 
(2.0, 5.7d), PS15 (2.8, 4.3d), PS16 and PS18 (1.5~1.8, 4.3d and 2d); 
and (3) sg = 1.6~1.8 (with max xp = 1.5~2d) for the reinforced pipe 
piles (PSs 8 and 10) and large sectional-area pile (PS11).

•	 The Reese LFP(S) or API code method (Reese et al. 1974) well pre-
dicts the net resistance pu of the open-ended pile PS1, reinforced H 
pile PS9, and bored aluminum (model) pipe pile PS14 (sg = 0.4~0.55), 
respectively. Nevertheless, with αp = AL of Equation 9.2 over AL of 
Reese LFP(S) (see Figure 9.8b and c), it is noted that: (1) αp = 4 for 
the five piles of the reinforced pipe pile PS8 and PS10, and the H pile 
PS11, the driven pile PS12; and the open-ended pipe pile PS15; and 
(2) αp = 1.5~3.5 for ten piles. The Guo LFPs along the piles PSs16 
and 18 may fluctuate slightly without measured bending moments. 
In particular, a higher limiting force for seventeen out of twenty piles 
(with αp = ~4) is deduced, but it is associated with a shallower max 
xp of ~5.7d. Displacement of 85% piles is overestimated and bending 
moment underestimated using API code method.
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A fixed-head (translation only) condition would reduce the gradient of 
the pu to 25% that on a free-head pile (Guo 2009), as is noted here on pile 
PSs 12 and 13 compared to PS 14. This implies Reese LFP(S) may incur 
overestimation of displacement and underestimation of maximum bend-
ing moment for a single pile, which is opposite to the likely underestima-
tion of the displacement for single piles in clay using the Matlock LFP (J = 
0.25~0.5). The deduced parameters may be used along with the closed-
form solutions to design free-head (Guo 2006) and fixed-head piles (Guo 
2010).

As for piles in layered soil, Guo (2006) indicates within the max xp, the 
pu for each layer may be still obtained using Equation 9.2 (or Chapter 3, 
this book), but the calculated value should be increased by ~40% in a weak 
layer or decreased by ~30% in a stiff layer. The average trend of the pu for 
all layers may be adopted for a pile design, with due consideration that a 
sharp increase in shear strength with depth renders a high n (e.g., n = 1.7 
for CS2, and n = 2.0 for a better simulation for PS3).

The max xp was 6.4d (sand)~7.2d (clay) for all test piles. With d < 0.6 m, 
response of the majority of the piles was dominated by the upper ~4.5 m 
soil. With d = 1.5~2.0 m (e.g., CS 29, 30, and 31), the response will be 
dominated by soil down to a depth of ~10 m, as the max xp reached 8.0 
m (=5.32d), 9.9 m (=4.92d) and 10.4 m (=6.56d), respectively, which is a 
striking contrast to the max xp of 1.8 m (=2.19d) for pile PS4 (d = 0.813 m). 
Thus, the pu profile is often constructed as if in one layer.

The deduced parameters enable the Guo LFPs to be plotted in Figure 9.8 
and the measured data for all piles to be normalized and plotted together 
in Figures 9.9 and 9.10 for deflection and bending moment, respectively. 
Except for pile D with the largest EpIp of 527.4 MN-m2, the measured data 
again compare well with Equations 9.24, 9.25, 9T15, and 9T14. Thus the 
simple expressions may be used for piles in clay, sand, and/or in multilay-
ered soil.

9.5.3  Justification of assumptions

Finally, the salient features and hypothesis are compared in Table 9.12, con-
cerning the current CF solutions and the numerical program COM624P. 
Both are capitalized on load transfer model, but only the CF solutions are 
rigorously linked to soil modulus via Equation 3.50 (Chapter 3, this book). 
COM624P allows incorporating various forms of nonlinear p-y curves, but 
the resulting overall pile response is negligibly different from that obtained 
using the current solutions. COM624P and the CF solutions actually cater 
for a linearly increasing and a uniform profile of k, respectively. Their pre-
dictions should bracket nonhomogeneous k normally encountered in prac-
tice. To capture overall pile–soil interaction, only the parameters for the 
LFP vary with modes of soil failure. The current solutions offer very good 
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to excellent prediction of response of ~70 tested piles in comparison with 
measured data.

The current solutions are underpinned by five hypotheses mentioned 
previously.

•	 In contrast to assumption 1, the p-y curve may follow a parabola 
(Matlock 1970) or a hyperbola (Jimiolkwoski and Garassino 1977). 
There exists a transition zone in between the upper plastic zone and 
the lower elastic zone. Fortunately, use of the idealized elastic-plastic 
p-y(w) curve has negligible impact on the prediction (Poulos and Hull 
1989; Castelli et al. 1999).

•	 Use of an equivalent modulus (assumption 2) may overestimate the 
xmax by ~20%.

Table 9.12 Salient features of COM624P and the current CF solutions

Item COM624P (FHWA 1993) GASLFP (CF solutions)

Pile–soil 
interaction 
model

Uncoupled, incompatible 
with continuum-based 
numerical analysis

Coupled, consistent with continuum-based 
numerical analysis

Subgrade 
modulus, k

Increase linearly with 
depth.

Empirically related to soil 
properties.

A constant calculated from an average 
modulus, G, over the effective pile length 
of Lc + max xp and using Equation 3.50, 
Chapter 3, this book.

Theoretically related to soil, pile properties, 
pile-head, and base conditions.

Limiting force 
per unit 
length (LFP)

 Many parameters, various 
expressions, and 
procedures for different 
soils.

Parameters derived from 
soil failure modes of 
wedge type and lateral 
plastic flow. 

Three parameters n, Nc, (or αo), and Ng, a 
unified expression of Equation 9.2, and 
procedure for all kinds of soils.

Parameters deduced from overall pile 
response, regardless of mode of failure.

p-y curve Consisting of four 
piecewise curves.

An elastic-perfectly plastic curve, solid line.

Computation Finite difference method Explicit expressions of the xp using 
spreadsheet program GASLFP or by 
hand

Advanced use In form of numerical 
program; no other 
specified use.

In form of explicit expressions; capturing 
overall pile–soil interaction by LFP, and 
indicating the effective depth by xp. May be 
used as a boundary element for advanced 
numerical simulation.

Source: Guo,  W. D., Computers and Geotechnics 33, 1, 2006.
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•	 Ignoring coupled impact in plastic zone (assumption 3) is sufficiently 
accurate, as slip generally occurs under a very low load level, but it 
extends to a limited depth under a maximum load level.

•	 Assumptions 4 and 5 are satisfied by the single slip depth (Figure 
9.1b) rather than a transition zone, the pu profile, and an infinite 
length (with L > Lc in elastic zone). Otherwise, another slip may 
be initiated from a short, rigid pile base at a rather high load level 
(Guo 2003a).

A single modulus and pu profile allow a gradual increase in wp with 
depth. This is not always true in a stratified soil, as the wp of a deeply 
embedded weak layer may be lower than that of a shallow, stiff layer. 
However, the use of an overall pu is sufficiently accurate as against 3-D 
FEA results. In particular, pile–soil relative slip may never extend to 
an underlying weak layer if a very stiff upper layer is encountered. The 
assumption is thus valid. Deriving from the normal and shear stresses, 
respectively, on the pile–soil interface (Baguelin et al. 1977; Briaud et al. 
1985), the resistance in elastic state may be sufficiently accurately evalu-
ated using elastic theory (Guo and Lee 2001), and in the plastic (slip) state 
by the pu profile. In rare cases, the nonhomogeneous modulus may mark-
edly affect the pile response, for which the previous numerical results 
(Davisson and Gill 1963; Pise 1982) may be consulted along with the 
current predictions.

9.6  RESPONSE OF PILES UNDER CYCLIC LOADING

Case studies to date demonstrate that (a) with idealized p-y(w) curves, 
GASLFP well captures the static and cyclic responses of piles in calcare-
ous sands; (b) critical length Lcr of lateral piles is (9~16)d, within which 
soil properties govern the pile response; (c) the LFPs may be described 
by n = 1.7, and α0 = 0 (uncemented sands) or α0 > 0 (cemented sands), 
along with Ng = (0.9~2.5)Kp

2 for static loading (using post peak friction 
angle); (d) under cyclic loading, the Ng reduces to (0.56~0.64) times 
Ng for static loading; (e) the value of max xp at maximum test load is 
(3~8.3)d, within which limiting force reduces with cyclic loading or gap-
ping effect.

9.6.1  Comparison of p-y(w) curves

A fictitious pile, with d = 2.08 m, and Ep = 3.0 × 104 MPa, was installed 
in calcareous, Kingfish sand (Kingfish B platform site, Bass Strait). The 
sand featured γs′ = 8.1 kN/m2, ϕ = 31º, G = 5.0 MPa, and a cone tip resis-
tance, qc, increasing linearly (at a gradient of 400 kPa/m) with depth. 
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A sample p-y curve at x = 2d is plotted in Figure 9.11a, together with the 
predictions using the existing three p-y curve (hardening) models (see Table 
9.13) exhibiting continual increase in resistance with the pile deflection. 
Assuming n = 1.7, α0 = 0, and Ng = 0.33Kp

2, the predicted response (using 
GASLFP) is shown in Figure 9.12.

In contrast, the idealized p-y curve by Guo (2001b) somehow resembles 
the stress-strain relationships of the (near surface) Kingfish B sand shown 
in Figure 9.11b (Hudson et al. 1988). Such a similarity was examined previ-
ously by McClelland and Focht (1958). At each cell pressure, σ′c, the deviator 
stress increased with axial strain, and reaches a constant once the strain is 
beyond the dashed line. The intersection of the dashed line with each stress-
strain curve may be viewed as the yield point. At σ′c of 25~100 kPa, the yield 
strain is 3%~8% for the uncemented sand. The yield strain is 2%~7% at 
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Figure 9.11  (a) p-y(w) curves at x = 2d (d = 2.08 m). (b) Stress versus axial strain of 
Kingfish B sand. (After Hudson, M. J., G. Mostyn, E. A. Wiltsie and A. M. 
Hyden, Proc Engrg for Calcareous Sediments, Balkema, Perth, Australia,1988; 
Guo, W. D., and B. T. Zhu, International Symposium on Frontiers in Offshore 
Geotechnics, Taylor & Francis/Balkema, Perth, Australia, 2005b.)

Table 9.13 Static Hardening p-y curves for calcareous sand

Author p-y model Parameters for Kingfish B

Wesselink et al. 
(1988)

p Rd x x y dn m= ( / ) ( / )0 x0 = 1 m, n = 0.7, m = 0.65, R = 650

Novello (1999) p Rd q y d q dv
n

c
n m

c= ′ <−σ 0
1 ( / ) R = 2, n = 0.33, m = 0.5, ′ =σ γv s x0

Dyson and 
Randolph (2001) 

p R d q d y ds c s
n m= γ γ2 ( / ) ( / ) R = 2.7, n = 0.72, m = 0.6

Source: Guo, W. D., and B. T. Zhu, International Symposium on Frontiers in Offshore Geotechnics, 
Taylor & Francis/Balkema, Perth,  Australia, 1, 2005b.
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σ′c = 5~100 kPa for the cemented, calcareous sands from Leighton buzzard, 
Dogs Bay, Ballyconneely and Bombay Mix (Golightly and Hyde 1988).

9.6.2  Difference in predicted pile response

Using suitable parameters, the three hardening models produce similar 
p-y(w) curves and pile response. Thus, only the typical p-y curve (Wesselink 
et al. 1988) was used to predict the response of the fictitious pile using 
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Figure 9.12  Comparison of pile responses predicted using p-y(w) curves proposed by 
Wesselink et al. (1988) and Guo (2006): (a) Pile-head deflection and maxi-
mum bending moment. (b) Deflection and bending moment profiles. (c) 
Soil reaction and pu profile. (After Guo, W. D., and B. T. Zhu, International 
Symposium on Frontiers in Offshore Geotechnics, Taylor & Francis/Balkema, 
Perth, Australia, 2005b.)
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program COM624P (FHWA 1993). This is shown in Figure 9.12 together 
with those predicted using GASLFP. Using Ep = 3.0 × 104 MPa and G = 
5.0 MPa, the critical pile length Lcr (Guo and Lee 2001) was estimated to 
be 9.24d (=19.22 m). Thus the pile deflection and soil reaction mainly take 
place within this depth as shown in Figure 9.12c.

Figure 9.12 indicates that: 

 1. The p-y(w) curves from the ideal p-y curve and working hardening 
models offer similar pile-head deflection, wt (Figure 9.12a), maximum 
bending moment, Mmax, distributions of normalized deflection, y/d, 
and normalized bending moment, M/(γs′d4) (Figure 9.12b).

 2. The p-y(w) models alter slightly the distribution of soil reaction, 
p/(γs′d2) (Figure 9.12c), especially within a depth of (1.5~5)d. Using the 
elastic-plastic model, the normalized soil resistance increases, follow-
ing the LFP, from zero at groundline to the maximum value at the slip 
depth, xp (=1.58d, and 2.36d at H = 1.0 and 2.0 MN, respectively) 
(Figure 9.12c). Below the depth, the resistance decreases with depth 
in the elastic zone. The soil reaction peaked at the slip depth is due to 
ignorance of the transition zone (Guo 2001b).

 3. Depth of maximum bending moment, xm, at H = 2.0 MN reduces 
from 9.3 m (4.47d) to 8.06 m (3.88d) using the hardening and ideal-
ized models, respectively.

The soil reaction is generally deduced by differentiating twice from dis-
crete measured values of bending moment from instrumented piles. The 
value is very sensitive to the function adopted to fit the measured moments, 
and generally results in different values of p from very same results. The 
current back-estimation is deemed sufficiently accurate.

9.6.3  Static and cyclic response of 
piles in calcareous sand

Using GASLFP, static and cyclic responses of four different steel pipe piles 
in calcareous sand (see Table 9.14) are investigated against measured data, 
and are shown next in Examples 9.8 through 9.10.

Example 9.8 Kingfish B: Onshore and centrifuge tests

9.8.1 Kingfish B: Onshore tests

Two tubular steel piles (piles A and B) are 356 mm OD, 4.8-mm wall 
thickness, 6.27 m in length, and 24 MN-m2 in flexural stiffness. They 
were driven into an onshore test pit that was filled with saturated, unce-
mented calcareous (Kingfish B) sand (Williams et al. 1988). Both piles 
were laterally loaded. The bending moments, head rotation, head dis-
placement, displacement of the sand surface, and pore pressure were 
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recorded. Pile A was initially “pushed” monotonically (one load-unload 
loop at each load level) to 106 kN at a free-length of 0.37 m above 
groundline, and at loading rates of 1 kN/min (virgin loading), and 5 kN/
min (unloading and reloading), respectively. The pile was then “pulled” 
monotonically to failure in the opposite direction. Only the response 
for the “push” test was modeled here (Case 1). Pile B was subjected to a 
series of two-way cyclic loadings with 250 sec period in the initial cycle, 
60 sec period up to 100 cycles and 250 sec period in the 101st cycle.

9.8.2 Test A1 (static loading)

In Test A, the sand has a void ratio of 1.21, a dry unit weight of 12.4 
kN/m3, and a saturated unit weight of 17.85 kN/m3. The friction angle 
was 31° (from a cone resistance of 1.5 to 3 MPa) (Kulhawy and Mayne 
1990). The modulus G was 2.2 MPa (νs = 0.3), using a secant Young’s 
modulus of 5.6 MPa (at 50% ultimate deviator stress), in light of the 
consolidated drained triaxial tests (Hudson et al. 1988). This G and the 
Ep of 3.044 × 104 MPa [=24/(π × 0.3564/64)] allow Lcr to be calculated 
(Guo and Lee 2001) as 11.4d (=4.05 m < embedment length of 5.9 m).

With uncemented sand, using α0 = 0, and n = 1.7, the Ng was 
deduced as 0.9Kp

2 by matching the GASLFP prediction with the mea-
sured H~wg (at groundline) relationship and bending moment distribu-
tions (see Figure 9.13a1 and b1). The maximum bending moment at 
H = 106 kN was overestimated by 5.9% against the measured value, 
and pile head displacements and bending moments at other load levels 

Table 9.14 Properties of piles and soil

Casesb Loading L (m) d (m) e (m) EI (MN-m2) Ep (MPa)

1 & 2 Static & 
cyclic

5.9 0.356 0.37 24.0 3.044 × 104

3 Static 32.1 2.137 2.4 79506 7.77 × 104

4 Static 6.0 0.37 0.45 98.0 1.065 × 105

5 & 6 Static & 
cyclic

5.9 0.0254 0.254 1.035 × 10-3 5.065 × 104

Cases γs′ (kN/m3) ϕ G (MPa) Ep (MPa) Ng Lcr/d
1/2 8.04 31 2.2 3.044 × 104 0.9/1.4a 11.4
3 8.04 31 3.45 7.77 × 104 1.2 12.9
4 6.4 30 2.0 1.065 × 105 1.0 15.8

5/6 8.45 28 3.4 5.065 × 104 2.4/1.5a 11.6

Source: Guo, W. D. and B. T. Zhu, International Symposium on Frontiers in Offshore Geotechnics, Taylor & 
Francis/Balkema, Perth, Australia, 1, 2005b.
a 0.9/1.4: Ng = 0.9 and 1.4 for static and terminal cyclic loading respectively.
b Cases 1–4 are uncemented soil with α0 = 0(m), while cases 5 and 6 are cemented soil with α0 = 

0.15 (m).

n = 1.7
Cases 1, 2, and 3: Kingfish B Tests A1, B, and centrifuge tests; Case 4: North Rankin test, and Cases 5 
and 6: Bombay High tests.
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centrifuge test). (After Guo, W. D., and B. T. Zhu, International Symposium on 
Frontiers in Offshore Geotechnics, Taylor & Francis/Balkema, Perth, Australia, 
2005b.)

www.engbasics.com



Laterally loaded free-head piles 331

were well predicted (Figure 9.13), despite of the remarkable differ-
ence in the p-y curves [e.g. Figure 9.11(a)]. The overestimated bending 
moment near the pile tip indicates a higher modulus G than used here.

A slip depth xp of 1.689 m (4.74d) is obtained at a maximum H of 
106 kN, which induces a pile deflection at ground level of 22.68 mm 
(i.e., wp/d = 6.37%), and corresponds to an effective overburden stress 
of 13.6 kPa (=1.689 × 8.04). This stress (see Figure 9.11b) would have 
a peak deviator stress at an axial strain at about 2.5% (≈40% wp/d). 
The soil within the depth xp must have yielded, thus use of the ide-
alized p-y curves is more suitable than that of the hardening model 
proposed by Wesselink et al. (1988), although the latter can also give a 
good prediction on the pile response.

9.8.3 Test B (cyclic loading)

With those for Test A, Ng for pile B (Case 2) was deduced as 2.5Kp
2 

and 1.4Kp
2, respectively, for cycle 1 and the terminal cycle against 

measured pile deflection at 0.11 m height above groundline (see Figure 
9.13a2). The increased Ng values are partly contributed to local densi-
fication of the soil during cyclic loading (Wesselink et al. 1988). The 
corresponding LFPs were plotted in Figure 9.13c1,2 along with that for 
Test A. The value of Ng at the terminal cycle is 0.56 times that of cycle 1, 
showing impact of increased depth of gap, xp (e.g., 2.73d at cycle 1 to 
4.04d at the terminal cycle at H = 110 kN).

9.8.4 Kingfish B: Centrifuge tests

Wesselink et al. (1988) conducted a series of centrifuge tests to mimic 
the behavior of one typical prototype pile installed in a submerged 
uncemented Kingfish B calcareous sand (Case 3). The pile was 2.137 m 
in diameter, 34.5 m in length, and had an EpIp of 79506.0 MN-m2 (Ep = 
7.77 × 104 MPa). Load was applied at 2.4 m above the sand surface on 
the onshore pile (Wesselink et al. 1988). The sand had a submerged 
unit weight of 8.04 kN/m3 and a post peak friction angle of 31°. The 
secant moduli at half of ultimate deviator stress, E50, were 8.0, 5.6, 
12.3, and 10.0 MPa at σ′c of 25, 50, 100, and 200 kPa, respectively, 
or the values of G were 3.1, 2.2, 4.7, 3.8 MPa (νs = 0.3). This offers an 
average G of 3.45 MPa and an Lcr of 12.9d (= 27.48 m).

Using GASLFP and a LFP described by n = 1.7, α0 = 0, and Ng = 
1.2Kp

2, the pile-head displacement and bending moment were pre-
dicted and are shown in Figure 9.13a3 and b3. They demonstrate close 
agreement with the measured H-wt (at groundline) relationships and 
bending moments (Figure 9.13b3) and the predictions using compli-
cated p-y curves (Wesselink et al. 1988). Similar to Test A, the bending 
moment around the pile tip (Figure 9.13b3) was overestimated.

The slip depth xp at the maximum load H of 16.03 MN was 6.59 m 
(=3.08 d), at which the pile deflection at ground level was 323.78 mm 
(i.e., wp/d = 15.15%); the effective overburden stress was 53.0 kPa 
(= 6.59 × 8.04); and the peak deviator stress attained at an axial strain 
of ~6% (0.4wp/d) (Figure 9.11b). This large-diameter pile has a smaller 
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ratio of xp/d than that for the small-diameter, onshore test piles, and a 
30% higher value of Ng (also noted previously) (Stevens and Audibert 
1979). Overall, the onshore and centrifuge tests (static loading) in 
Kingfish B sand are well modeled using GASLFP and a LFP described 
by n = 1.7, α0 = 0, and Ng = (0.9~1.2)Kp

2.

Example 9.9 North Rankin B: In situ test

Renfrey et al. (1988) conducted lateral loading test on a free head pile 
in situ in North Rankin B (Case 4) on the northwest shelf of Western 
Australia at an eccentricity of 0.45 m above groundline. The pipe pile 
of ~6.0 m consists of an upper 3.5 m long, 370 mm OD, and 30-mm 
thick pipe that is threaded with a lower 2.35 m long pipe of 340 mm 
OD and 12.5 mm thickness. The EpIp of the pile was calculated as 98.0 
MN-m2 (Ep = 1.065 × 105 MPa). At the site, uncemented to weakly 
cemented calcareous silt and sand sediments extended to a depth of 
113 m below seabed. To a depth of 30 m, the submerged unit weight ′γ s 
was 6.4 kN/m3, and ϕ was 30° (Reese et al. 1988).

Using α0 = 0, Ng = 1.1Kp
2 (thus LFP shown in Figure 9.14b), and G = 

2.0 MPa, the pile displacements at locations of the upper and lower 
jacks were predicted using GASLFP. As shown in Figure 9.14a, they 
compare quite well with the measured data. The value of k was calcu-
lated as 5.56 MPa (Guo and Lee 2001), and Lcr was 5.9 m (=15.95d). 
The k value agrees well with 5.72 MPa used previously (Reese et al. 
1988), but it is higher than 3~4 MPa recommended by Renfrey et al. 
(1988). At the maximum load H of 185 kN, the slip depth xp was cal-
culated as 1.97 m (=5.32d) and the pile deflection wg at groundline was 
~67.1 mm (=18.1%d).

Example 9.10 Bombay High: Model tests

Golait and Katti (1988) presented static (Case 5) and cyclic (Case 6) 
model tests on a pile with L/d = 50. As tabulated in Table 9.14, the 
stainless steel pipe pile was 25.4 mm OD and had a flexural rigidity of 
1.035 kN-m2 (thus Ep = 5.065 × 104 MPa). It was tested in artificially 
prepared calcareous mix made with 40% beach sand, 56% calcium 
carbonate, and 2.5% sodium-meta-silicate. The sand was equivalent 
to Bombay High cemented calcareous sand in respect of strength, plas-
ticity, and stress-strain relationship. It was placed in the 1.4 × 1.0 × 
2.0m (height) model tank, compacted to a void ratio of 1.0 ± 0.05 and 
then saturated ( ′γ s = 8.45 kN/m3). CU tests on the sand (Golait and 
Katti 1987) offered a secant Young’s modulus (at 50% ultimate stress) 
of 8.8 MPa and ϕ of 28°. The G was obtained as 3.4 MPa, and Lcr was 
11.6d (0.295 m < L).

Taking n = 1.7, the match between the GASLFP prediction and 
the measured pile displacements at groundline (Figure 9.15a) ren-
der α0  =  0.15 m, Ng = 2.4Kp

2 and 1.54Kp
2, respectively, for static 

and cyclic loading, showing the adhesion of the cemented sand 
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(Guo 2001b) (α0 >0) and similar values of Ng to those for the Kingfish 
B onshore tests (Cases 1 and 2). Within the slip depths of 7.68d and 
8.32d at the maximum static and cyclic loads, respectively, the Ng for 
cyclic loading was ~0.64 times that for static loading (see Table 9.14).
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The good comparisons between the measured and predicted pile 
responses at cycle 1 and the terminal cycle in Cases 2 and 5 indicate 
the gapping effect can be well captured by simply reducing the Ng to 
0.56~0.64Ng (static).

9.7  RESPONSE OF FREE-HEAD GROUPS

Piles generally work in groups (see Figure 9.16). To estimate the group 
response under lateral loading, a widely accepted approach is to use the 
curve of soil resistance, p versus local pile deflection, y (p-y curve) along 
individual piles. The p attains a limiting force per unit length of pmpu (pm = 
p-multipliers) (Brown et al. 1988) within a depth normally taken as 8d. The 
pm is used to capture shadowing impact owing to other piles. Elastic-plastic 
solutions for free-head piles (Section 9.2.1) or fixed-head piles (Chapter 11, 
this book) are directly used for piles in groups, with due values of the pm. 
In other words, irrespective of the head constraints, within elastic state, 
each spring has a subgrade modulus, kpm, and limiting force per unit length 
pmpu. Note the pu (via Ng) should be reduced further under cyclic load-
ing. These solutions compare well with finite element analysis (FEA) and 
measured data, and have some distinct advantages (Guo 2009). In particu-
lar, various expressions for estimating pm have been developed previously 
(McVay et al. 1998; Rollins et al. 2006a; Rollins et al. 2006b), such as 
Equation 3.69 (Chapter 3, this book) from thirty tests on pile groups (Guo 
2009). Overall, it shows that the existing methods are probably unneces-
sarily complicated, underpinned by too many input parameters.

Using GASLGROUP, the effect of group interaction, pile stiffness, and 
loading properties (cyclic/static) on response of free-head pile groups is 
examined next, against typical in situ tests in clay, whereas that for fixed-
head groups is addressed in Chapter 11, this book.
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9.7.1  Prediction of response of pile 
groups (GASLGROUP)

Lateral response of a pile group may be estimated using the aforemen-
tioned closed-form solutions for a single pile. The difference is the reduc-
tion in modulus k and the pu owing to the shadowing effect on each row of 
piles in a group. This is well catered for by using the p-multipliers concept 
(Brown et al. 1988) via the following procedure: For any displacement, the 
k and p for a single pile in isolated form is multiplied respectively with the 
p- multiplier to gain those for a pile in a group (Figure 9.16c). Using the 
closed-form solutions, a slip depth can be obtained for a desired pile-head 
displacement, which in turn allows a pile-head load for each pile in a row to 
be estimated. Multiplying the load by number of piles in the row gives the 
total load on the row. This calculation is replicated for other rows in a group 
with the corresponding p-multipliers, thus the total load on the group is 
calculated. Given a series of displacements, a number of the total loads are 
calculated accordingly, thus a load-displacement curve is obtained. This 
procedure has been implemented into the program GASLGROUP.

Example 9.11 Pile group response

Rollins et al. (2006a) conducted lateral loading tests on two isolated 
single piles, and three (3×3, 3×4, and 3×5) groups under free-head 
condition (via a special loading apparatus). The subsoil profile was 
simplified (Rollins et al. 2006b) as follows: An overconsolidated stiff 
clay with su of 70 kPa to a depth of 1.34 m, a sand interlayer of 0.31 m 
(between a depth of 1.34 m and 1.65 m), and overconsolidated stiff 
clay with su of 105 kPa from 1.65 m to 3.02 m. The sand has a rela-
tive density Dr of 60% and an angle of friction of 36°. Groundwater 
was located at a depth 1.07 m. The closed-ended, steel pipe piles were 
driven to a depth of 11.9 m, with 324 mm OD, 9-mm wall thickness. 
It had a moment of inertia of 1.43 × 108 mm4 (owing to irons attached 
for protecting strain gauges), thus EpIp = 28.6 MN-m2. The center-
to-center spacings were 5.65 pile diameters for the 3 × 3 group and 
4.4 pile diameters for the 3 × 4 group in longitudinal (loading) direc-
tion, where they were 3.3 pile diameters (both cases) in the transverse 
direction.

Lateral load was exerted at (e=) 0.38 m above ground line for the vir-
gin (single) pile test, and at e = 0.49 m for the 15 cyclic loadings, which 
furnished the measured responses of the single piles, as presented in 
Figure 9.17a. Lateral (static) load was applied on the 3 × 3 group also 
at e = 0.38 m, and the measured results are shown in Figure 9.17(b). 
The measured bending moment distributions along each pile in the 
three different rows are depicted in Figure 9.18 (at a displacement wg of 
64 mm). Lateral load test on the 3 × 4 group was undertaken under e = 
0.48 m. The measured responses are shown in Figure 9.19a, and bend-
ing moment distributions along each pile are presented in Figure 9.20. 
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Cyclic loading tests were also conducted on the 3 × 4 group, with 
measured the response being plotted in Figure 9.19b. The program 
GROUP (Reese et al. 1996) was used to predict the response of the pile 
groups using back-figured p-multipliers (Rollins et al. 2006b), which 
are plotted in Figures 9.18 and 9.20.

GASLGROUP predictions were made using n = 1.6, α0 = 0.05 m, 
G = 190su (su = 75 kPa), along with Ng of 0.55 for single pile under 
static loading. A ground heaving of 75~100 mm was observed within 
the pile group during driving, which rendered the use of Ng = 0.6 for 
pile groups, whereas other parameters n and αo remained unchanged. 
Values of p-multipliers were calculated using Equation 3.69 (Chapter 3, 
this book) (see Table 9.15), which are smaller than those adopted pre-
viously (Rollins et al. 2006b). The predictions using GASLGROUP 
under free-head condition are plotted in Figures 9.17 through 9.20 for 
all the single and group piles under static or cyclic loading. In particu-
lar, the elastic static response of the single piles is based on k = 48.818 
MPa (G = 14.25 MPa, γb = 0.1368) and λ = 0.8082/m (αN = 0.8713 and 
βN = 0.7398). The figures indicate the current predictions compare well 
with the measured load-displacement curves. The maximum bend-
ing moment was overestimated at large load levels against measured 
data. This may be attributed to the use of a large equivalent stiffness 
Ep [= EpIp/(πd4/64)] determined from the enlarged cross-section, other-
wise the moment can also be well predicted using a low stiffness and 
slightly higher value of Ng.

The GASLGROUP calculation utilizes the Ep for an equivalent solid 
circular pile. Without this conversion of Ep, a good solution would also 
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be gained, but yield untrue values of the parameters G and Ng. This 
example is for free-head piles in clay. The variation of p-multipliers 
is observed in comparison with the previous calculations for fixed-
head (capped) piles in clay and sand (see later Chapter 11, this book). 
However, the prediction is affected more by the values of Ep than the 
p-multipliers. The input values (n = 1.6 and Ng = 0.55~0.6) are quite 
consistent with previous conclusions (e.g., Example 9.6 for a pile in 
stiff clay).
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9.8  SUMMARY

New elastic-plastic solutions were presented for laterally loaded, infinitely 
long, free-head piles. They have been calibrated against FEA results for a 
pile in two different types of stratified soils. The solutions permit nonlinear 
response of the piles to be readily estimated right up to failure. Presented in 
explicit expressions of slip depth and LFP, the closed-form solutions may be 
used as a boundary element to represent pile–soil interaction in the context 
of analyzing a complicated soil-structure interaction. The analysis of ~70 
pile tests to date provides the ranges of input parameters and allows the 
following remarks:

•	 The generic expression of pu is applicable to all types of soils. It can 
generally accommodate existing LFPs through selecting a suitable set 
of parameters.

•	 Nonlinear response of free-head piles is dominated by the LFP and 
the maximum slip depth. It may be predicted by selecting a series of 
slip depth xp, using GASLEP or the simplified expressions provided. 
Three input parameters, AL, α0, and n are sufficient for an accurate 
prediction of the nonlinear response.

•	 The pile response is insensitive to the shape of the LFP, under similar 
total resistance over a maximum slip depth xp. Available LFPs may be 
fitted using Equation 9.2 and used in current solutions.

•	 The LFP may be generated using Equation 9.2 along with n = 
0.5~2.0. A low value of n corresponds to a uniform strength pro-
file, and a high one corresponds to a sharply changed strength pro-
file. For a layered soil, the generated LFP may not be able to reflect 

Table 9.15 Input parameters (static loading)

References Group Ng
c s/db

pm by row

n and αo1st 2nd 3rd 4th

In situ tests 
(Rollins et al. 
2006b) in 
clay. su = 75 
kPa, γs = 
15.3 kN/m3

3×3 0.60 5.65 0 87

0 95

.

. d

0 49
0 88
.
.

0 37
0 77
.
.

For all cases: 
n = 1.6, 
αo = 0.05,

G = 14.25 
MPaa,

Ng = 0.55 for 
single pile

3×4 0.60 4.4 0 85
0 90
.
.

0 6
0 80

.
.

0 45
0 69
.
.

0 32
0 73
.
.

Source: Guo, W. D., Proceedings of 10th ANZ Conference on Geomechanics, Brisbane, Australia, 
2007.
a Shear modulus G (=190su), and pmG for a pile in a group.
b Normalized center to center spacing in loading direction, but s = 3.3d within any a row.
c Under cyclic loading, the Ng was multiplied by a ratio of 0.65 to obtain that for single pile 

and by 0.8 for group piles. 
d pm in denominator was adopted by (Rollins et al. 2006b).
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a detailed distribution profile of limiting force along a pile but an 
overall trend.

•	 The 32 free-head piles tested in cohesive soil are associated with (a) 
k = (2.7~3.92)G with an average of 3.04G; (b) G = (25~315)su with an 
average of 92.3su; (c) n = 0.7, α0 = 0.05~0.2 m (average of 0.11m), and 
Ng = 0.6~3.2 (1.6) for LFP, except for n = 0.5~0.7 for some atypical 
decrease shear strength profile, or n = 1.0~2.0 for a dramatic increase 
in strength with depth. The 20 free-head piles tested in sand are 
pertinent to (a) k = (2.38~3.73)G with an average of 3.23G; (b) G = 
(0.25~0.62)N (MPa) with G = 0.50N (MPa); and (c) n = 1.7, α0 = 0, 
and Ng = (0.5~2.5)Kp

2 with an average of 1.27Kp
2 for the LFP.

•	 The 6 single piles under cyclic loading are well modeled using a 
reduced Ng of (0.56~0.64)Ng (static). The Ng reduces to 80% that was 
used for static loading in simulating piles in groups.

•	 The LFP should be deduced using current solutions along with mea-
sured data to capture overall pile–soil interaction rather than sole soil 
failure mechanism and to cater for impact of various influence factors.

•	 Responses of laterally loaded pile groups are largely affected by the 
equivalent pile stiffness for an enlarged cross-section and insensitive 
to an accurate determination of p-multipliers. The p-multipliers con-
cept generally works well.
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Chapter 10

Structural nonlinearity and 
response of rock-socket piles

10.1 INTRODUCTION

Behavior of an elastic pile subjected to lateral loads was modeled using p-y 
concept (McClelland and Focht 1958; Matlock 1970; Reese  et  al. 1974; 
Reese et al. 1975). The model is characterized by the limiting force per unit 
length (pu) mobilized between the pile and soil, especially at high load levels 
(Randolph et al. 1988; Guo 2006). The profile of pu (or LFP) along the pile 
has generally been constructed using empirical or semi-empirical methods 
(Brinch Hansen 1961; Broms 1964a, 1964b; Matlock 1970; Reese et al. 
1974; Reese et al. 1975; Barton 1982; Guo 2006) (see Chapter 3, this book). 
In light of a generic LFP, Guo (2006, 2009) developed elastic-plastic, closed-
form (CF) solutions for laterally loaded free and fixed-head piles. The solu-
tions well-capture the nonlinear response of lateral piles in an effective 
and efficient manner (Chapter 9, this book). They also enable the LFP (pu 
profile) to be deduced against measured pile response. Nonetheless, they 
are confined to elastic piles with a constant EpIp. As noted in Chapter 9, 
this book, structural nonlinearity of pile body is an important issue at a 
large deflection (Nakai and Kishida 1982; Reese 1997; Huang et al. 2001; 
Ng et al. 2001; Zhang 2003), in particular for rock socket piles.

In foundations (for bridge abutments), locks and dams, transmission tow-
ers, in retaining walls, or in stabilizing sliding slopes, shafts (drilled piers 
or bored piles) are often rock socketed to take large lateral forces and over-
turning moments generated by traffic load, wind, water current, earth pres-
sure, etc. Techniques for laterally loaded piles in soil are routinely employed 
to examine the response of such shafts (Carter and Kulhawy 1992; Reese 
1997; Zhang et al. 2000). Shaft head deflection and slope were generally 
underestimated (DiGioia and Rojas-Gonzalez 1993), owing to neglect of 
(1) near-rock surface softening during post-peak deformation (Carter and 
Kulhawy 1992); (2) nonlinear flexural rigidity of the shafts; and (3) tensile 
slippage between the shaft and the rock, and owing to uncertainty about 
loading eccentricity. Those points are critical to rock-socketed piles.
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Young’s modulus of rock E was empirically correlated with the soil/rock 
mass classification and/or property indices, such as rock mass rating (RMR 
or RMR89), uniaxial compressive strength (UCS) of intact rock, geology 
strength index (GSI), and rock quality designation (RQD) (Serafim and 
Pereira 1983; Rowe and Armitage 1987; Bieniawski 1989; Sabatini et al. 
2002; Liang  et  al. 2009). These correlations are proved to be useful for 
vertically loaded shafts and may be further verified for lateral piles.

Reese (1997) proposed a p-y(w) curve-based approach to incorporate 
nonlinear shaft-rock interaction and nonlinear flexural rigidity. As men-
tioned before, Guo (2001, 2006) developed the closed-form (CF) solutions 
for lateral piles (Figure 3.27, Chapter 3, this book) using a series of spring-
slider elements along the pile shaft. Each element is described by an elastic-
perfectly plastic p-y(w) curve (p = resistance per unit length, and y = local 
shaft deflection). Under a lateral load H and Mo, limiting resistance per unit 
length pu [FL−1] is fully mobilized to the depth xp (called slip depth) along 
the LFP. The solutions were proven sufficiently accurate compared to exist-
ing numerical methods (Guo 2006). They were thus extended to incorpo-
rate structural nonlinearity of piles (Guo and Zhu 2011).

Reese’s approach is based on pu estimated using an empirical curve and 
a parameter αr (see Table 3.9, Chapter 3, this book). The pu was late cor-
related to rock roughness by a factor gs (= pu/qu

0.5, and qu = average uniaxial 
compressive strength (UCS) of intact rock in MPa except where specified 
[FL−2]) (Zhang et al. 2000), in light of the Hoek-Brown failure criterion 
(Hoek and Brown 1995). The latter resembles the resistance per unit area 
on a vertically loaded shaft in rock or clay (Horvath et al. 1983; Seidel and 
Collingwood 2001) using gs = 0.2 (smooth) ~0.8 (rough). Reese’s approach 
is good for pertinent cases, but it is not adequate for other cases (Vu 2006; 
Liang et al. 2009). As with lateral piles in sand or clay, a profile of limiting 
force per unit depth (LFP) for piles in rock is described as (see Chapter 3, 
this book):

 p A xu L o
n= +( )α  (10.1)

In particular, the AL is correlated to a limiting force factor Ng, pile diam-
eter d; and the average qu [FL−2] for rock by AL = Ngqu

1/nd, as the pu should 
resemble the τmax. A ratio gs (= pu/qu

1/n) of 0.2~0.8 is stipulated, and n = 
0.7~2.3 as deduced for piles in clay, sand, and later on in rock. Equation 
10.1 well-replicates the existing pu expressions by Reese and Zhang et al. 
for rock-socketed shafts.

This chapter studies response of 6 nonlinear piles and 16 rock-socketed 
shafts to gain values of n and gs, to assess the impact of loading eccentricity, 
and to formulate a simple approach to capture impact of structural nonlin-
earity on response of lateral shafts. The analysis uses closed-form solutions 
and measured data.
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10.2 SOLUTIONS FOR LATERALLY LOADED SHAFTS

The solutions for a free-head pile are directly used here, but with a new 
pu profile and a constant k, see Figure 3.27a (Chapter 3, this book) with a 
lateral load H applied at an eccentricity e above soil/rock surface, creating 
a moment Mo (= He) about the soil/rock surface. For instance, the normal-
ized pile-head load H(= Hλn+1/AL) and the mudline deflection wg (= wgkλn/
AL) are given by
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Other expressions are provided in Chapter 9, this book, concerning the 
normalized maximum bending moment Mmax (= Mmaxλ2+n/AL) and its depth 
dmax; and profiles of deflection, bending moment, and shear force using the 
normalized depths x (= λx) and z (= x − xp, with xp = λxp), respectively, for 
plastic and elastic zones. The solutions are characterized by the inverse of 
characteristic length λ [= k E Ip p( )44 ], the slip depth xp, and the LFP. In 
particular, it is often sufficiently accurate to stipulate αo = 0 (zero resis-
tance at ground level) and Np = 0 (uncoupled soil layers), which result in 
the simplified expressions. The numerical values of these expressions are 
obtained later using the program GASLFP (see Figure 10.1), which may 
also be denoted as CF.

10.2.1  Effect of loading eccentricity 
on shaft response

Laterally loaded (especially rock-socketed) shafts may be associated with 
a high loading eccentricity. The response to normalized eccentricity eλ of 
a shaft was gained using the simplified closed-form solutions and is pre-
sented (a) in Figure 10.2a1 and a2, against the normalized maximum bend-
ing moment Mm, the normalized applied moment Mo; (b) in Figure 10.2b1 
and b2, against the normalized pile-head load H ; and (c) in Figure 10.3c1, 
and c2 against the inverse of pile-head stiffness wt/H . Given n = 1, the 
same moment and load for rigid piles are also obtained using the rigid pile 
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solutions (Guo 2008). The normalized response is plotted versus the nor-
malized eccentricity of πe/L (= eλ, as λ = π/L, L = length for a rigid pile) in 
Figure 10.3a1 and b1, for tip-yield state, and for both tip-yield and rotation-
point yield state, respectively. Note the tip-yield state implies the soil just 
yields at pile-tip level; rotation-point yield state means full mobilization of 
limiting strength along entire pile length (see Chapter 8, this book). The 
rigid piles are classified by λL > 2.45~3.12 using k/G = 2.4~3.9 (Guo and 
Lee 2001), and λ is thus taken as π/L.

Figure 10.2a1, b1, and a2 show that (1) the Mo or Mm at xpλ = 0.172 (n = 
1) ~ 0.463 (n = 2.3) of a flexible shaft (with L > Lc) may match the ultimate 
values of a rigid shaft rotating about its tip or head; (2) only flexible shafts 
have xpλ > 0.172 (n = 1) ~ 0.463 (n = 2.3); (3) a flexible shaft may allow a 
large slip depth xp and thus a higher Mm than a rigid short shaft; and (4) a 
high eλ (e/L) > 3 renders Mm≈Mo (= He), and allows pile-head deflection wt 
to be approximated by the following “cantilever beam” solution:

Flow chart
(a) Left: Linear pile 
(b) Right:
         Nonlinear pile  

Legend:

I: Elastic response
II: Plastic response

Mult and Ecr via standard mechanics

Mcr per Equation 10.5

Hcr via Mmax = Mcr

I Input d, L, EpIp, and e

Ep = EcIp/( d4/64)
or Ep = EcIp/(bh3/12)

qu, G

Lcr + 3d > L

STOP
Yes

No

b

k, Np

, N, N AL

Input
Ng, o, n

HInput H

xp

wg, Mmax

wg, Mmax ± He

C2 ~ C6

w(x), w'(x),
M(x), Q(x) 

Next H

II

III

Lcr Yes

Do calculation
 as linear pile

H + H

EcIe via Equation 10.6

wg, Mmax , etc.

H > Hcr 

No Mmax for H

Do calculation as
linear pile

Replace EpIp with EcIe

Figure 10.1  Calculation flow chart for the closed-form solutions (e.g., GASLFP) (Guo 
2001b; 2006).
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Figure 10.2  Normalized bending moment, load, deflection for rigid and flexible shafts. 
(a1–c1) n = 1.0. (a2–c2) n = 1.0 and 2.3.
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 w w He E It g c e g= + 3 3/ ( )+ θ e  (10.4)

where wg and wt = pile deflections at groundline and pile-head level, respec-
tively, θg = rotation or slope at ground level, EcIe = an effective flexural 
rigidity. The load H and displacement wt are calculated by H = HAL

n/ λ +1 
and wg = w A kg L

n/ λ  using Equations 10.2 and 10.3, respectively.
As discussed in Chapter 9, this book, the parameters AL, αo, n, and k 

may be readily deduced by matching the CF solution with the observed 
shaft response spectrum of (1) H − Mmax; (2) H − wt; (3) H − xmax (xmax = 
depth of maximum bending moment); and/or (4) H − θt (shaft head slope). 
Three measured spectrums (or profiles) would suffice unique deduction of 
n, AL (αo or Nco), and k for an elastic shaft. In particular, the obtained k 
from piles in clay and sand offered the Young’s modulus, which was plot-
ted against USC qu in Chapter 1, this book, and shows E = (60~400)qu in 
which qu is in MPa. The E/qu ratio featured by USC qu < 50 MPa (weak r 
ock) is strikingly similar to that gained for vertically loaded drilled shaft 
(Rowe and Armitage 1987), as explained later on. Further back-estimation 
is conducted here for rock-socketed shafts.

10.3  NONLINEAR STRUCTURAL 
BEHAVIOR OF SHAFTS

10.3.1  Cracking moment Mcr and 
effective flexural rigidity EcIe

Under lateral loading, crack occurs at extreme fibers of a concrete shaft 
once the tensile stress approaches the modulus of rupture fr (= Mcryr/Ig). 
The cracking moment Mcr is taken as a maximum bending moment Mmax 
in the shaft at which the crack incepts. Ig is moment of inertia of the shaft 

(a) (b) (c) (d)

h

b

rr

c a = 1c

cu = 0.0035 
c = 1 f ′′c

s1 ≤ 0.015 

As2 s2

As1 s1

As4 s4

As3 s3

tds

Figure 10.3  Simplified rectangular stress block for ultimate bending moment calculation. 
(a) Circular section. (b) Rectangular section. (c) Strain. (d) Stress. (After 
Guo, W. D., and B. T. Zhu, Australian Geomechanics 46, 3, 2011.)
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cross-section about centroidal axis neglecting reinforcement, and yr is the 
distance between extreme (tensile) fibers and the centroidal axis. With 
empirical correlation of fr = kr(fc′)0.5, the cracking moment Mcr is given by 
(ACI 1993):

 M k f I ycr r c g r= ′ /  (10.5)

where fc′ = characteristic compressive strength of concrete (kPa); kr = 
19.7~31.5, a constant for a normal weight concrete beam. The kr for drilled 
shafts may be gained using Mcr under a critical load Hcr beyond which 
deflection increases drastically (shown later).

An effective flexural rigidity EcIe is conservatively taken for any section 
of the shaft. The Young’s modulus of concrete Ec may be correlated by Ec = 
151,000(fc′)0.5 (fc′ and Ec in kPa). The effective moment of inertia Ie reduces 
with increase in Mmax and is given by (ACI. 1993):

 E I
M

M
E I

M

Mc e
cr

c p
cr=







+ −


















max max

3 3

1

E Ic cr (10.6)

where Icr = moment of inertia of cracked section at which a fictitious hinge 
(attaining ultimate bending moment, Mult) occurs. Note EcIe and EcIp are 
equivalent to EpIp and EI, respectively, and EcIcr = (EI)cr. The Mult and Icr are 
obtained by using bending theory (moment-curvature method) (Hsu 1993) 
and limit state-simplified rectangular stress block method (Whitney 1937; 
BSI 1985; EC2 1992; ACI 1993). They may be numerically estimated using 
nonlinear stress-strain relationships for concrete and steel (Reese 1997). 
The limit-state method in classical mechanics is used herein for drilled 
shafts, as presented previously (Guo and Zhu 2011).

10.3.2  Mult and Icr for rectangular and 
circular cross-sections

The ultimate bending moment Mult and Icr may be obtained by bending 
theory via moment-curvature method involving stress-strain relationships 
of concrete and reinforcement (Hsu 1993). For instance, Reese (1997) 
provided the Mult and Icr for closely spaced-crack assumption using a 
Hognestaad parabolic stress-strain relationship for concrete and an elas-
tic perfectly plastic stress-strain relationship for steel. The cracks may be 
initiated at different locations, and the concrete stress-strain relationship 
depends on construction and strength, rate and duration of loading, etc. 
In particular, a rational flexural theory for reinforced concrete is yet to 
be developed (Nilson et al. 2004). Pragmatically, limit-state design under-
pinned by simplified rectangular stress block method (referred to as RSB 
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hereafter) (Whitney 1937) has been widely adopted to calculate the Mult 

and Icr (BSI 1985; EC2 1992; ACI 1993).
At ultimate state, the pile may fail either by crushing of the concrete in 

the outmost compression fiber or by tension of the outmost steel rebar. 
The compression failure may occur once a maximum strain reaches εcu of 
0.0035 (BSI 1985; EC2 1992; Nilson et al. 2004) or 0.003 (ACI 1993). 
The tension failure has not been defined (BSI 1985; EC2 1992; ACI 
1993), perhaps owing to a diverse steel-failure strain (i.e., 10% to 40%) 
(Lui 1997). In this investigation, the failure is simply defined once the 
maximum steel strain reaches εsu of 0.015 (Reese 1997), as the definition 
has limited impact on analyzing lateral piles, which are dominated by 
compressive failure.

Figure 10.3 shows typical cracked cross-sections for a circular pile (Figure 
10.3a) and a rectangular pile (Figure 10.3b) with four rows of rebars. A lin-
ear strain distribution is stipulated (Figure 10.3c). The compressive stress 
in concrete is simplified as a rectangular stress block (Figure 10.3d) char-
acterized by those highlighted in Table 10.1, including the intensity of the 
stress, σc, the depth a of the stress block, and the stress induced in a rebar 
in the i-th row, σsi.

The stresses must meet the equilibrium of axial force of Equation 10.7 
and bending moment of Equation 10.8 in either section:

 σdA P P P
A xc xs x∫ = + =  (10.7)

 σx dA M M M
A c s n1∫ = + =  (10.8)

Table 10.1 Stress block for calculating Mult

Items Description

σc σc = α1fc″ with α1 = 0.85, and fc″ = 0.85fc′. 
a a = β1c, where β1 = 0.85 − 0.05(fc′ − 27.6)/6.9 and β1 ≥ 0.65, and c = distance 

from the outmost compression fiber to neutral axis: (1) c = 0.0035/θ if 
concrete fails, otherwise (2) c = 2r – t − ds/2 – 0.015/θ concerning the 
debound (tension) failure.

The diameter of “2r” (r = radius of a circular pile) is replaced with h for a 
rectangular pile; θ = curvature at limit state, ds = diameter of rebars, and 
t = cover thickness (Figure 10.3b). 

σsi
σsi = stress in a rebar in i-th row, σsi = ϕrfy (yield stress) if εsi > εsy otherwise, 
σsi = εsiEs.

Note the i-th row of rebars are counted from the farthest tensile row 
towards the compressive side (see Figure 10.3d); εsy = ϕrfy/Es, Es = Young’s 
modulus of reinforcement, typically taken as 2 × 108 kPa; and ϕr = 0.9, 
reinforcement reduction factor for tension and flexure.

Source: Guo, W. D., and B. T. Zhu, Australian Geomechanics 46, 3, 2011.
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where A = area of cross-section excluding the concrete in tension; σ = nor-
mal stress in concrete (σc) or rebars (σsi); Pxc = σcAc, axial load taken by the 
concrete; Ac = area of concrete in compression; Pxs = ∑σsiAs, axial load shared 
by the rebars; Asi = total area of rebars in the ith row; Px = imposed axial 
load; x1 = distance from neutral axis; Mc and Ms = moments with regard 
to the neutral axis respectively induced by normal stress in the concrete 
and rebars; and Mn = nominal or calculated ultimate moment. Generally, 
it is straightforward to obtain the values of Pxc, Pxs, and Ms. Nevertheless, 
integration involved in estimating Mc may become tedious, particularly for 
an irregular cross-section. For a rectangular or a circular cross-section, Mc 
may be calculated by Equations 10.9 and 10.10, respectively

 M f ab c ac c= ′′ −( ) /2 2 (10.9)
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where b = width of a rectangular pile.
The steps for computing Mult and Icr are tabulated in Table 10.2. The 

nominal ultimate bending moment Mn of Mc + Ms is calculated first by 
Equation 10.8; it is next reduced to the ultimate bending moment, Mult (= 
ϕMn) by a factor of ϕ (see Table 10.2); and finally the cracked flexural rigid-
ity, EcIcr, is obtained by

Table 10.2 Calculation of Mmax and Icr

Steps Actions

1 Select an initial curvature θ (see Figure 10.3) of 0.0035/r; 

2 Calculate position of neutral axis by evaluating c and a = β1c; 
3 Compute the axial forces in concrete Pxc and rebars Pxs; 
4 Find squash capacity Pxu by: Pxu = fc′Ac + Es(fc′/Ec)Ac, where Ac, As = total areas of 

concrete and rebars, respectively;
5 If Pxc + Pxs − Pxu > 10−4Pxu, increase θ (otherwise reduce θ) by a designated 

increment, say 0.0035/1000r. Repeat steps 1~4 until the convergence is achieved. 
6 Estimate the nominal ultimate bending moment of Mc + Ms by Equation 10.8.
7 Compute Mult using M M Mult c s= +φ( ), in which ϕ = a reduction factor, to 

accommodate any difference between actual and nominal pile dimension, rebar 
cage off-position, and assumptions and simplifications (Nilson et al. 2004).
•	ϕ = 0.493 + 83.3εs1 and 0.65 ≤ ϕ ≤ 0.9, for laterally tied rebar cage
•	ϕ = 0.567 + 66.7εs1 and 0.70 ≤ ϕ ≤ 0.9, for spirally reinforced rebar cage. 

8 Compute the cracked flexural rigidity, EcIcr by E I Mc cr ult= /θ.

Source: Guo, W. D., and B. T. Zhu, Australian Geomechanics 46, 3, 2011.
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 E I Mc cr ult= / θ  (10.11)

The aforementioned calculation procedure has been entered into a simple 
spreadsheet program that operates in EXCELTM. The program offers con-
sistent results against the ACI and AS3600 methods (not shown), and thus 
was used.

10.3.3 Procedure for analyzing nonlinear shafts

Equation 10.6 indicates the degeneration of the rigidity EcIe from the 
intact elastic value EcIp to the ultimate cracked value of EcIcr (nonlinear 
shaft). This is normally marked with an increase in shaft deflection. The 
nonlinear increase may be resolved into incremental elastic, and thus cal-
culated using the solutions for a linear elastic shaft by replacing the rigid-
ity EpIp in the solutions with the variable rigidity EcIe for each loading. The 
Mmax and the deflection wg at each load level were first estimated assum-
ing an elastic shaft (discussed earlier). Subsequently, incremental elastic 
response (Figure 10.1) is obtained by calculating: (1) Mcr using Equation 
10.5; (2) Mult and EcIcr in terms of pile size, rebar strength and layout, 
and concrete strength (Guo and Zhu 2011); (3) Hcr (the cracking load) by 
taking Mmax as Mcr (via limiting state method); (4) EcIe (effective bending 
rigidity for H > Hcr) using Equation 10.6 and values of EcIp, EcIcr, Mcr and 
Mmax; and (5) Mmax and wg at the H by using the calculated EcIe to replace 
EpIp. The process is repeated for a set of H (thus Mmax) and conducted 
using the GASLFP as well.

The difference between using EcIp and EcIe is remarkable in the pre-
dicted wg, but it is negligible in the predicted Mmax. As outlined before, the 
parameters n, AL (αo or Nco), and k may be deduced using the elastic shaft 
response. The value of kr (via Mcr) has to be deduced from crack-inflicted 
nonlinear shaft response as is elaborated next.

10.3.4 Modeling structure nonlinearity

As mentioned early, the pile analysis incorporating structural nonlinearity 
is essentially the same as that for a linear (elastic) pile but with new val-
ues of bending rigidity EpIp beyond cracking load. In estimating EpIp using 
Equation 10.6, the Mmax may be gained using elastic-pile (EI) analysis, but 
for a pile with an extremely high EI (shown later on), as development of 
crack generally renders little difference in values of Mmax. The analysis for 
an elastic pile was elaborated previously (Guo 2006) and is highlighted in 
Table 10.3. The new value of EpIp for each Mmax (or load) may be calculated 
using Equation 10.6, together with Mcr from Equation 10.5, and (EI)cr (via 
Equation 10.11) from the rectangular block stress method (RBS).
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The Mcr (thus kr) and EpIp may be deduced using GASLFP and measured 
pile response, as are parameters G and LFP for linear piles. The measured 
Mcr defines the start of deviation of the predicted H–wg curve (using EI) 
from measured data. In other words, beyond Mcr, the EpIp has to be reduced 
to fit the predicted curve with the measured H–wg curve until final cracked 
rigidity (EI)cr. The back-figured value of kr is used to validate Equation 
10.5, and the values of EpIp for various Mmax together with Mcr and (EI)cr 
are used to justify Equation 10.6.

The impact of reduced rigidity (cracking) is illustrated in terms of a ficti-
tious pile predicted using GASLFP. The pile with d = 0.373 m, L = 15.2 m, 
and EI = 80.0 MN-m2 was installed in sand having ϕ = 35°, γs′ = 9.9 kN/m3, 
G = 11.2 MPa, and νs = 0.3. The LFP was described by α0 = 0, n = 1.6, and 
Ng = 0.55Kp

2. Under a head load H of 400 kN, the predicted profiles of 
deflection y, bending moment M, slope θ, shear force Q, and on-pile force 
per unit length p are illustrated in Figure 10.4, together with the pile hav-
ing a reduced stiffness EpIp of 8.0 MN-m2. The figures indicate that the 
reduction in rigidity leads to significant increase in the pile deflection and 
slope (all depth), and some increases in local maximum Q and p and in slip 
depth, xp; however, there is little alteration in the bending moment profile. 
The results legitimate the back-estimation of EpIp using measured wg and 
the predicted Mmax from elastic-pile in Equation 10.6.

Table 10.3 Procedure for analysis of nonlinear piles

Steps Actions

Elastic pile 
1 Input pile d, L, EpIp, Ip, and e [with Ep = EpIp/(πd4/64) or = EpIp/(bh3/12)]
2 Determine parameters αo, n, and Ng for LFP and k and Np (see Chapter 3, 

this book).
3 Calculate critical length Lc if the value of Lc < 5d for sand (or < 10d for 

clay), the average shear modulus is reselected to repeat the calculation of 
1 and 2.

Nonlinear pile 

1 Calculate the Mmax and pile deflection wg at each load level for elastic pile 
(EI).

2 Determine Mcr using Equation 10.5.
3 Calculate the critical load Hcr by taking Mmax in step 2 as the Mcr.
4 Compute the Mult and (EI)cr using the rectangular block stress method 

(RBS), in terms of pile size, rebar strength and its layout, and concrete 
strength.

5 Calculate bending rigidity EpIp for each load level above the Hcr by 
substituting values of EI, (EI)cr, Mcr, and a series of Mmax into Equation 10.6.

6 Compute pile deflection using new EpIp and program GASLFP for each load.

Source: Guo, W. D., and B. T. Zhu, Australian Geomechanics 46, 3, 2011.
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10.4 NONLINEAR PILES IN SAND/CLAY

Investigation was conducted into four piles tested in sand (SN1–4) and two 
in clay (CN1–2) that show structure nonlinearity (see Figure 10.5). The 
pile properties are tabulated in Tables 10.4 and 10.5, respectively. The sand 
properties are provided in Table 10.6. In all cases, (1) shear modulus was 
taken as an average value over 10d; (2) Poisson’s ratio was assumed to be 
0.3; and (3) γs′ and ϕ′ were taken as the average values over 5d.

10.4.1 Taiwan tests: Cases SN1 and SN2

A bored pile B7 (termed as Case SN1) and a prestressed pile P7 (Case SN2) 
were instrumented with strain gauges and inclinometers and tested individ-
ually under a lateral load applied near the GL (e = 0) (Huang et al. 2001). 
The soil profile at the site consisted of fine sand (SM) or silt (ML), and occa-
sional silty clay. The ground water was located 1 m below the GL. Over a 
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depth of 15 m below the GL, the average SPT blow count �N  was 16.9; the 
friction angle ϕ′ was 32.6º (Teng 1962), and the effective unit weight ′γ s was 
10 kN/m3.

Example 10.1 Case SN1

Pile B7 was 34.9 m in length and 1.5 m in diameter. It was reinforced 
with 52 rebars of d = 32 mm and a yield strength fy of 471 MPa. The pile 

Table 10.4 Summary of information about piles investigated

Case Reference

Pile details

d 
(m)

L 
(m)

EI 
(GN-m2)

e 
(m)

f′c 
(MPa)

fy 
(MPa)

t 
(mm)

SN1 Huang et al. 
(2001)

1.5 34.9 6.86 0 27.5 471 50

SN2 Huang et al. 
(2001)

0.8 34.0 0.79 0 78.5 
(20.6)a

1226 
(471)

30

SN3 Ng et al. (2001) 1.5 28 10 0.75 49 460
SN4b Zhang (2003) 0.86 51.1 47.67 0 43.4 460 75
CN1 Nakai and 

Kishida 
(1977)

1.548 30 16.68 0.5 153.7

CN2 1.2 9.5 2.54 0.35 27.5
a 78.5 is for the outer prestressed pipe pile and 20.6 for the infill
b 0.86 × 2.8(m2) for a rectangular pile.
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0.0
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Figure 10.5  Comparison of EpIp/EI~Mmax curves for the shafts.
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has a concrete cover t of 50 mm thick with a compressive strength fc′ of 
27.5 MPa. The EI and Ig were estimated as 6.86GN-m2 and 0.2485 m4 
respectively, which gives Ep = 2.76 × 107 kPa. The cracking moment Mcr 
was estimated as 1.08~1.73 MN-m using Equation 10.5, kr = 19.7~31.5 
and yr = d/2 = 0.75 m. The RSB method predicts a squash compres-
sion capacity Px of 135.2 MN, an ultimate moment Mult of 8.77 MN-m 
(see Table 10.7), and (EI)cr of 1.021 GN-m2 [i.e., (EI)cr/EI = 0.149].

Response of an elastic pile (with EI) was predicted using the pu pro-
file described by n = 1.7, α0 = 0, and Ng = 0.9Kp

2 = 10.02 (see Figure 
10.6a), as deduced from the DMT tests (Huang et al., 2001); and G = 
10.8 MPa (= 0.64N) (Guo 2006). The predicted load H − deflection 
wg curve is shown in Figure 10.6b as EI, together with measured data. 
The figure indicates a cracking load H of 1.25 kN and an ultimate 
capacity of 2,943 kN (indicating by a high rate of measured deflec-
tion). These leads to a moment Mcr of 3.45 MN-m (at 1.25 kN) and 
kr = 62.7 (i.e., kr ≈ 2~3 times that suggested by ACI) and a Mult of 10.5 
MN-m (at 2943 kN), which also exceeds the calculated Mult (using 
RSB method) by ~20%, being deduced.

Furthermore, the moment-dependent EpIp was deduced by fitting the 
measured H−wg curve and is provided in Table 10.8. In particular, 

Table 10.6 Sand properties and derived parameters for piles in sand

Case Soil type

Soil properties
Input parameters 

(deduced) 

γs′ (kN/
m3) ϕ′ (o) N

Dr 
(%)

Ng/
Kp

2
G/N 
(MPa) n 

SN1 Submerged silty 
sand

10 32.6 16.9 0.9 0.64 α0 = 0
n = 1.7

SN2 Submerged silty 
sand

10 32.6 16.9 1.0 0.64

SN3 Submerged sand 11.9 35.3 17.1 44 1.2 0.64

SN4 Silty sand with 
occasional gravel

13.3 49 32.5 61 0.55 0.4

Table 10.5 Nonlinear properties of piles investigated

Cases λ

Mcr from ACI 
method 

(MN-m) (1) 

Mcr back-
estimated 

(MN-m) (2)

kr 
derived 
from (2)

Mult 
(MN-m)

(EI)cr/
EI (%) Lc/d

SN1 0.19298 1.08~1.73 3.45 62.7 10.50 55.0 8.9
SN2 0.3287 0.28~0.44 0.465 33.0 1.89 14.6 9.8
SN3 0.1748 1.44~2.31 3.34 45.5 10.77 40.0 9.9
SN4 0.242 4.61~7.38 7.42 31.7 10.13 1.9 27.7
CN1 0.3619 2.81~4.50 2.38 16.7 5.57 24.1 13.3
CN2 0.2984 0.2984 0.63 22.3 0.5 7.1
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(EI)cr/EI was deduced as 0.55 and (EI)cr as 3.773GN-m2. The (EI)cr is 
3.7 times the calculated value of 1.021GN-m2 using the RSB method.

Using the calculated (EI)cr of 1.021GN-m2, Mcr = 3.45 MN-m, and 
Mult = 10.5 MN-m, the EpIp was estimated using Equation 10.6 for 
each Mmax (obtained using EI) and is plotted in Figure 10.5 as a dashed 
line. This EpIp allows wg, Mmax, and xp to be predicted for each speci-
fied load, as are tabulated in Table 10.8 (analysis based on Equation 
10.6). The predicted H–wg and H–Mmax curves are denoted as dash dot 
lines in Figure 10.6b. Comparison between the predictions using elas-
tic EI and nonlinear EpIp indicates that the Mmax predicted using EpIp 
is ~ 3.2% less than that gained using EI; and the slip depth xp at H = 
2,571 kN increases to 3.08d (using EpIp) from 2.49d (using EI) and the 
deflection wg exceeds the measured value by 115%. Both conclusions 
are consistent with the fictitious pile. Nonetheless, using the calculated 
(EI)cr/EI of 0.1497 would render the deflection to be overestimated by 
~2.3 times (compared to the measured 128.3 mm), and an accurate 
value of (EI)cr is important.

Table 10.7 Mult determined for typical piles in sand using RSB method 

Case β

θ 
(10−3 
m−1)

c 
(mm) 

εs1 
(10-3)

a 
(mm)

Pxc 
(kN) Pxs (kN)

Mc
(MN-
m)

Ms 
(MN-
m) ϕ

Mn 
(MN-
m)

Mult 
(MN-
m)

SN1 0.85 8.59 408 5.87 347 6143.3 −6143.3 1.25 8.50 0.9 9.75 8.77

SN2 0.65 16.4 214 5.86 139 2865.1 −2865.4 0.38 1.72 0.9 2.10 1.89

SN4 0.74 11.39 307 14.9 226 6092.8 −6083.5 1.18 10.07 0.9 11.25 10.13

Source: Zhu, B. T., unpublished research report, Griffith University, 2004.
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Example 10.2 Case SN2

The prestressed pipe pile P7 was infilled with reinforced concrete. It 
was 34.0 m long with 0.8 m O.D. and 0.56 m I.D. and with 19@19 
rebars and 38@9 high strength steel wires, and a concrete cover of 30 
mm. The strength values are fy (outer pipe pile) = 1226 MPa, fy (infilled 
material) = 471 MPa, fc′ (prestressed concrete) = 78.5 MPa, and fc′ 
(infilled concrete) = 20.6 MPa, respectively; and an equivalent yield 
strength of the composite cross-section of 67.74 MPa (= (Ep/151,000)2), 
as EI was 0.79 GN-m2 and thus Ep = 3.93 × 107 kPa. The parameters 
allow the following to be calculated: Mcr = 277.4~443.9 kN-m using 
kr = 19.1~31.5, yr = 0.4 m, and Equation 10.5; Mult = 1.89 MN-m and 
(EI)cr/EI = 0.146 using the RSB method (see Table 10.7).

The elastic-pile analysis using the LFP in Figure 10.7 (Huang et al. 
2001) and G = 10.8 MPa (= 0.64N) (Guo 2006) agrees with the mea-
sured deflection wg until H of 284 kN, at which Mcr = 464.7 kN-m 
(kr of 33.0). A Mult of 1.82~2.0 MN-m is noted at H = 804–863 kN, 
which agrees well with 1.89 MN-m gained using the RBS method. 
With (EI)cr of 0.1152 GN-m2 (as per RSB method), Mcr of 464.7 kN-m, 
and Mult of 1.89 MN-m (or 1.82~2.0 MN-m), the EpIp was estimated 
using Equation 10.6 for each Mmax (gained using EI). This EpIp allows 
new wg and Mmax to be estimated, which are presented in Figure 10.7b. 
The deflection wg was overestimated by ~28%, indicating the accuracy 
of the estimated (EI)cr and Equation 10.6.

10.4.2 Hong Kong tests: Cases SN3 and SN4

Example 10.3 Case SN3

The lateral loading test was conducted on a bored single pile in Hong 
Kong (Ng et al. 2001) at a site that consisted of very soft fill, followed 
by sandy estuarine deposit and clayey alluvium. The ground water was 

Table 10.8 Analysis of pile B7 (SN1) using elastic pile, Equation 10.6, and deduced EpIp

H (kN) 1250 1462 1903 2571 2943

Elastic pile 
analysis

Mmax using EI (kN-m) 3447.0 4206.5 5910.0 8773.5 10501
wg using EI (mm) 25.9 32.13 46.58 72.4 88.79
xp/d 1.65 1.80 2.10 2.49 2.69

Analysis based 
on Equation 
10.6

EpIp/EI 1 0.617 0.318 0.200 0.179
wg using EpIp (mm) 25.9 41.05 92.3 208.9 294.2
Mmax using EpIp (kN-m) 3447.0 4092.9 5721.9 8618.3 10372.1
xp/d 1.65 1.94 2.47 3.08 3.34

Back-analysis 
against 
measured 
deflection

EpIp/EI 1 0.83 0.64 0.61 0.55
wg using EpIp (mm) 25.9 35.2 59.40 97.1 128.3
Mmax using EpIp (kN-m) 3447.0 4156.8 5802.0 8668.5 10395.9
xp/d 1.65 1.86 2.24 2.67 2.92
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located at 1.0 m below the GL. The sandy soil extended into a depth 
of 15 m, which has �N  = 17.1, ϕ′ = 35.3° with a relative density of 50% 
(Teng 1962), and γ s

'  = 11.0 kN/m3. Lateral loads were applied at the 
middle level of the 1.5 m (thickness) pile-cap.

The pile was 28 m in length and 1.5 m in diameter and had the fol-
lowing properties: fy = 460 MPa, fc′ = 49 MPa, Ec = 32.3 GPa, EI = 
10 GN-m2, (EI)cr = 4 GN-m2, Ig = 0.2485 m4, and Ep = 4.02 × 107 kPa. 
The Mcr was estimated as 1.44~2.31 MN-m using kr = 19.7~31.5, yr = 
0.75 m, and Equation 10.5. The Mult was not estimated without the 
reinforcement detail.

The elastic pile analysis, using the LFP in Figure 10.8a and G = 
10.9 MPa, agrees with the measured wg up to the cracking load H of 
1.1 MN, at which Mmax = 3.34 MN-m (i.e., kr = 45.5), which again 
is about twice that of the ACI’s suggestion. Note to the maximum 
slip depth xp of 2.1d, the limiting force per unit length (see Figure 
10.8a) exceeds other predictions (Broms 1964a; Reese et al. 1974). 
The EpIp was deduced using the measured H–wg data and is denoted 
as “EpIp” in Figure 10.8b. The associated H~Mmax and EpIp/EI~Mmax 
curves are plotted in Figures 10.8b and 10.5, respectively. In par-
ticular, it is noted that (EI)cr/EI = 0.4, and at a load of 2.955 MN, 
Mmax = 10.77 MN-m and xp = 2.1d. Equation 10.6 was not checked 
without the Mult.

Example 10.4 Case SN4

Lateral load tests on two big barrettes (DB1 and DB2) were carried out 
in Hong Kong (Zhang 2003) in a reclaimed land to a depth of 20 m. 
Load was applied along the height direction and at near the GL (e = 
0) on DB1. The subsoil consisted either of sandy silty clay or loose to 
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Figure 10.7  Comparison between measured (Huang et al. 2001) and predicted response 
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medium dense sand, with cobbles in between the depths of 10.6~18.9 
m below the GL. The ground water was located at a depth of 2.5 m. 
The soil properties within the top 15 m are: �N  = 32.5, ϕ′ = 49°, and
′γ s = 13.3 kN/m3.
Only the barrette DB1 (i.e., SN4) was modeled. It had a length of 

51.1 m and a rectangular cross-section of 2.8 m (height) × 0.86 m. 
Other properties are: fy = 460 MPa, f ′c = 43.4 MPa (= fcu/1.22; Beckett 
and Alexandrou 1997), a cubic concrete compressive strength fcu of 
53 MPa, Ec = 3.03 × 107 kPa, and t = 75–100 mm, together with Ig = 
1.5732 m4, EI = 47.67 GN-m2, and Ep = 1.78 × 109 kN-m2. The Mcr 
was estimated as 4.61~7.38 MN-m using kr = 19.7~31.5 and yr = 1.4 m; 
and Mult as 10.13 MN-m and (EI)cr as 0.89 GN-m2 for the upper 15 m 
(Table 10.7), using the RSB method.

The elastic-pile analysis employs Ng = 28.15 (= 0.55Kp
2), αo = 0, n = 

1.7, and G = 13.0 MPa (= 0.4N). The associated LFP to a depth of 1.5d, 
as shown in Figure 10.9a, lies in between Reese’s LFP and Broms’ LFP; 
and its average over a depth of ~2.8d is close to that from Reese’s LFP. 
The predicted deflection wg, as shown in Figure 10.9b, agrees well with 
the measured data until the cracking load of 2.26 MN, at which the 
Mcr was measured as 7.42 MN-m (kr = 31.7).

Using Mcr of 7.42 MN-m and (EI)cr of 0.89 GN-m2, the EpIp, as 
shown in Figure 10.5, was deduced by matching the predicted with 
the measured deflection wg and the associated H~Mmax curve in 
Figure 10.9b. These figures show that the Mult of 10.13 MN-m occurs 
at H ≈ 3.61MN (associated with a sharp increase in the measured 
wg); at the maximum load H of 4.33 MN, 27.8% increase in the xp 
and 26.9% increase in the Mmax (owing to excessively high pile–soil 
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relative stiffness Ep/G* (of 1.1 × 105), which is not generally expected. 
In brief, the increased Mmax from nonlinear analysis should be used in 
Equation 10.6.

10.4.3 Japan tests: CN1 and CN2

Example 10.5 Case CN1

Pile D was tested at a site with an undrained shear strength su = 35 + 
0.75x (kPa, x in m < 20 m) and an average �su of 43 kPa over 15.48 m 
(= 10d). The lateral load was applied at 0.5 m above the GL. The pile 
had L = 30 m, d = 1.548 m, EI = 16.68 GN-m2, Ep = 5.92 × 107 kPa, and 
fc′ = 153.7 MPa [≈ (Ep/151,000)2]. The Mcr was estimated as 2.81~4.50 
MN-m (using kr = 19.7~31.5, yr = 0.774 m and Equation 10.5), which 
exceeds 1.33 MN-m (Nakai and Kishida 1982) by 2.0~3.4 times. The 
ultimate bending moment Mult was not estimated without the rein-
forcement information.

The elastic pile reaction was simulated using n = 0.7, αo = 0.1 and 
Ng = 2.0 (see LFP in Figure 10.10a), G = 5.62 MPa (= 130.8su) (Kishida 
and Nakai 1977), and k = 3.13G. In particular, Figure 10.10a demon-
strates that an LFP within 5d is close to Hansen’s LFP gained using c = 
8 kPa, ϕ′ = 10°, but it is far below the Matlock’s LFP. The predicted 
pile deflection compares well with the observed one until the cracking 
load H of 690 kN (see Figure 10.10b), with Mcr (Mmax at H = 690 kN) 
of 2.38 MN-m (kr = 16.7).

The EpIp was deduced using the measured deflection wg (see Figure 
10.10b), which in turn offers the bending moment Mmax in the figure. 
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Figure 10.9  Comparison between measured (Zhang 2003) and predicted response of 
DB1 pile (SN4). (a) LFPs. (b) H-wg and H~Mmax curves.
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For instance, an H of 1289 kN incurs EpIp = 5.0 GN-m2 (= 0.3EI), wg = 
90.1 mm, Mmax = 5.57 MN-m, and xp = 6.09 m (= 3.93d). The cracking 
renders a 118.2% increase in wg, 1.24% reduction in Mmax, and 29.3% 
increase in xp, which resemble those noted for piles in sand.

Using Mmax and EpIp at H = 1289 kN, the (EI)cr was calculated to be 
4.01 GN-m2 using Equation 10.6 and (EI)cr/EI = 0.241. Substituting 
(EI)cr and Mmax into Equation 10.6, EpIp (thus deflection wg) was cal-
culated. This deflection, designated as EpIp – Equation 10.6, compares 
well with measured one (see Figure 10.10b). Equation 10.6 is validated 
for this case.

Example 10.6 Case CN2

Test Pile E was conducted at a clay site where the SPT values (depth) 
were unfolded as N = 0 (0~2 m) and N = 4 ~6 (2~10 m). The su was 
163.5 kPa at a depth of 3 m below the GL. Load was applied 0.35 m 
above the GL. The pile properties are: L = 9.5 m, d = 1.2 m, EI = 2.54 
GN-m2, and fc′ ≈ 27.5 MPa [= (Ec/151,000)2]. The EI was estimated 
using Ec (Ep) = 2.5 × 107 kPa. The Mcr was estimated as 554.2~886.7 
kN-m (using kr = 19.7~31.5, and yr = 0.6 m), which is slightly higher 
than 527.6 kN-m by Nakai and Kishida (1977), implying the rationale 
of using the current EI. The ultimate bending moment Mult is not deter-
mined without the reinforcement detail.

The behavior of the elastic-pile was modeled using the LFP in Figure 
10.11a, G = 21.38 MPa (= 130.8Su) (Nakai and Kishida 1982), and k = 
3.77G. The predicted pile deflection agrees well with the observed data 
up to H of 470 kN (see Figure 10.11b). The measured Mcr (Mmax at Hcr = 
470 kN) was computed as 628.4 kN-m and kr as 22.3.
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Figure 10.10  Comparison between calculated and measured (Nakai and Kishida 1982)  
response of Pile D (CN1). (a) LFPs. (b) H-wg and H~Mmax curves.
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The EpIp was deduced using the measured deflection wg(see Figure 
10.11b). This in particular offers EpIp/EI = 0.6 and 0.18, respectively, 
for H = 588.6 kN and 735.8 kN. As tabulated in Table 10.9, the 
(EI)cr/EI ratio is thus deduced as 0.35 and 0.005, respectively, in light 
of Equation 10.6. The drastic drop in (EI)cr implies pile failure prior to 
735.8 kN. This is perhaps true in terms of the erratic scatter of mea-
sured moment at H = 588.6 kN and no record of the moment for H = 
735.8 kN (Nakai and Kishida 1982). The predicted bending moment 
profiles compare well with those measured as shown in Figure 10.11c.

10.5 ROCK-SOCKETED SHAFTS

Sixteen rock-socketed drilled shafts (Reese 1997; Zhang  et  al. 2000; 
Nixon 2002; Yang et al. 2005; Cho et al. 2007) are studied. The prop-
erties of rock masses around each shaft are tabulated in Table 10.10. A 
shaft rock relative stiffness ratio Ep/G of 1 and 103 would have a Lc = 
(1~6)d, in which deflection of laterally loaded rock-socketed piles mainly 
occurs. The stress relief and weathering and pile construction may render 

Table 10.9 Nonlinear response of pile E (CN2)

H (kN)
Measured 
wg (mm)

Using elastic-pile EI Using cracked EpIp (back-estimated)

Mmax 
(kN-m)

wg 
(mm) xp/d EpIp/EI

Mmax 
(kN-m)

wg 
(mm) xp/d (EI)cr/EI

588.6 7.8 808.2 6.54 0.32 0.60 748.0 7.81 0.40 0.35
735.8 18.3 1046.5 8.54 0.45 0.18 892.5 18.25 0.81 0.005
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Figure 10.11  Comparison between calculated and measured (Nakai and Kishida 1982) 
response of pile E. (a) LFPs. (b) H-wg curves. (c) M profiles for H = 147.2 kN, 
294.3 kN, 441.5 kN, and 588.6kN.
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a lower value of E than those around tunnel support structures or deep 
excavations. The real value of G (thus E), along with the parameters 
AL, k, and n are thus deduced by matching measured with predicted 
pile response for each shaft using the GASLFP and are classified into 
three groups: (a) n = 0.7 for long shafts with large diameters; (b) n = 1.5 
for short~long shafts; and (c) n = 2.3 for short shafts, characterized by 
rigid rotation about tip and L < 0.7Lc (see Tables 10.11 and 10.12). The 
parameters allow the measured H and wt to be normalized and plotted 
in Figures 10.12 and 10.13, in which the CF solutions for n = 0.7 and 
1.7 and for n = 2.3 are also provided, respectively. Typical calculations 
are elaborated next concerning the tests in Islamorada (Nyman 1980), 
San Francisco (Reese 1997), and Pomeroy (Yang 2006), respectively, as 
they show deviations from majority of test data (see Figure 10.13b) and 
structural nonlinearity. 

The back-estimation provides the empirical correlations to laterally 
loaded rock-socketed piles (e.g., the shear modulus of an isotropic rock 

Table 10.10 Rock mass properties (All cases)

Case Reference Rock type

Reported properties

γm
a

(kN/m3) qu (MPa)
RQD 
(%) GSIb,e

RS1 Reese (1997) Limestone 23 3.45 0d 29

RS2 Sandstone 23 2.77
(5.7)c

45 47

RS3 Zhang et al. (2000) Sandy shale 23 3.26 55 52
RS4 Sandstone 23 5.75 45 48
RS5 Nixon (2002) Claystone-

siltstone
25 12.2 84.6 49

RS6 25 11.3 95 82
RS7 Siltstone-

sandstone
15 25.0 44 38

RS8 — 12.2 59
RS9 Yang et al. (2005) Shale-limestone 10.5 39.1 11 41~61
RS10 Shale-siltstone 16.4 26.2 38 28~45
RS11 Cho et al. (2007) Crystalline 

granite
27.01 62.6 59 40

RS12 26.7 57.6 13 25
RS13 Meta-argillite 24.6 27.7 <25
RS14 24.6 27.7 <25
RS15 Gneiss 26.67 59.0 30 30

RS16 27.01 61.6 27 30

a γm = 23 kN/m3, if not provided.
b Ignoring the adjustment of discontinuity orientation.
c Average (representative) value.
d Assumed as zero by (Reese 1997).
e Determined using RMR89 (Bieniawski 1989).
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mass and unconfined strength in Chapter 3, this book). For the cases RS1–7, 
the GSI was calculated and provided in Table 10.13, and the calculated 
moduli are provided in Table 10.14.

Example 10.7 Nonlinear shaft of Islamorada test (Case RS1)

Nyman (1980) reported a loading test on a bored shaft in the Islamorada 
Florida Keys. The shaft was retained by a steel casing in the sand layer 
overlying the rock to neutralize the sand resistance. The shaft with 
d = 1.22 m, L = 13.3 m was laterally loaded at e = 3.51 m above the 
rock surface (Table 10.11). The shaft properties are: Ip = 0.109 m4 and 
Ep = 3.43 × 107 kPa (i.e., EcIp = 3.73 GN-m2, Ec ≈ Ep); fc′ = 51.6 MPa; 
and Mcr = 798~1276 kN-m (using kr = 19.7~31.5, yr = d/2 = 0.61 m in 
Equation 10.5). The rock around the shaft was a brittle, vuggy, coral 
limestone characterized by (Reese 1997) (see Table 10.10): (1) RQD = 
0; (2) qu = 3.45 MPa; (3) RMR89 = 34 (Bieniawski 1989); (4) GSI = 29; 
and (5) E = 7.24 GPa (i.e., G = 2.9 GPa).

Table 10.12 Backfigured E, LFPs, and characteristic length: Shafts in rock

Case

E (GPa) Guo’s LFP (Back-figured)a

Measured
Back-
figured Ng αo/d

AL
(MN/
m1+n)b

Nco
(%) λ (1/m) gs

c eλ 

RS1 7.24 5.175 0.491 0 3.519 0 0.953 0.6 3.3450
RS2 3.56 0.997 0 9.614 0 0.463 0.8 0.5741
RS3 0.41 2.727 0 1.319 0 2.251 0.6 1.3731
RS4 0.50 3.182 0.05 2.247 3.2 2.385 0.7 1.9557
RS5 0.32d 0.153 0.525 0 2.120 0 0.503 0.4 0.1660
RS6 0.20d 0.185 1.119 0.22 4.294 0 0.5291 0.38 0.2275
RS7 0.39d 0.188 0.373 0 2.431 0 0.4399 0.2 0.3079
RS8 0.44 0.061 0.498 0.0 1.127 0 0.3921 0.38 0.2666
RS9 0.17 2.44 0.328 0.0 112.9 0 0.5486 0.6 0.0000
RS10 0.655 0.082 0.0 21.241 0 0.2821 0.2 4.8239
RS11 0.047 0.328 0.0 3.940 0 0.3704 0.25 0.1111
RS12 0.043 0.262 0.0 2.982 0 0.3776 0.2 0.1133
RS13 0.016 0.262 0.0 0.847 0 0.2764 0.2 0.0829
RS14 0.023 0.262 0.0 0.847 0 0.3047 0.2 0.0914
RS15 0.052 0.459 0.0 5.304 0 0.3801 0.35 0.1140

RS16 0.009 0.262 0.0 1.20 0 0.2387 0.2 0.0716

a Averaged or equivalent LFP using Reese’s LFP refers to Zhu, B. T (2004), Griffith University report.
b n = 0.7 and E = (60~400)qu (Cases 1, 2, 9, and 10), long shafts with large diameters; n = 1.5 and E = 

4,800qu for long shafts (Cases 3 and 4), or near long shafts (Cases 5, 6, 7, 11, 12, and 15), as is noted 
in measured data of Cases 11 and 12; n = 2.3 and E = (1,000~1,500)qu (Cases 8, 13, 14, and 16), 
short shafts, characterized by rigid rotation about tip.

c gs = AL/(qu)1/n; pu = gsqu
1/n.

d Average value of upper three layers below rock line.
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With n = 0.7, AL = 3.519 MPa, Ng = 0.491 (obtained using gs = 0.6, 
see Table 10.12), and k = 12.296 GPa (or G = 5.2 GPa), the H~wt 
and H~Mmax curves were predicted and are plotted in Figure 10.14 as 
“Constant EcIp.” The normalized limiting force pu/(qud) is shown in 
Figure 10.14c. With Lc (= 2.38 m) < L, the deduced G is valid and close 
to the reported G. The predicted moment Mmax compares well with the 
measured one over the entire load regime, see Figure 10.14b. However, 
ignoring the structural nonlinearity, the predicted H~wt curve diverges 
from the measured one (see Figure 10.14a) beyond the cracking load H 
of 300 kN (Reese 1997).

The nonlinear interaction is captured via the steps outlined before: 
(1) At the cracking H of 300 kN, the Mcr (= Mmax) was estimated as 
1.161 MN-m (thus kr = 28.7 from Equation 10.5); (2) without rein-
forcement details, the EcIe was “back-estimated” against the measured 
data (see Figure 10.14a), which shows EcIcr = 0.71GN-m2; A Mmax was 
estimated as 2.674 MN-m at the maximum imposed H of 667 kN; 
(3) Hcr ≈ 300 kN; and (4) values of EcIcr, Mcr, and Mmax allow the Icr 
to be estimated as 0.0129m4 in light of Equation 10.6 and EcIcr/EcIp = 
0.118. The calculation was repeated to gain H~wt and Mmax~EcIe 
curves. The curves with Δ dots agree well with Equation 10.6 (i.e., the 
ACI method) shown in Figure 10.14d and with the measured deflec-
tion wt shown in Figure 10.14a. The accuracy in the estimated wt is 
similar to that of Mcr (thus EcIe). At H = 667 kN, the use of a Mcr of 
0.798 MN-m (31% less than 1.161 MN-m) would render the wt to be 
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Figure 10.12  Normalized load, deflection: measured versus predicted (n = 0.7 and 1.7).
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overestimated by 28.5%; whereas, a Mcr of 1.276 MN-m (10% higher) 
would underestimate the wt by 9.4%.

The high eλ of 3.345 (> 3.0, see Table 10.12) allows the deflection 
wt to be readily calculated using elastic shaft stiffness EpIp (Guo 
2006) for H < Hcr or otherwise using Equation 10.4. For instance, 
at H = 350 kN, the elastic shaft analysis yields λ = 0.95279/m, 
xp = 0.441 m, wgλnk/AL = 1.75634, and Mmaxλ2+nk/AL = 0.32565. 
This offers wg  = 0.52 mm and Mmax = 1305.96 kNm. The Mmax 
allows EcIe to be deduced as 1.8477 GNm4 using Equation 10.6, 
and thus Mcr = 983.6 kNm (less than 1,161 kNm) and Icr = 0.0129 m4. 
This new EcIe allows the additional deflection from loading eccen-
tricity to be calculated as 2.73 mm [= 350 × 3.513/(3 × 1.8477 × 
103)], and results in a total deflection wt of 4.78 mm. The calcula-
tion was repeated for five typical loads H of 127.8~667 kN. The 

Table 10.13 Summary of index properties of rock masses 

Case Reference Rock type

Derived rock mass classification indices

RMR89 (Bieniawski 1989)

GSIRA RB RC RD RE Adj Total

RS1 Reese et al. 
(1997)

Limestone 1 3 5 10 15 0 34 29
RS2 Sandstone 1 8 8 20 15 0 52 47
RS3 Zhang et al. 

(2000)
Sandy 
shale

1 13 8 20 15 0 57 52

RS4 Sandstone 2 8 8 20 15 0 53 48
RS5 Nixon 

(2002)
Claystone-
siltstone

2 17 10 10 15 0 54 49
RS6 2 20 30 25 10 0 87 82

RS7 Siltstone 4 8 10 6 15 0 43 38

Source: After Zhu, B. T., unpublished research report, Griffith University, 2004.

Table 10.14 Summary of mechanical properties of rock masses 

Case

E (GPa)

k/G G/quM1 M2 M3 M4 M5
Back-
figured Measured

RS1 3.98 0.40 0.55 0.02 5.2 7.24 6.2 839.4
RS2 4.0 11.22 0.11 1.40 0.03a 3.56 5.88 273.7
RS3 14.0 14.96 0.39 2.03 0.03 0.41 4.01 35.48
RS4 6.0 11.89 0.52 2.14 0.05 0.50 4.31 30.18
RS5 24.0 19.95 0.75 2.94 0.16 0.15 0.32b 3.74 3.63
RS6 74.0 84.14 0.73 22.04 0.62 0.18 0.20b 3.9 6.53
RS7 6.68 1.16 2.69 0.18 0.19 0.39b 3.72 1.77

Source: Revised from Zhu, B. T., unpublished research report, Griffith University, 2004.
a Assuming open joints.
b Average value of upper three layers below rock line.
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results are provided in Table 10.15, and are plotted in Figure 10.14 
as “Mo based” prediction. They compare well with the GASLFP 
prediction.

Example 10.8 Nonlinear shafts in San Francisco test (Case RS2)

The California Department of Transportation (Reese 1997) reported 
the two bored shafts loaded simultaneously near San Francisco at an 
eccentricity of 1.24 m (see Figure 10.15a). The shafts were 2.25 m in 
diameter and installed 12.5 m (Shaft A) and 13.8 m (Shaft B) into 
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Figure 10.14  Analysis of shaft in limestone (Islamorada test). (a) Measured and com-
puted deflection. (b) Maximum bending moment. (c) Normalized LFPs. 
(d) EcIe.
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medium-to-fine grained, well-sorted and thinly bedded (25–75-mm 
thick) sandstone. The sandstone was very intensely to moderately 
fractured with bedding joints, joints and fracture zones, and was 
characterized by: (1) RQD = 0~80% with an average of 45%; (2) qu = 
5.7 MPa (0~0.5 m below the rock surface), 1.86 MPa (0.5–3.9m), 
6.45 MPa (3.9–8.8 m), and 16.0 MPa (>8.8 m); (3) RMR89 = 52; and 
(4) GSI = 47.

The shaft B (Case RS2) was reinforced with 40 rebars that has 
a tensile strength fc′ of 34.5 MPa, a diameter ds of 43 mm, and 
a cover thickness t of 0.18 m. Other properties are fy = 496 MPa; 
EcIp = 35.15 GN-m2 [from Ec = 151,000(fc′)0.5

 = 28.05 GPa and Ip = 
1.253 m4]; and Mcr = 4,074~6,518 kN-m (using Equation 10.5 and 
kr = 19.7~31.5).

Taking n = 0.7 and AL = 9.614 MN/m1.7 (see Table 10.12), the Ng 
was calculated as 0.997 using Equation 10.1 and gs = 0.8. The normal-
ized limiting force pu/(qud) against depth is plotted in Figure 10.15d as 
Guo’s LFP. The predicted H–wt (wt ≈ wg + θge) curve using GASLFP 
was matched with the measured one to ~2.6 MN (see “CF-constant 
EcIp” in Figure 10.15b), which offered E = 3.56 GPa (k = 12.296 GPa), 
Lc = 4.97 m (< L, thus validated), and �qu= 2.77 MPa (over the depth of 
Lc). The measured Mmax was well predicted as well. At the load H of 
2,620 kN, the calculated Mmax of 4,527 kN-m (kr ≈ 21.8) falls in the 
predicted Mcr range of 4,074~6,518 kN-m.

Structural nonlinearity was incorporated to estimate the wg and Mmax. 
A nominal ultimate bending moment Mn was obtained as 21.57 MN-m 
using Equation 10.10. This offers a “beam” moment Mult of 19.413 
MN-m (= ϕMn, using a reduction factor ϕ = 0.9 in Equation 10.11) and 
a “shaft” Mult of 17.472 MN-m (ϕ = 0.81) for drilling shafts. The beam 
Mult was 6.3% higher than Mmax of 18,188 kN-m obtained using EcIp 
at H = 9 MN, from which a drastic increase in measured shaft deflec-
tion (or flexural failure) was noted. The shaft Mult agrees with 17,740 
kN-m obtained previously (Reese 1997). The shaft Mult offers a cracked 
flexural rigidity EcIcr of 2.6 GN-m2 (= 17472/6.72 × 10−3). The EcIcr/
EcIp thus was 0.074, and the ultimate load was 8.62 MN. The “Variable 
EcIe” was computed for each Mmax using Equation 10.5, allowing new 
values wt and Mmax to be estimated. The estimations compare well with 
measured data across the entire load spectrum (Figure 10.15b and c). At 

Table 10.15 Simple prediction of the nonlinear deflection for high eλ (Case RS1)

H (kN)
Mo 

(kNm)
Mm 

(kNm) Ie (m4)
EcIe 

(GNm4)

He3/
(3EcIe) 
(mm) wt (mm)

127.8 448.7 464.4 0.109 3.73 0.49 1.22
266.0 933.7 983.75 0.109 3.73 1.03 2.56
350.0 1228.5 1305.96 0.05387 1.8477 2.73 4.78
500.0 1755.0 1891.5 0.02638 0.90498 7.97 11.01

667.0 2341.2 2556.88 0.01836 0.62972 15.27 19.56
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a failure load H of 8.62 MN, it is noted that the deflection wg raised 4.7 
times (from 3.5 to 19.9 mm); the slip depth xp increased by 47.9% (from 
0.887 to 1.312 m), but the Mmax altered only 2.2%.

Example 10.9 Nonlinear shafts of Pomeroy-Mason test (Case RS10)

Pomeroy-Mason shaft had a high eλ value of 4.82 (> 3.0, Table 10.12). 
The nonlinear shaft response was also well modeled (see Figure 10.16) 
in the manner to that for Case RS1, including H–wt and H–Mmax 
curves, and bending moment profiles for three typical loads.
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Figure 10.15  Analysis of shaft in sandstone (San Francisco test). (a) Schematic drawing 
of shaft B. (b) Measured and computed deflection. (c) Maximum bending 
moment and EcIe. (d) Normalized LFPs.
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10.5.1  Comments on nonlinear piles 
and rock-socketed shafts

The investigation into the 6 nonlinear piles in sand/clay and 16 rock-sock-
eted shafts offers the following conclusions:

•	 The parameters for elastic piles are quite consistent with the previous 
findings by Guo (2006): (1) The 4 piles in sand have k = (2.38~3.73)G 
and G = (0.4~0.64)N (MPa); n = 1.7, α0 = 0, and Ng = (0.9~1.2)Kp

2 with 
Ng = 0.55Kp

2 for large diameter piles. (2) The 2 piles in cohesive soil 
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have k = (3.13~3.77)G, and G = 130.8su; and n = 0.7, αo = 0.06~0.1 
m, and Ng = 2.

•	 Table 10.11 shows that Lc = (2.1~11.5)d; maximum slip depth xp = 
(0.01~3.1)d; xpλ = 0.09~0.741 (n = 0.7); and 0.189~1.624 (n = 1.5~2.3). 
The shaft I40 short with a maximum xpλ of 0.241 may just attain the 
upper limit (of rigid shafts) of 0.172 (n = 1) ~0.463 (n = 2.3), beyond 
which n = 2.3 should be adopted, such as the shaft I85 short, Nash 
short, Nash long, and Caldwell short.

•	 Table 10.12 shows that the E currently deduced agrees with that 
gained from in situ tests (see Table 10.14). In Equation 10.1, n = 
0.7~2.3 and αo = (0~0.22)d may be used to construct pu with pu = 
gsqu

1/n. Long shafts with large diameters (in Cases RS1, 2, 9, and 
10) use n = 0.7 and E = (60~400)qu (E, qu in MPa); otherwise n = 
1.5 and E = 5,000qu for normal diameters (in eight Cases: RS3–7, 
11, 12, and 15). The former follows Reese’s suggestion and the lat-
ter observes the stiff clay model (Gabr et al. 2002). Short shafts use 
n = 2.3 and E = 1,000qu. The deduced gs (= pu/qu

1/n) and n = 1.7~2.3 
for normal diameter shafts are similar to those noted for vertically 
loaded shafts (n = 2), but for an abnormal reduction in modulus 
(for short shafts) with increase in UCS from 33 to 63 MPa. The 
latter may be owing to an increasing strain that requires further 
investigation.

Pertinent to types of shafts, the currently suggested E and pu allow the wt 
to be well predicted, albeit for the overestimation for I40 shaft. Salient 
features are that a high eλ (> 3) renders Mo≈Mmax and Equation 10.4 
sufficiently accurate; the cracking moment and reduced flexural rigidity 
may be computed by using Equations 10.5 and 10.6 and kr = 21.8~28.7. 
Nevertheless, without measured bending moment profiles for most of the 
shafts, the n values may falter slightly.

10.6 CONCLUSION

With piles exhibiting structure nonlinearity, the following are deduced:

•	 The ultimate bending moment Mult, flexural rigidity of cracked cross 
section EpIp may be evaluated using the method recommended by ACI 
(1993), and the variation of the EpIp with the moment may be based 
on Equation 10.6. However, this would not always offer a good pre-
diction of measured pile response, such as cases SN1 and SN4.

•	 Using Equation 10.5 to predict the cracking moment, the kr should be 
taken as 16.7~22.3 (clay) and 31.7~62.7(sand). The kr for sand is 2~3 
times that for clay and structural beams.
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Study on 16 laterally loaded rock-socketed shafts (4 nonlinear and 12 linear 
shafts) demonstrates:

•	 E ≈ (60~400)qu, except for the atypical short shafts (L < Lc)
•	 n = 0.7~2.3, αo = (0~0.22)d, and pu = gsqu

1/n, featuring strong scale or 
roughness effect

•	 An effective depth to ~10d and a maximum slip depth to ~3d
•	 For a layered soil with shear strength increases or decreases dramati-

cally with depth, n may be higher or lower than 0.7, respectively. A 
high n of 1.7~2.3 is anticipated for a shape strength increase profile 
(PS3). Higher than that obtained using existing methods, the deduced 
gradient of LFP should be reduced for capped piles.

Design of laterally loaded rock-socketed shafts may be based on the 
closed-form solutions and the provided E and pu. The reduction in flexural 
rigidity of shafts with crack development obeys that of reinforced concrete 
beams featured by Mcr, Mult, and Icr; and response of nonlinear shaft can 
be hand-predicted at a high loading eccentricity. Not all cases investigated 
herein are typical, but the results are quite consistent. In particular, for 
rigid short shafts, an increasing strain level (thus reduced modulus E) is 
deduced with increasing undrained shear strength pu, which requires atten-
tion and further investigation.*

* Dr. Bitang Zhu assisted the preliminarily calculation of the cases.
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Chapter 11

Laterally loaded pile groups

11.1 INTRODUCTION

Laterally loaded piles may entail large deformation in extreme events such 
as ship impact, earthquake, etc. These piles are often cast into a pile-cap 
that restrains pile-head rotation but allows horizontal translation. The 
pile–soil interaction has been preponderantly captured using a series of 
independent springs-sliders distributed along the shaft linked together with 
a membrane. In particular, the model allows elastic-plastic closed-form 
solutions for free-head (FreH), single piles (Guo 2006) to be developed. 
The solutions are sufficiently accurate for modeling nonlinear pile–soil 
interaction compared to experimental observation and rigorous numeri-
cal approaches (Chapter 9, this book). They have various advantages over 
early work (Scott 1981), as outlined previously. In particular, the nonlinear 
response is well captured by the pu profile and the depth of full mobilization 
(termed as slip depth, xp, under a pile-head load H) of the pu, along with a 
subgrade modulus (k) that embraces the effect of pile–soil relative stiffness 
and head and base conditions on the pile response (Chapter 7, this book).

With laterally loaded pile groups, the following facts are noted.

•	 Fixed-head, elastic solutions generally overestimate maximum bend-
ing moment and deflection of capped piles against measured data, 
and the impact of partially (semi-) fixed-head conditions and loading 
details (Duncan et al. 2005) needs to be considered.

•	 Nonlinear response of piles is by and large dominated by the pu pro-
file (Guo 2006) and the slip depth, xp. The pu profile alters signifi-
cantly with pile-head restraints (Guo 2005). The slip depth is essential 
to identifying failure mode of individual piles in a group.

•	 Numerical approaches, such as finite element method (FEM) and finite 
difference approach (FDA), have difficulty in gaining satisfactory pre-
dictions of load distributions among piles in a group (Ooi et al. 2004), 
but those underpinned by the less rigorous concept of p-multipliers 
(Brown et al. 1998) offer good predictions of the distributions.
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These uncertain points were clarified recently by elastic-plastic closed-
form solutions for a laterally loaded, fixed-head (FixH) pile, which 
cater to semi-fixed-head (free-standing) conditions and incorporate the 
impact of group interaction and the failure modes. The solutions are 
underpinned by the input parameters k, pu, and p-multiplier pm, and are 
provided in a spreadsheet program called GASLGROUP (in light of a 
purposely designed macro operating in EXCELTM). They were substan-
tiated using FEM and/or FEM and FDA results regarding a single pile 
in sand for a few typical pile groups and were used to predict success-
fully the nonlinear response of 6 single piles and 24 pile groups in sand 
and clay.

11.2 OVERALL SOLUTIONS FOR A SINGLE PILE

Figure 3.29 (Chapter 3, this book) shows the springs-sliders-membrane 
model for a laterally loaded pile embedded in a nonhomogeneous elastoplas-
tic medium. The model of the pile–soil system is underpinned by the same 
hypotheses as those for free-head piles (Guo 2006) but for the restraining of 
rotation at head level. Typically, it is noted that governing equations for the 
pile (see Figure 11.1) are virtually identical to those for free-head piles (Guo 
2006) in the upper plastic (0 ≤ x ≤ xp) and the lower elastic (xp ≤ x ≤ L) zones, 
as is the methodology for resolving the equations. Compared to FreH piles, 
the alterations are the slope ′ =wA( )0 0, and the shear force −QA(0) = H (H = 
pile-head load) to enforce the FixH restraint at x = 0.

In light of a constant modulus of subgrade reaction (k) and a limiting 
force per unit length pu = AL(x + αo)n (see Chapters 3 and 9, this book), 
solutions for fixed-head piles are established (Guo 2009). The solutions 
are provided in Table 11.1 in form of the response profiles using the nor-
malized depths x (= λx) and z (= x − xp, with xp = λxp), respectively, for 
plastic and elastic zones. Note that the schematic profiles of the on-pile 
force per unit length p (with p = p

u
 at x ≤ xp) and the moment M(x) are 

depicted in Figure 11.2. The λ is the reciprocal of a characteristic length 
given by λ = k E Ip p/( )44 , which controls the attenuation of pile deflection 
with depth; as well as in Table 11.2 in the form of normalized pile-head load 
H (= Hλn/AL), mudline deflection wg (= wgkλn/AL), and bending moment at 
depth x (< xp) M x( ) (= M(x)λ2+n/AL). 

The normalized H , wg, and Mmax for the single pile are characterized by 
the pu profile and the xp. Given the λ for the pile–soil system and the pu for 
the limiting force profile, the response is characterized by the soil slip depth 
xp. The on-pile resistance at mudline and the coupled interaction may be 
ignored by taking αo ≈ 0 and Np ≈ 0, respectively, which render the follow-
ing simplified equations.
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Figure 11.1  Schematic limiting force and deflection profiles. (a) Single pile. (b) Piles in a 
group. (c) LFP. (d) Pile deflection and wp profiles. (e) p-y(w) curve for a single 
pile and piles in a group. (After Guo, W. D., Int J Numer and Anal Meth in 
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Note that the Mmax is equal to the moment at mudline Mo for a FixH pile (see 
Figure 11.2). The eccentricity e (Figure 11.1) vanishes from the expressions 

Table 11.1 Expressions for response profiles of a fixed-head pile
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The last four expressions are independent of the head constraint and are 
identical to those for free-head piles.
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of H , wg, and Mmax, which needs to be considered via a treatment H2 shown 
later. These solutions have similar features to FreH solutions (Guo and Lee 
2001; Guo 2006) (see Chapters 3 and 9, this book) and are directly used to 
predict nonlinear response of piles and pile groups.

11.3  NONLINEAR RESPONSE OF SINGLE 
PILES AND PILE GROUPS

A pragmatic approach for estimating response of pile groups is depicted 
herein in terms of the benchmark solutions for a single pile and the p-multi-
pliers pm for pile-pile interaction.

11.3.1 Single piles

The current solutions outlined in Tables 11.1 and 11.2 allow nonlinear 
responses of a pile to be predicted. They are compiled into the spreadsheet 
program GASLGROUP, with the calculation flow chart being depicted in 
Figure 11.3. Given a mudline deflection wg (thus wg), a slip depth xp is itera-
tively obtained using the wg expression (see Table 11.2) or Equation 11.2, 
which allows other responses (e.g., using Equation 11.1 for the load H) to be 
evaluated, including the profiles of deflection, rotation, bending moment, 
and shear force (see Table 11.1) for elastic and plastic zones, respectively. 
The subsequent solutions were generally computed using GASLGROUP, 
except where specified. They, however, may be referred to as “CF(FixH),” 
“CF(FreH)” for FixH and FreH piles, respectively, and as “current CF” for 
either head restraint.

The impact of ground level resistance αo and the distribution of limiting 
force profile n is presented in Figure 11.4a1 and a2 for displacement and 
Figure 11.4b1 and b2 for maximum bending moment. Given n = 0.7 for 
clay, αo = 0, the fixed-head solution is plotted in Figure 11.5a together with 

AL o
n

xp

H

(a) (b)

Mo

xsmax = zsmax + xp

xsmax

(c) xsmax > xp (d) xsmax < xp

Figure 11.2  Schematic profiles of on-pile force and bending moment. (a) Fixed-head pile. 
(b) Profile of force per unit length. (c) Depth of second largest moment xsmax 
(>xp). (d) Depth of xsmax (<xp).
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the free-head solutions (see Chapter 9, this book) for displacement, as the 
letter does compare well with measured data of 31 piles in clay (see Figure 
11.5b and Chapter 9, this book). In Figure 11.5b, the numbers 1 through 
32 indicate the pile CS number in Table 9.9. The same solutions for bending 
moment are plotted in Figure 11.6a and b, respectively. Given n = 1.7 for 
sand, αo = 0, the fixed-head solution is plotted in Figure 11.7a together with 
the free-head solutions for displacement. They are compared with measured 
data of 18 piles in sand in Figure 11.7b, in which the numbers 1 through 
20 indicate pile PS number in Table 9.10 (Chapter 9, this book). The same 
solutions for bending moment are plotted in Figure 11.8. These curves may 
be used for pertinent design. The values of Mmax may occur at either elastic 

Table 11.2 H, wg , and M x( )of a fixed-head pile 

(a) Normalized pile-head load, H

H
F x x

x x

xp p N

N N p p

N N p= −
+

− − −
−

− −( , )( ) [0

1 2 2

1 2 2
2 2

2α

α α

α α ]][ ( , ) ( , )]

[ ( , ) (

F F x

x x

F F

p

N N p p

1 0 1

1 2 2

2 3 0 3
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α α

,, ) ( , ) . ( , ) ]x x F x F x

x x
p p p p

N N p p

+ −

− − −

2 0 5 1 0

1 2 2

2

2 2α α

The H is deduced from the following relationship obtained for the depth xp (z = 0):
( ) ( ) (α α α λ λ λN p P

IV
N N p P P px w x w w x w+ − − − ′′′− ′ − ′′1 2 2 22 2

PP ) = 0

where ′wp, ′′wp , ′′′wp , and wp
IV  are values of 1st, 2nd, 3rd, and 4th derivatives of w(x) with 

respect to depth z. Given xp = 0, the minimum head-load to initiate slip is obtained.

(b) Normalized mudline deflection, wg

w F x F x F x Fg p p p= − − +4 4 4 0 2 3 3 0[ ( , ) ( , )] [ ( , ) ( , )]

+
− −

+
− +

2 1 2
3 0 3 2
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p
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x αα α α
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x
F H

+ +
+











 +

2
1 0

2 2 3

[ ( , ) ]

Note: wg is deduced from w(x) (see Table 11.1) (independent of e), along with C5 and C2.

(c)  Normalized bending moment, M x( ) (x < xp). The expression is deduced using 
expressions of Cj ( j = 2, 5, and 6) given in Table 11.1:

− =
+

− + +M x
x

F x F F x F x
N p

p N p p( ) [ ( , ) ( , ) ( , ) . ( ,
1

3 3 0 2 0 5 1
α

α ))] ( , )

( )
[ ( , )

+

+ −
+ +
+













F x

x
x x

x
FN p p

N p

2

2 1

2
1 0

2α
α

++H]

Maximum bending moment Mmax is obtained by substituting x  = 0.

Note:  The constants Cj are determined using the compatibility conditions of Q(x ), M(x ), ′w x( ), 
and w(x ) at the normalized slip depth, xp  [x  = xp  or z  = 0]. Elastic solutions validated for 
Np < 2(kEpIp)0.5 are ensured by L being greater than the sum of Lc and the maximum xp.
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or plastic zones. To facilitate practical predictions, both values are provided 
for any load levels in Figure 11.6 for clay and Figure 11.8 for sand.

11.3.2 Group piles

Among a laterally loaded pile group, soil resistance along piles in a trailing 
row (see Figure 11.1b) is reduced owing to the presence and actions of the 
piles ahead of the row (Brown et al. 1998). The gradient of a p-y curve is 
taken as kpm (pm = a p-multiplier, ≤ 1, see Chapter 3, this book) and the 
limiting force per unit length as pupm. This generates a squashed p-y curve 
(dashed line in Figure 11.1e) for piles in the same row. In particular, the 
shape of LFP (pu profile) is also allowed to be altered via a new “n” (G1-2, 
Table 3.10, Chapter 3, this book). Typical steps are highlighted in Figure 
11.3. Each pile or row in a group is analyzed as if it were a single pile for 
a specified mudline deflection wg, as the wg may be stipulated identical for 
any piles in the group unless specified. The modeling employs the single pile 
solutions but with a modulus of kpm and a limiting force per unit length 

Flow chart
(a) Left: Single pile
(b) Right: Pile group

Legend:

I: Elastic response
II: Plastic response
III: Response profiles

pmG

Same calculation
as Block I 

AL

Input
Ng, o, n

H, Mmax ± Hep

Next wg

Identical
calculation to
Block II to
obtain wg, xp,
H, MmaxIdentical

calculation
to Block III 

Input G, pm 

pmNg

Input G

Ep/G

Lc

Lc+
(8~20) d > L

STOP
Yes

No

b

k, Np

, N, N

, N, N

AL

Input
Ng, o, n

wgInput wg

Input wg

xp

H, Mmax

H, Mmax ± Hep

C2 ~ C6

w(x), w'(x),
M(x), Q(x) 

Next wg

I

II

III

Figure 11.3  Calculation flow chart for current solutions (e.g., GASLGROUP).
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of pupm. The pm may be obtained from Equation 3.69 in Chapter 3, this 
book. The calculation is repeated for each row using the associated pm. 
The H offers the total load Hg on the group for the prescribed wg. These 
steps are repeated for a series of desired wg, which allows load-deflection 
curves of each pile (H-wg), each row, and the group (Hg-wg) to be generated. 
Likewise, other responses are evaluated, such as the moment using Mmax. 
This calculation is incorporated into GASLGROUP.

Pile-head load may be exerted at a free length ep and deflection wt be mea-
sured at a free length ew above mudline on a free-standing pile-cap. A FixH 
restraint for each capped pile in a group is not warranted, particularly at a 
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0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fixed-head

Free-head

(a1)

H
1+

n /A
L

wg
nk/AL

n = 0
0  = 0

n = 0.5
n = 1.0

50 10 15 20 25 30
(a2)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

H
1+

n /A
L

wg
nk/AL

0  = 0,
n = 1.0

0  = 0.2,
n = 1.0

0  = 0,
n = 0Free-head

Fixed-head

(b1)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

H
1+

n /A
L

o  = 0

0 1 2 3 4 5

Fixed-head

Free-head

n = 0
n = 0.5
n = 1.0

–Mmax
n+2/AL

(b2)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

H
1+

n /A
L

o  = 0
n = 0

o  = 0.2
n = 1.0

o  = 0
n = 1.0

0 1 2 3 4 5

Fixed-head

Free-head

–Mmax
n+2/AL

Figure 11.4  Normalized pile-head load versus (a1, a2) displacement, (b1, b2) versus maxi-
mum bending moment.
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with (a) fixed-head solution, or (b) measured data.
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large deflection (thus referred to as semi-FixH pile) (Ooi et al. 2004) (obser-
vation H1). The current solutions should be revised using an approximate 
treatment H2 for Type A or B head restraint (see Figure 11.9). It is given 
as treatments H2a, H2b, and H2c, respectively, for assessing M0 (Matlock 
et al. 1980), moment profile for ep ≠ 0, and the difference between the wt 
and wg (Prakash and Sharma 1989; Zhang et al. 1999).
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Figure 11.7  Normalized load, deflection (sand): measured versus predicted (n = 1.7) with 
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11.4 EXAMPLES

The closed-form (CF) solutions (e.g., Table 11.1) were validated for elas-
tic state (Guo and Lee 2001) and free-head case. They were shown herein 
against FEM analysis and measured data (Wakai et al. 1999) regarding 
single and group piles (Examples 11.1 and 11.2) to complement the previ-
ous corroborations using full-scale and model tests (Ruesta and Townsend 
1997; Brown et al. 1998; Rollins et al. 1998; Zhang et al. 1999; Rollins 
et al. 2005). Calculations for typical offshore piles and model piles are also 
provided in Examples 11.3 and 11.4, respectively. Equations 11.1 through 
11.3 are used to predict the response of single piles and pile groups.

Example 11.1 Model piles in sand

Wakai et al. (1999) conducted tests on two model single piles and two 
nine-pile groups in a tank of 2.5m × 2.0m × 1.7m (height). Each alumi-
num pipe pile was 1.45 m in length (L), 50 mm in outside diameter (do), 
1.5 mm in wall thickness (t), and with a flexural stiffness EpIp of 4.612 
kNm2. The piles were installed into a dense sand that had an angle 
of internal friction ϕ of 42°, unit weight γs of 15.3 kN/m3 (Poisson’s 
ratio νs = 0.4) (see Tables 11.3 and 11.4). Under FreH and capped-head 
restraints, respectively, lateral load (H) was imposed at 50 mm above 
mudline (i.e., ep = 50 mm) on the single piles, at which deflection (wt) 
was measured (ew = ep = 50 mm). The measured H–wt relationships are 
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Figure 11.8  Normalized load, maximum Mmax (sand): measured versus predicted (n = 1.7).
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Table 11.3 Parameters for Examples 11.1, 11.2, 11.3, 11.5, and 11.6 

References
G 

(MPa) Group s/da

pm by row

n1st 2nd 3rd 4th

Example 11.1: Model 
test (Wakai et al. 
1999) Sand: ϕ = 42.0°, 
γs = 15.3 kN/m3

2.35 3 × 3 2.5 0.80 0.40 0.30 0.58

3 × 3b 2.5 0.80 0.40 0.30 1.15b

Example 11.2: In situ 
test (Wakai et al. 
1999): ϕ = 34.4° 
′γ s = 12.7 kN/m3 

10.2 3 × 3 2.5 0.80 0.40 0.30 0.85 or
1.20

Example 11.3: FLAC3D 
modeling Soft silty 
clay, su = 5 + 1.25x 
(kPa), x in m 

1.125 1 × 3 3 0.9 0.75 0.6 0.70
2 × 3 3 0.9 0.55 0.5
3 × 3 3 0.55 0.40 0.25
4 × 4 3 0.43 0.30 0.15 0.3

Example 11.4: Model 
tests (Gandhi and 
Selvam 1997) Sand: 
ϕ = 36.3° γs = 
14.6~17.3 kN/m3

0.3 1 × 2 4 0.80 0.80 1.35
8 0.90 0.90

12 1.00 1.00
3.0 2 × 2 4 0.80 0.80 1.10

6 1.00 0.80
8 1.00 1.00

0.8 3 × 2 4 0.80 0.30
6 0.80 0.35
8 0.80 0.60 1.15

3.0 1 × 3 4 0.80 0.40 0.30
0.3 8 0.90 0.70 0.60 1.20

12 1.0 0.80 0.80
0.8c 4 0.80 0.40 0.30 1.25
3.0c 2 × 3 6 0.80 0.50 0.40
0.8 3 × 3 4 0.80 0.40 0.30 1.15

6 0.80 0.45 0.35
8 0.80 0.50 0.40

0.4 2 × 1 3 0.80 1.35
0.3 3 × 1 3 0.80 1.20

Centrifuge tests 
(McVay et al. 1998) 
Sand: ϕ = 37.1° ′γ s = 
14.5 kN/m3 (Guo 2010)

0.33 3 × 3 3 0.80 0.40 .28 0.50

Source: Guo, W. D., Int J Numer and Anal Meth in Geomech, 33, 7, 2009. 
a Normalized center to center spacing in loading direction, but s = 3d within any row.
b Free-head group, Shear modulus G should be multiplied by pm to gain modulus for a pile in a 

group.
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plotted in Figure 11.10a. The measured moment profiles are plotted in 
Figure 11.10b for wt = wg = 0.5, 2.0, and 5.0 mm.

The pile groups had a center-to-center spacing, s, of 2.5 pile diam-
eters. Deflections (at an ew = 50 mm) were measured under the total 
loads of Hg exerted on the group (with ep = ew see Figure 11.9) for both 
free-head and fixed-head (capped) groups, respectively. The average 
lateral load per pile Hav (Hav = Hg/9) is plotted against the measured wt 
in Figure 11.11 for each test. The measured moments (at cap level) for 
leading and back rows are given in Table 11.5 for wg = 5 mm.

Wakai et al. (1999) also conducted three-dimensional finite element 
analysis (FEM3D). The predicted H–wt relationships are plotted in 
Figure 11.10a, the moment profiles in Figure 11.10b (for wt = wg = 0.5, 
2.0, and 5.0 mm), and Hav-wt relationships in Figure 11.11.

Equations 11.1 through 11.3 (or GASLGROUP) were used to predict 
the responses of the two single piles and the two pile groups using G = 
2.35 MPa (from reported Young’s modulus), n = 1.15 (or n = 0.575 for 
the FixH group, G2, Table 3.10), Ng = 25.45 (= K2

p), and αo = 0 m. The 

Table 11.4 Pile properties αo and Ng in current analysis 

Examples 11.1 11.2 11.3 11.4

Pile length/diameter (m) 1.45/0.05 14.5/0.319 13.4/0.084 0.75/0.0182
Flexural stiffness 
(MN-m2)

4.61 × 10−3 5.623 2.326 86 × 10−6

αo for LFP (m) 0 0 Table 11.7 0

Ng for LFP K2
p 2.4K2

p 1.0 (FixH), 4.0 
(FreH)

(1-2)K2
p
a

Source: Guo, W. D., Int J Numer and Anal Meth in Geomech, 33, 7, 2009.
a 1.0 for single FixH piles and group piles, and 2.0 for FreH single piles.
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Guo, W. D., Int J Numer and Anal Meth in Geomech 33, 7, 2009.)
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impact of the cap fixity condition on the LFP was neglected as justified 
subsequently.

11.1.1 Single piles

The predicted H-wg responses for the FreH pile (Guo 2006) and the 
capped pile are depicted in Figure 11.10a. They all well replicate the 
FEM3D analysis and the measured H-wt curves (implying wt ≈ wg for 
the FixH pile). In particular, ignoring the coupled impact (taking Np = 0), 
Equations 11.1 through 11.3 slightly overestimated the head stiffness 
(load over displacement) of the FixH pile, as is noted later in other 
cases. Given G = 2.35 MPa, the calculated k of 1.50 MPa (Equation 
3.50, Chapter 3, this book) for the FreH pile exceeds that for the FixH 
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Figure 11.11  The current solutions compared to the group pile tests, and FEM3D results 
(Wakai et al. 1999) (Example 11.1). (After Guo, W. D., Int J Numer and Anal 
Meth in Geomech 33, 7, 2009.)

Table 11.5 A capped 3 × 3 group in sand at wg = 5 mm (Type A, Example 11.1) 

Row
Measured 

(kNm)
FEM3D 
(kNm)

Current predictions (GASLGROUP)

n
Hav 
(kN) Havep(kNm) 

Mo 
(kNm)

Leadinga −0.148 −0.239 0 58
1 15

.
.

0 959
1 253

.
.

−
−
0 048
0 063
.
.

−
−

0 25
0 292

.
.

Backa −0.115 −0.182 0 58
1 15

.
.

0 489
0 464
.
.

−
−
0 025
0 023
.
.

−
−
0 158
0 182
.
.

Source: Guo, W. D., Int J Numer and Anal Meth in Geomech, 33, 7, 2009.
a “Leading”’ refers to side pile 11, and “Back” to middle pile 32 (see Figure 11.11).
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pile by 18.2%, as is noted previously (Syngros 2004). GASLGROUP 
and the FEM3D predict similar bending moment profiles along the 
capped pile (see Figure 11.10b). Both, however, overestimate the mea-
sured moment Mo at ground level, exhibiting semi-fixed-head features 
as also seen by a 1.3° rotation (at the ew level for a similar cap group) 
at a pile-cap deflection wt of 20 mm, which renders wg = 4 mm at 
wt = 5 mm; a revised depth of x − ep (ep = 50 mm) (H2) for the pre-
dicted moment profiles (not shown herein); and a total resistance TR 
of 2.153 kN (less than H of 3.4 kN) (G4), in terms of Equation 3.68, 
Chapter 3, this book.

11.1.2 Group piles

The responses of the two groups were predicted using pm = 0.8, 0.4, 
and 0.3 (either head constraints, G5) for the leading (LR), middle 
(MR), and trailing rows (TR) (Brown et al. 1998), and the aforemen-
tioned G, Ng, αo, and n (see Table 11.3), but for n = 0.58 (FixH, G2). 
Typical load Hav and moment Mmax predicted are tabulated in Table 
11.5 for wg = 5 mm.

The predicted load (Hav)–deflection (wg) curves agree with the mea-
sured Hav-wt relationships, and the FEM3D predictions (Wakai et al. 
1999) (see Figure 11.11) for either group. The predicted maximum 
moment Mo (= Mmax + Havep) of 0.25–0.292 kNm (leading row) and 
0.158–0.182 kNm (trailing row) is consistent with the FEM3D predic-
tion (Table 11.5) of 0.239 kNm and 0.182 kNm, respectively. Both 
nevertheless overestimate the respectively measured 0.148 kNm (lead-
ing) and 0.115 kNm (trailing), pinpointing again the effect of wt–wg. 
In the capped group, at wg = 20 mm, xp was gained as 8.5d (Hav = 0.99 
kN), 6.1d (0.64 kN) and 6.2d (0.53 kN), for piles in the leading, mid-
dle, and trailing rows, respectively, under the load Hav. Values of the xp 
are slightly less than 8.6d obtained for the single pile at the same wg.

Overall, the semi-FixH restraint reduces the moment and increases 
the difference of wt–wg. The current solutions for FixH piles agree 
with the FEM3D analysis (Wakai et al. 1999).

Example 11.2 In situ piles in “silty sand”: Cap effect

Wakai et al. (1999) reported in situ tests on a steel pipe pile under 
FreH conditions, and nine-pile group (a spacing s = 2.5do, do = out-
side diameter) under a restrained head. The pile had L = 14.5 m, do = 
0.319 m, and t = 6.9 mm, and flexural stiffness of EpIp = 5.623 MNm2. 
The “silt sand” (assumed) to a depth of 2.7 m is featured by c′ (cohe-
sion) = 0–16.7 kPa, ϕ′ = 34.4°, and ′γ s = 12.7 kN/m3. Lateral load H was 
applied, and deflection wt was measured at the same eccentricity (ep = ew) 
of 0.5 m on the single pile. The load Hg was applied on the group (see 
Figure 11.9) at ep = 1.3 m and deflection wt measured at ew = 0.3 m. 
The measured curves of H-wt (single pile) and Hg-wt (the pile group) 
are plotted in Figure 11.12a and b, respectively. The measured bending 
moments Mo for the piles in leading and trailing rows are provided in 
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Table 11.6 for two load levels. They were predicted using the FixH and 
FreH solutions.

11.2.1 Single piles

Assuming FixH condition, the H-wg curve was predicted using G = 
10.2 MPa, n = 0.5, αo = 0 m, and Ng

FixH = 31.3 [= 2.4K2
p] (G2), together 

with the predictions of Equations 11.1 and 11.2. The G is increased by 
1.8 times and Ng by 2.4 times (sg = 2.4) compared to “initial” values 
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Figure 11.12  Predicted Hg(H)-wg versus measured Hg(H)-wt response of (a) the single pile 
and (b) pile group (Wakai et al. 1999) (Example 11.2). (After Guo, W. D., Int 
J Numer and Anal Meth in Geomech 33, 7, 2009.)

Table 11.6 A 3 × 3 pile group in sand (Type B, Example 11.2) 

Load, Hg (kN) 392 1570

Row number Leading Middle Trailing Leading Middle Trailing

Predicted

Measureda
, Hav(kN) 

( )
( )
1
2

62 04
48 81

.
.

37 86
41 2

.
.

30 78
40 68

.

.
240 53
271 86

.

.
154 51
150 88

.
.

128 5
112 92

.
.

[(1)−(2)]/(2),% (3) 27.1 −8.1 −24.3 −11.5 2.4 13.4
M due to ep = 1.3 m (4) 80.65 49.22 40.0 312.69 200.86 167.05
GASLGROUP, Mmax (5) 46.93 33.33 28.87 297.51 220.57 199.69

Predicted (4) 5)
Measured

, (+
 

Mo(kNm) 
( )
( )
6
7

127 56
112 48

.

.
82 55
84 36

.

.
68 88
84 35

.

.
610 19
674 84

.

.
421 43
492 07

.

.
361 74
393 74

.

.

[(6)−(7)]/(7),% (8) −13.4 −2.1 −18.3 −9.6 −14.36 −8.1

Source: Guo, W. D., Int J Numer and Anal Meth in Geomech, 33, 7, 2009.
a Calculated from reported load ratios of 1, 0.843, and 0.833 on leading, middle, and trailing rows at 

Hg = 392 kN, and the ratios of 1, 0.555, and 0.37 at Hg = 1570 kN, respectively.
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to cater for pile driving action (Wakai et al. 1999). Assuming FreH 
condition (Wakai et al. 1999), the H-wg curve was also predicted by 
employing G = 48.9 MPa and Ng

FreH = 125.17 (i.e., four times these 
used for FixH piles as per G1).

The three predictions closely trace the measured H-wt data (see 
Figure 11.12a), but for the slight overestimation of pile-head stiff-
ness using Np = 0. The n = 0.5 vindicates a typical feature of piles in 
clay (Guo 2006). A weaker than fully fixed condition is inferred, as a 
less than four times increase in the Ng and G would avoid the stiffer 
response of the FreH (see Figure 11.12a) than fixed-head cases. The 
xp (FixH) was gained as 7.6d (wg = 100 mm) and 10d (wg = 200 mm).

11.2.2 Group piles

The group response was predicted using the pm specified in Table 11.3, 
αo = 0 m, and Ng

FixH = 31.3, along with either n = 1.2 and G = 10.2 
MPa [i.e., “sand” (G2)]; or (2) n = 0.85 and G = 20.44 MPa (i.e., clay, 
G1). Assuming fully fixed-head conditions, the two predicted total 
load (Hg)-deflection (wg) curves follow closely with the measured Hg 
versus wt relationship, as is evident in Figure 11.12b, and in particular 
the ‘n = 0.85’ prediction. The predicted load Hav and moment Mmax 
for the “n = 0.85” are provided in Table 11.6 for two typical levels of 
Hg of 392 kN and 1570 kN. The thick pile-cap generates a moment of 
1.3Hav kNm (Hav in kN), thereby Mo = Mmax + 1.3Hav. The Mo obtained 
for each row at the two load levels is ~18.3% less than the measured 
values, indicating the validity of the H2 treatment (Type B). The slip 
depths at wg = 200 mm were deduced as 9.06d (LR), 10.2d (MR), and 
10.7d(TR), respectively using the “clay (n = 0.85)” analysis, which are 
~45% more than 6.6d, 7.2d, and 7.4d obtained from the “sand (n = 
1.2)” analysis (compared to 41% increase in the n values from 0.85 to 
1.2). They are slightly higher (clay) or less (sand) than 10d obtained for 
the single pile.

Example 11.3 In situ full-scale tests on piles in clay

Matlock et al. (1980) performed lateral loading tests on a single pile, 
and two circular groups with 5 piles and 10 piles, respectively (see 
Figure 11.13a). The tubular steel piles had properties of L = 13.4 m, 
do = 168 mm, t = 7.1 mm, and EpIp = 2.326 MN-m2. They were driven 
11.6 m into a uniform soft clay that had a su of 20 kPa. The center-
to-center spacing between adjacent piles was 3.4 pile diameters in the 
5-pile group and 1.8 pile diameters in the 10-pile group. Deflections 
of the pile and each group during the tests were enforced at two sup-
port levels with ep = 0.305 and 1.83 m above mudline to simulate FixH 
restraints (see Figure 11.9). Measured relationships of H-wt (with ew = 
0.305 m) and wt-Mmax (with em = 0.305 m) are plotted in Figure 11.14a 
and b, respectively, for the single pile. Measured Hav-wt and wt-Mmax 
curves for a pile in the 5-pile and the 10-pile groups are plotted in 
Figure 11.14c and d. These measured responses were simulated using 
the current solutions, in light of the parameters given in Table 11.7.
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11.3.1 Single piles

The single-pile predictions employed (see Table 11.7) G = 100su and 
Ng

FreH = 4.0 in the FreH solutions (Guo 2006); or utilized G = 50su, 
and Ng

FixH = 1.0 in the FixH solutions (G1 and G2), in addition to n = 
0.55 and αo = 0.05 m (G2) for either prediction. The low values, espe-
cially Ng, reflect a reduction in limiting force per unit length caused 
by the restraint on cap rotation. The corresponding LFPs were plotted 
in Figure 11.13b as “FreH” and “FixH” to the maximum slip depths 
determined subsequently.

As plotted in Figure 11.14a, the predicted and measured H-wg 
curves show slight discrepancy to ~75% maximum imposed load. 
Overestimation of FixH pile-head stiffness using Np = 0, in this case, 
is likely offset by reduction in the stiffness using αo = 0 (the actual 
αo ≠ 0) and wt ≈ wg. The pile-head must be semi-fixed as outlined in 
the following:
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Figure 11.13  (a) Group layout. (b) Pu for single pile. (c) Pu for a pile in 5-pile group. (d) Pu 
for a pile in 10-pile group. (Matlock et al. 1980) (Example 11.3). (After Guo, 
W. D., Int J Numer and Anal Meth in Geomech 33, 7, 2009.)
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Load and deflection. (b) and (d) Maximum bending moment. (After Guo, 
W. D., Int J Numer and Anal Meth in Geomech 33, 7, 2009.)

Table 11.7 In situ tests on piles and pile groups in clay (Example 11.3) 

Input parameters
Calculated 
parameters

Items G/su na αo
 (m)a Ng pm

a xp/d @ Hmax

Single pile 50b/100c 0.55 0.05 1.0b/4.c 1.0 15.1b/8.0c

5-pile group 75/100 0.85 0.05 1.0/4. 0.333 19.6/11.3
10-pile group 17/33 0.85 0.25 1.0/4. 0.20 23.2/12.1

Source: Guo, W. D., Int J Numer and Anal Meth in Geomech, 33, 7, 2009.
a Single values for both FixH and FreH piles.
b Values for FixH.
c Values for FreH.
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 1. Owing to the upper level loading [Type A, H2b], a deduction of 
0.305H kNm (H in kN, and ep = 0.305 m) from the computed 
Mmax (using the FixH solutions) offers close agreement between 
the three predicted wg-Mmax curves (either head conditions), see 
Figure 11.14b and the measured wt-Mmax relationship.

 2. The pile-cap must be semi-FixH once xp/d > 4, to ensure the LFP 
move from the “dash line” of FixH (see Figure 11.13b) towards 
the “Bogard and Matlock” curve and to generate a realistic 
ratio pu/(sud), which should not exceed 9.14–11.94 (Guo 2006) 
(Randolph and Houlsby 1984), see Figure 11.13b.

 3. The total resistances TR
FixH and TR

FreH were 36.35 kN and 24.42 
kN, respectively (i.e., TR

FreH <Hmax< TR
FixH, G3). Under the load 

Hmax of 32.4 kN, limiting force is fully mobilized to a depth xp of 
8d (FreH) to 15.1d (FixH) (see Table 11.7, and G4, Table 3.10). 
An additional 4 kN (= 36.35-32.4 kN) resistance was mobilized 
to restrain the head rotation.

11.3.2 Group piles

To study the two pile groups, identical n and pm were adopted using 
either solutions (see Table 11.7). Typical features are as follows: (1) 70% 
higher n (compared to the single pile) is used to capture impact of more 
“sharp” strength variation with depth from group disturbance (G2 and 
G5); (2) a very low shear modulus of 17su (FixH) or 33su (FreH) for the 
10-pile group, which are 0.34 (= pm) or 0.33 times that G for single piles, 
and are different from pm = 0.2 (Matlock et al. 1980) (G5). This may be 
a result of a combination of the unusually small spacing of 1.8d (G1) and 
the special pile (circular) layout, as normal values of G = 75su (FixH), 
or = 100su (FreH) for the five-pile group are noted at a normal s = 3.4d.

The average load per pile (Hav)–mudline deflections (wg) curve for 
either group is presented in Figure 11.14c. The predicted Mmax [after 
deducting the amount of Havep (H2a) for the FixH groups, see Figure 
11.9] is plotted in Figures 11.14d and 11.15b. The respectively mea-
sured Hav-wt curves (implying wt≈wg) are well predicted, but the 
measured values of Mmax were markedly overestimated. The semi-
fixed head groups reduce the Mmax more than the amount of Havep, in 
response to the increased number of piles and loading levels, and the 
impact of wt-wg (H2c). The LFPs obtained for each group are plot-
ted in Figure 11.13c and d, respectively, exhibiting similar features to 
those of the single pile. The max xp along each pile increases by 18% 
(from 19.6d to 23.2d) from the 5-pile to the 10-pile groups, although 
the average load Hav reduces by 9% (from 27.3 to 24.8 kN).

Example 11.4 Model piles in sand: Small values of ew = ep

Gandhi and Selvam (1997) conducted laboratory tests on 2 single piles 
and 19 pile groups. Each pile was 0.75 m in length, 18.2 mm in outside 
diameter, 0.75 mm in wall thickness, and had a flexural stiffness EpIp of 
0.086 kN-m2. The aluminium pipe piles were driven to a depth of 0.5 m 
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below the sand surface. The sand was clean and dry, and fine to medium 
size, with a frictional angle of 36.3° (a relative density of 60%) and a 
unit weight of 14.6~17.3 kN/m3. One constrained-head, single pile was 
laterally loaded at an eccentricity of 0.047 m (= ep = ew). Another single 
pile was loaded under FreH restraint. The groups had a normalized 
spacing, s/d, of 4~12 (loading direction) and s/d of 3 (within each row), 
respectively. They were laterally loaded at ep = 35 mm with displacement 
measured at ew ≈ 85 mm (gained from the test setup). The load H versus 
deflection wt curves for the single FreH and capped piles are measured, 
along with the two values of Mmax for the single piles. The moment 
profiles along the piles in 2 × 3 group were also recorded at wt = 10 mm.

Guo (2005) provided a good prediction for the two single piles com-
pared to measured data, in light of GASLGROUP, and examined the 
sensitivity of the solutions to the input parameters. Guo (2009) further 
conducted prediction of all the 19 groups using Ng = 15.23, Nco = 0, n = 
1.1~1.35, G, and the p-multipliers (see Table 11.3). In particular, soil 
shear modulus G for 13 out of the 19 groups increased by 2~10 times 
compared to 0.3 MPa for the single pile, to cater for impact of sand den-
sification among the piles [e.g., in 1 × 3 group at s = 4d, and in 2 × 3 and 
3 × 3 groups at s = (4~8)d]. The predicted total load (Hg)~displacement 
(wg) curves (assuming FixH) agree well with measured data.

The prediction of nonlinear response can be readily conducted using 
Equations 11.1~11.3 with typical parameters provided in Table 11.8. 
Here comes an example for the capped single (see Table 11.9) and the 
2  × 3 group piles (s = 4d) at a mudline displacement wg of 10 mm 
(assuming e = 0). As shown in Table 11.10, the calculation was con-
ducted in sequence from pm and k to λ until −Mo was obtained, as is 
illustrated below for a pile in leading row (see Figure 11.16 with R = 
pm for individual pile).
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Figure 11.15  Predicted versus measured (Matlock et al. 1980) (Example 11.3) moment 
profiles of (a) single pile, and (b) a pile in 10-pile groups (Example 11.3). 
(After Guo, W. D., Int J Numer and Anal Meth in Geomech 33, 7, 2009.)
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 1. As G = 0.8MPa and pm = 0.8, G for the pile in the row is 0.64 
MPa (= 0.8pm).

 2. With L/ro = 54.95, Ep = 1.598 × 107kN-m2, and G* = (1 + 
0.75 × 0.4)G, it follows Ep/G* = 21020.8, and γb = 0.046 [= 
0.65(21020.8)−0.25(54.95)−0.04].

 3. K1(γb) = 21.659 and K0(γb) = 3.1975 enable k = 1592 kPa (Guo 
and Lee 2001), thus λ = 8.248/m.

Table 11.9 Response of capped single pile (e = αo = 0, and Np = 0)

xp (m) xp H wg −Mmax H (kN)
wg 

(mm)
−Mo 

(kN-m)a

Below: n = 1.35, Ng = Kp
2, αo = 0, G = 0.3 MPa (Guo 2005)

0.10 0.6744 0.5048 0.8043 0.3488 0.104 1.6 0.0058

0.20 1.3489 1.3442 3.7829 1.2026 0.277 7.4 0.0237
0.25 1.6861 1.8969 7.1205 1.9000 0.391 13.9 0.0396
0.30 2.0233 2.5463 12.63 2.828 0.524 24.6 0.0617

Below: n = 1.7, Ng = 0.45Kp
2, αo = 0, G = 0.3 MPa (Guo 2009)b

0.10 0.6744 0.4217 0.6992 0.2989 0.081 1.3 0.0047
0.20 1.3489 1.3816 4.1418 1.2797 0.267 7.6 0.0241

0.25 1.6861 2.079 8.3607 2.1599 0.401 15.3 0.043
0.30 2.0233 2.94 15.675 3.319 0.568 28.7 0.0704

Source: After Guo, W. D., Proceedings GeoFlorida 2010 Conference, GSP 199, ASCE, West Palm 
Beach, Florida, 2010.
a Mo is the difference between Mmax obtained from Equation 11.3, and the value of He (e = 0.047m).
b Elastic properties are shown previously (Guo 2009).

Table 11.8 Parameters for single piles in sand (Example 11.4) 

Input data Calculated elastic parameters (as per expressions in Table 11.1)

Items G (kPa) γb

k 
(kPa) Np/(2EpIp) αN βN λ (1/m)

FixH 300 0.03805 711.7 26.71 1.1373 0.8425 6.7443
FreH 0.06872 831.1 11.62 1.0575 0.9390 7.0109

Input data Calculated (plastic) parameters

Items n
αo 
(m) sg Ng AL (kPa/mn)

xp/d @ H 
(kN) TR (kN)

FixH 1.7 0 0.45 6.86 33.41 12.55 @ 0.332 1.005
FreHb 0 2.0 30.45 148.50 6.47 @ 0.255 0.171
FixHa,b 1.35 0 1.0 15.23 18.26 12.6 @ 0.332 1.060
FreHa 0.05 1.0 15.23 18.26 10.85 @ 0.255 0.165

Source: Guo, W. D., Int J Numer and Anal Meth in Geomech, 33, 7, 2009.

ϕ′ = 36.3°, γs = 16.22 (kN/m3), Kp
2 = 15.23, Ng = sgKp

2 .
a Guo 2005.
b Preferred analysis.
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 4. n = 1.25, d = 0.0182 m, γs′ = 16.22 kN/m3, Ng = 15.23, thus AL = 
9.79 kN/m2.35.

 5. As wg = 22.73, xp= 2.456 using Equation 11.2, and H = 
3.349 (via Equation 11.1) and Mmax = 4.413 (Equation 11.3), 
respectively.

 6. H (rewritten as Hav) = 0.284 kN (= 3.349 × 0.70/8.248), and 
Mmax = 0.043 kN-m (= 4.143 × 0.70/8.2482). The Mo is revised as 
0.033 kN-m after deducting Hep (Guo 2009).

Steps 1 through 6 were repeated for the piles in middle and trailing 
rows using pm = 0.4 and 0.3, respectively. The calculated results are 
given in Table 11.10.

The total load Hg was calculated as 1.264 kN [= (0.284 + 0.189 + 
0.159) × 2] at the displacement of wg = 10 mm, which compares well 
with measured data (see Figure 11.16a). The predicted moment Mo 
at mudline has considered the impact of loading eccentricity (ep = 35 
mm). As shown in Table 11.11, the measured Mo of 0.0225 kNm was 
overestimated by 45.3% (predicted Mo = 0.0327 kNm) for the pile in 
leading row. The measured values were overestimated by 78% and 
79% for those in middle and trailing rows, respectively.

The impact of wt-wg is evident between deflections at pile-head and 
mudline levels. The wt = 10 mm at ew ≈85 mm leads to a wg of ~7.0 mm 
(rotation angle at ew, θw = 0.03). The angle θw altering from 0 at pile-
head level to 0.03 at ew renders a value of wg = 7.6 mm, at which new 
Hav = 0.2497 kN, and Mo = −0.0268 kNm are predicted for piles in the 
leading row (Table 11.11). This Mo still exceeds the measured value by 
19%, and similarly calculated Mo still exceeds the measured value by 
47% for piles in trailing row. The differences, although large, seem to 
have comparable accuracy to experimental results, as explained previ-
ously (Guo 2010).

11.5 CONCLUSIONS

Elastic-plastic solutions are developed for laterally loaded, infinitely long, 
fixed-head piles. They are employed to simulate nonlinear response of 
capped pile groups by adopting a new treatment H2 and p- (or R) multiplier 
via a spreadsheet program GASLGROUP. The impact of free-length, head-
fixity, and group interaction is quantified, along with failure modes. The 
results are synthesized into the guidelines (G1–5, Chapter 3, this book). It 
should be noted that:

•	 Nonlinear pile responses are characterized by the slip depth xp and 
should be predicted. Existing p-y curve based approach generally 
overestimates the pile-head stiffness.
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•	 With the few parameters k, pu, and pm, the current calculations are 
readily conducted and show similar accuracy to complex numerical 
approaches for layered nonhomogeneous soil. They can capture well 
the impact of head restraint by the treatment H2. Conversely, the 
parameters are readily deduced by matching the current solutions 
with measured pile response.
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Chapter 12

Design of passive piles

12.1 INTRODUCTION

Piles may be subjected to soil movement, as encountered in stabilizing a 
sliding slope (Viggiani 1981) (see Figure 12.1a) and supporting bridge abut-
ments (Springman 1989; Stewart et al. 1994). Laterally loaded piles may be 
subjected to passive forces once subjected to the driving action of adjacent 
piles (Henke 2009) or nearby excavation activity (Chen and Poulos 1997; 
Leung et al. 2000; Choy et al. 2007). Predicting the response of these “pas-
sive” piles by and large has resorted to numerical solutions (Byrne et al. 
1984; Chen and Poulos 1997; Chen and Martin 2002; Mostafa and Naggar 
2006). The solutions are useful but would not warrant consistent predic-
tions (Poulos 1995; Chow 1996; Potts 2003) in view of using a uniform 
limiting-force profile that is not observed along test piles (Matlock 1970; 
Yang and Jeremic 2002; Guo 2006).

Elastic solutions were proposed to simulate slope stabilizing piles subjected 
to a uniform soil movement (see Figure 12.1a) (Fukuoka 1977) and to model 
piles under an inverse triangular profile of moving soil (Cai and Ugai 2003). 
The solutions compare well with measured pile response of six in situ piles, 
albeit using measured sliding thrust and gradient of soil movement with depth 
for each pile. The prediction seems to be highly sensitive to the gradient and 
is not related to magnitude of the soil movement (see Figure 12.1). The draw-
backs are noted in almost all simple solutions (Ito and Matsui 1975; De Beer 
and Carpentier 1977; Viggiani 1981; Chmoulian and Rendel 2004). Recent 
study is aimed at linking the pile response to soil movement.

The inadequacy of existing methods such as the p-y–based analysis (Chen 
et al. 2002; Smethurst and Powrie 2007; Frank and Pouget 2008) may be 
owing to the difficulty in gaining a right pu profile. Nonlinear response of 
about 70 laterally loaded piles is well captured using elastic-plastic solu-
tions underpinned by an increasing pu with a power of 0.7~1.7 to depth and 
its depth of mobilization. The solutions require only two soil parameters 
for gaining the pu profile and the modulus k, and exhibit a few advantages 
over numerical approaches (Guo 2006, 2008). These benefits prompt the 
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406 Theory and practice of pile foundations

development of similar solutions to capture nonlinear interaction of passive 
piles (Guo 2012), as available analytical solutions (Fukuoka 1977; Viggiani 
1981; Cai and Ugai 2003; Dobry et al. 2003; Brandenberg et al. 2005) are 
not applicable to passive piles.

12.1.1 Flexible piles

Figure 12.1a shows a passive pile in an unstable slope. The pile has an 
embedded length Li in ith layer and is subjected to a lateral, uniform soil 
movement, ws. Note subscript i = 1 and 2 denote the sliding and stable layer, 
respectively. The impact of the movement ws on the pile is encapsulated 

(a) (b) (c)

(d) (e)

Note: L1 < 1.2 Lc1 + xp1 
and L2 > Lc2 + xp2

ws = wg2 + | g2|(L1 – xs)

xs xs

ws

L1 – xs

L Stable soil
wg2

H2
H1 H1

g2

g2

g1L1

L1

L2

O

Note: Li Lci + xpi
ws ≈ wg1 + wg2

L
Stable
soil 

wg2 wg1

H2

o

O

Soil movement profile
ws

L1

L
L2

L2

Sliding soil

Stable soil

e02
O

Sliding 
interface

AL1 

O

AL1

pu2

xp2

H2

L2

Replace UDL
with H2 
and eo2  

O

e02 

Figure 12.1  An equivalent load model for a passive pile: (a) the problem, (b) the imagi-
nary pile, (c) equivalent load H2 and eccentricity eo2, (d) normal sliding, and 
(e) deep sliding (Guo in press).
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into an equivalent load (thrust) H2. By incorporating boundary conditions, 
behavior of the pile is modeled using the solution for an active pile under 
the load H2 at an eccentricity eo2 (see Figure 12.1c), for the stable layer, 
or under H1 (= −H2) for the sliding layer (Figure 12.1d and e). The use of 
the concentrated force Hi at sliding depth is sufficiently accurate (Fukuoka 
1977) to model the pile response. The thrust H2 and the eccentricity eo2 
(= −eo1) above the point O at sliding level (Figure 12.1c) causes a dragging 
moment Mo2 (= H2eo2) above the point, and Mo1 = Mo2. Note the H2 is the 
horizontal component of net sliding force (thrust) along the oblique sliding 
interface. A high eccentricity eo2 (thus Mo2) renders a low shear force and 
deflection (Matlock et al. 1980; Guo 2009) at the point O, which need to 
be assessed.

Design of passive piles generally requires determination of the maximum 
shear force H2 or H1 in each pile (Poulos 1995; Guo and Qin 2010) and 
the dragging moment Mo2, which resemble active piles and are dominated 
by the limiting force per unit length pui and the depth of its mobilization 
xpi between the pile and the soil. However, the use of the pui profile for an 
active pile (Chen et al. 2002) significantly overestimates the resistance on 
piles adjacent to excavation (Leung et al. 2000).

12.1.2 Rigid piles

The slope stabilizing piles (see Figure 12.1) are classified as rigid, once the 
pile–soil relative stiffness, Ep/ �G, exceeds 0.4(l/d)4, with 20% longer critical 
length than a laterally loaded free-head pile (Guo 2006; Guo 2008). (Note 
that Ep = Young’s modulus of an equivalent solid pile; d = an outside diam-
eter of a cylindrical pile; and �G = average shear modulus over the embed-
ment l). Figure 12.2a shows that the pile rotates rigidly to an angle ω and 
a mudline deflection ug under a sliding movement ws, which is equal to the 
pile deflection u at the depth xs.

ug

xs

Lm–xs Lm

ω

l

Stable soil ws

(b) (a) 

ug

Lm
ω

Fictitious H

e

Stable
soil LFP

On-pile p

–pm

pm

zm z0

Figure 12.2  A passive pile modeled as a fictitious active pile. (a) Deflection profile. (b) H 
and on-pile force profile.

www.engbasics.com



408 Theory and practice of pile foundations

12.1.3 Modes of interaction

Four pile–soil interaction modes have been revealed to date, for which ana-
lytical solutions are established.

•	 Plastic flow mode: Soil flows around a stationary pile, and the induced 
ultimate pressure on pile surface is estimated using plasticity theory 
(Ito and Matsui 1975; De Beer and Carpentier 1977).

•	 Rigid pile mode: A rigid pile rotates with sliding clay. The associated 
maximum shear forces and bending moments are obtained by assum-
ing uniform resistances along the pile in sliding and stable clay layers 
(Viggiani 1981; Chmoulian 2004; Smethurst and Powrie 2007; Frank 
and Pouget 2008).

•	 Normal and deep sliding modes: A pile rotates rigidly only in the slid-
ing layer with an infinite length in stable layer and is termed as nor-
mal sliding mode, see Figure 12.1d; or with infinite lengths in either 
layer, a pile may deform flexibly and move with sliding soil and is 
referred to as deep sliding mode (Figure 12.1e). Elastic solutions are 
available for gaining profiles of bending moment, deflection and shear 
force, in light of a measured sliding force H (= H1, Figure 12.1c), and 
a measured differential angle θo at the point O between the slope 
angles θg1 and θg2 of the pile in sliding and stable layers, respectively 
(see Figure 12.1d and e). Note the angle θo is equal to –θg2–θg1, with 
θg1 > 0 and θg2 < 0. It is negligibly small for a uniform soil movement 
(Fukuoka 1977) induced in a deep sliding mode; or the angle θo is 
taken as the gradient of a linear soil movement with depth (Cai and 
Ugai 2003) concerning the normal sliding mode. Guo (2003b) linked 
the H2 to soil movement ws, from which elastic-plastic solutions for a 
laterally loaded pile (Figure 12.1c) (see Chapter 9, this book) are used 
to model passive piles without dragging (i.e., zero bending moment at 
the sliding level).

The aforementioned solutions were generally validated using pertinent 
instrumented pile response, but the coupled impact of soil movement and any 
nonzero dragging moment (dragging case) on the piles remains to be captured.

This chapter provides methods for estimating response of piles under 
“normal sliding mode” and “rigid pile mode”, which consist of (a) a corre-
lation between sliding force (H) and soil movement (ws) for the normal and 
deep sliding modes, respectively; (b) a practical P-EP solution to capture 
impact of dragging, and rigid rotation, with a plastic (P) pile–soil interac-
tion in sliding layer, and elastic-plastic (EP) interaction in stable layer; and 
(c) A new E-E (coupled) solution to model deep sliding case, in which E 
refers to “elastic” pile–soil interaction in sliding and stable layers, respec-
tively, and “coupled” interaction among different layers is incorporated 
(Guo in press). The chapter also explores a simple and pragmatic approach 
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for estimating nonlinear response of a rigid, passive pile, regardless of soil 
movement profiles.

The solutions are entered into programs operating in MathcadTM (www.
PTC.com) and EXCELTM. They are compared with boundary element anal-
ysis (BEA) and used to study eight instrumented piles to unlock any salient 
features of the passive piles. The P-EP solution is employed to develop 
design charts, and their use is illustrated via a typical example. The simple 
approach for rigid piles is developed from measured limiting-force profile 
and is used to predict response of model piles and an instrumented pile.

12.2  MECHANISM FOR PASSIVE 
PILE–SOIL INTERACTION

12.2.1 Load transfer model

An EP solution was developed for an infinitely long, active pile (Guo 2006), 
see Figure 12.1c, in the context of the load transfer model (Chapter 3, this 
book). The pile–soil interaction is captured using a series of springs dis-
tributed along the shaft. Each spring is governed by an ideal elastic-plastic 
pi-yi (wi) curve, with a gradient (i.e., modulus of subgrade reaction) ki, and 
a net ultimate lateral resistance per unit pile length pui [pi and yi(wi) = local 
net force per unit length and pile deflection, respectively]. The modulus 
and wi are rewritten as kd and u for a rigid pile. The coupled effect among 
the springs is captured by a fictitious tension membrane (Npi) in the elastic 
zone, and it is neglected in the plastic zone.

The EP solution is dominated by the critical parameters ki, Npi, and pui, 
which are calculated from shear modulus Gi and the gradient ALi of net 
resistance (Chapter 3, this book). Values of ki/Gi and 4Npi/(πd2Gi) vary 
with pile slenderness ratio Li/d, loading eccentricity eoi, and pile–soil rela-
tive stiffness Ep/Gi (Li = pile length in ith layer, and Gi = soil shear modu-
lus). Np is taken as zero for rigid piles. The resistance is neglected at sliding 
interface. The net limiting force on a unit length pui with depth is simplified 
as (Guo 2003b, 2006)

 p A xui Li i
ni=  (12.1)

where xi = depth measured from point O; ni = power to the equivalent depth 
of xi; and ALi = gradient of the pui profile with depth (see Chapter 3, Table 
3.8, this book, for each layer). The net mobilized pi attains the pui within 
the thickness of the plastic zone xpi from the point O, otherwise, beyond the 
xpi, it is proportional to pile deflection wi.

 p k wi i i=  (12.2)

www.engbasics.com



410 Theory and practice of pile foundations

where ki = constant (see Figure 3.27 and Equation 3.50, Chapter 3, this 
book). Especially, the pui for layered soils must satisfy Equation 12.1 within 
the maximum xpi (induced by maximum load H2) and pui ≤ 11.9d(max sui) 
(Note max sui = maximum sui) (Randolph and Houlsby 1984).

As with laterally loaded piles, the load transfer model is equally valid to 
rigid passive piles but for the following special features.

 1. The soil may be taken as one layer and the pu modeled with n = 1.0, 
AL = (0.4~2.5)γs′Kp

2d and (0.4~1.0)γs′Kp
2d for active and passive 

piles (Guo 2011), respectively; Kp = tan2(45° + ϕ′/2), coefficient of 
passive earth pressure; ϕ′ = an effective frictional angle of soil; and 
γs′ = an effective unit weight of the soil (dry weight above the water 
table, buoyant weight below). The pu may generally be independent 
of pile properties under lateral loading, though it alters with soil 
movement profiles.

 2. The net on-pile force per unit length p [FL-1] in elastic zone is given by

p = kdu (Elastic state) (12.3)

  where u = pile–soil relative displacement. The gradient k [FL-3] may 
be written as kozm [ko, FL-m-3] and referred to as constant k (m = 0) 
and Gibson k (m = 1) hereafter. The ko depends on loading eccen-
tricity e with e = 0 (pure lateral loading) and e = ∞ (pure moment), 
respectively. The modulus of subgrade reaction kd is obtained from �G 
using the expression shown in Equation 3.62 (Chapter 3, this book). 
Given l/ro = 2~10, it follows that ko(0.5l)md = (5.12~13.1) �G (e = ∞) or 
ko(0.5l)md = (4.02~8.92) �G (e = 0). Typically, for a model pile having 
l = 0.7 m and d = 0.05 m, the ko(0.5l)d is equal to (2.2~2.85) �G.

12.2.2 Development of on-pile force p profile

With respect to a flexible pile, the pu profile in sliding layer consists of a 
restrianing zone over depth 0~xs and a thrust zone in depth xs~L1. The p 
profile is the same as that along an active pile, except for the pu2 increasing 
linearly in the plastic zone over the depths 0~xp2 below sliding interface.

Model tests (see Chapter 13, this book) provide the on-pile force per 
unit length (p) profile on a rigid passive pile. The p profile to a depth zm of 
maximum bending moment (see Figure 12.3) resembles that on the entire 
length of an active pile (Figure 3.28, Chapter 3, this book) in two aspects:

 1. A linear limiting force profile pu is observed, regardless of the test 
types.

 2. The on-pile force per unit length p, mobilized along the positive pu 
line to the slip depth zo from ground level, follows Equation 12.1. 
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Below zo, the p observes Equation 12.3, and reaches −pl [= −Ard(ωl + ug)] 
at the pile tip under the active loading H (Figure 3.28, Chapter 3, this 
book); or the p reaches −pm [= −Ard(ωzm + ug)] at the depth zm under 
the passive loading (Figure12.3a). The force per unit length at depth 
z, p(z) in the depth 0~zm is given by two expressions of

p z A dzr( ) = (z = 0 ~ zo); p z kd z ug( ) ( )= +ω (z = zo ~ zm) (12.4)

Nevertherless, the p profiles under passive loading (see Figure 12.3a and 
b) all have an additional portion below the depth of maximum bending 
moment zm (≈ 0.45~0.55 m in the figure for a model pile with l = 0.7m) 
compared to the profile along an active pile (see Figure 3.28). The p in the 
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portion varies approximately linearly from −pm (at z = zm) to an equal but 
positive magnitude at the pile-base level. The p(z) over the depth zm to l is 
thus approximated by:

 p z kd z u
z z

l zm g
m

m

( ) ( )
( )

= + −
−
−









ω 1

2
 (z = zm ~ l) (12.5)

These features were observed in model tests (see Chapter 13, this book) 
under a few typical soil movement profiles encountered in practice and 
were used to develop solutions shown next.

12.2.3 Deformation features

The geometric relation between the uniform soil movement ws and the 
rotation angle θgi, and lateral deflection wgi of the pile at the point O (see 
Figure 12.1d and e) is as follows

 w w w L xs g g o s= + + −1 2 1θ ( ) (12.6)

where xs = thickness of the resistance zone in which the pile deflection is 
higher than the soil movement ws. Equation 12.6 is intended for wg2 + ⎜θg2⎜L1 

> ws > wg2 (i.e., xs ≤ L1≤ 1.2Lc1 + xp1). Otherwise, some component of the 
ws (>pile movement) would flow around the pile (“plastic flow mode”). As 
shown in Figure 12.1d, a rigid rotational movement θo(L1 – xs) appears 
over the thickness of L1–xs, but it becomes negligible (θo≈0) for deep sliding 
case. Equation 12.6 is used to develop P-EP and EP-EP solutions.

Deformation characteristics of rigid, passive piles resemble those for a 
rigid active pile under a lateral load H (Figure 3.28, Chapter 3, this book) 
in that:

•	 The pile deflects to u (= ωz + ug) by mainly rotating about a depth zr 
(= −ug/ω), at which u = 0 (see Figure 12.2b).

•	 The p reaches the pu to a depth zo (called slip depth), below which the 
p at any depth increases with the local displacement, u. This gives rise 
to a p profile resembling the solid line shown in Figure 3.28a1.

•	 The p stays as pu once the deflection u exceeds the limting value u* 
[= Ar/ko (Gibson k) or = Arz/k (constant k)]. In particular, once the tip 
deflection u touches the u* (or u*l/zo), or the pl touches Arld, the pile 
is at tip-yield state. These features are shown in Figure 3.28a.

The difference is that under passive loading, an additional displacement 
component is induced owing to rotation about pile-head level caused by 
the (sliding) maximum bending moment. For instance, the interaction 
among pile–soil–shear box (see Chapter 13, this book) encompasses 
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“rigid movement” between pile(s) and shear apparatus (termed herein as 
“overall interaction,” see Figure 12.4a). The interaction between pile(s) 
and surrounding soil (referred to as “local interaction”) resembles later-
ally loaded piles. The overall interaction is associated with a rather low 
shear modulus compared to that for local interaction, as discussed in 
Example 12.2.
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12.3 ELASTIC-PLASTIC (EP) SOLUTIONS

The EP solution capitalized on a constant ki and the aforementioned pui is 
indeed sufficiently accurate for modeling active piles (Murff and Hamilton 
1993; Guo 2006) compared to numerical approaches (Yang and Jeremic 
2002; Guo 2009). It is also useful to calibrating pertinent numerical results 
(Guo 2010). It is thus used here to model passive piles in stable layer. The 
values of the parameters ALi, ni, and Gi for active piles (see Table 3.8, 
Chapter 3, this book) are generally valid for passive piles (Guo and Ghee 
2004; Guo and Qin 2010), but for (1) a much lower pui on piles adjacent 
to excavation (Leung et al. 2000; Chen et al. 2002); and (2) an increased 
critical length of 1.2Lc1 + xp1 in the sliding layer (in which Lc1 = the critical 
length of an active pile in sliding layer), owing to dragging eccentricity eo2. 
The thrust H on a passive pile is determined next for “normal” sliding.

12.3.1 Normal sliding (upper rigid–lower flexible)

A passive pile may rotate rigidly about the point O (i.e., wg1 ≈ 0, θg1 ≈ 0, and 
θo = −θg2) in the sliding layer but behaves as infinitely long in the stable layer. 
This deformation feature is termed “normal sliding mode” (see Figure 12.1d) 
and occurs once L1 ≤ 1.2Lc1 + xp1. The total movement of the pile is equal to wg2 
at sliding level (i.e., xs = L1) and wg2 + ⎜θg2⎜L1 at ground level (xs = 0), respectively.

Assuming a plastic pile–soil interaction in sliding layer, the sliding force 
per unit length pu1 is stipulated as AL1ξ in the resistance zone of x = 0~xs and 
as AL1 in the thrust zone of x = xs~L1, respectively (see Figure 12.1b and d). 
The factor ξ is used to capture the combined impact of pile-head constraints 
and soil resistance, etc. Integrating the pu1 over the sliding depth offers

 H A L xL s1 1 1 1= − +[ ( ) ]ξ  (12.7)

Equation 12.6 offers L1 – xs = [ws−(wg1 + wg2)]/θo, which allows H1 of 
Equation 12.7 to be recast into

 H A
w w

A LL

s g

g

L1 1
2

2

1 11= +
−

−( )ξ
θ

ξ  (12.8)

where wg2 and θg2 may be determined using the normalized wg2 and θg2 from 
elastic-plastic solutions of an infinitely long pile in stable layer (Guo 2006).
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where λ2 = (k2/4EPIP)0.25, the reciprocal of characteristic length; Ip = moment 
of inertia of an equivalent solid pile; and xp2= λ2xp2, normalized slip depth.

12.3.2  Plastic (sliding layer)–elastic-plastic 
(stable layer) (P-EP) solution

A plastic interaction between a passive pile and surrounding soil is nor-
mally anticipated in sliding layer, concerning the normal sliding mode. The 
stable portion is associated with elastic-plastic interaction. The plastic (P) 
solution (e.g., Equation 12.7) for the pile portion in the sliding layer is 
resolved together with an EP solution for the pile portion in the stable layer, 
using the interface conditions (at the point O) of

 θg1 + θo = −θg2, Mo1 = Mo2, H1 = H, and −H2 = H (12.11)

where Moi = dragging moment at sliding level. This solution is referred to as 
P-EP solution. With the pressure distribution in sliding layer, the dragging 
moment Mo1 is obtained as

 M A x L x L xo L s s s1 1 1 1
20 5 2= − + −. [( ) ( ) ]ξ  (12.12)

In sliding layer, the shear force Q and bending moment M are deter-
mined separately concerning the resistance and thrust zone. In the resis-
tance zone (x = 0~xs), the force Q and moment M at depth x (from ground 
level) are given by

 Q x A xA L1 1( ) = ξ  M x A xA L1 1
20 5( ) .= ξ  (12.13a, b)

In the thrust zone (x = xs~L1), they are given by

 Q x H A L xA L1 1 1 1( ) ( )= + −  (12.14a)

 M x
A

x H A L x
H A L

AA
L

L
L

L
1

1 2
1 1 1

1 1 1
2

12 2 1
( ) ( )

( )

( )
= − + + −

+
+ ξ

 (12.14b)

Equation 12.13 has considered the conditions of zero bending moment and 
shear force at ground level. By rewriting xs from Equation 12.7, the drag-
ging moment Mo1 from Equation 12.12 is recast into
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The moment Mo1 is now converted to H2eo2 (see Figure 12.1c), assuming 
a linearly or a uniformly distributed pu2 over the “dragging” zone from 
depth L1 – eo2 to L1 (Matlock et al. 1980; Guo 2009). A real value of eo2 
may be bracketed by the two values of eo2 obtained using Equation 12.16 
(linear pu2) and Equation 12.17 (uniform pu2)
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 e H H A M Ao L o L2 1 1
2

2 1 22= − −[ ] /  (12.17)

Unsure about the pu2 profile over the zone, the two values of eo2 are 
estimated using Equations 12.16 and 12.17 for all cases (shown later). 
They, however, offer only slightly different and often negligible steps in the 
moment profile at the depth of L1–eo2. Thereby, only these response profiles 
estimated using Equation 12.16 (linear pu2) will be presented later. The 
maximum bending moment in the pile within the sliding layer is given by
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 (12.18)

Dragging does not occur, if Mo1 = 0 or ξ = ξmin in Equation 12.15 with
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On the other hand, the Mmax2 in the low layer may move to sliding level and 
become the dragging moment Mo1. An expression for Mmax2 can be derived, 
but it is unnecessarily complicated and perhaps of not much practical use. 
Instead, a maximum value ξ of ξmax is simply taken as 1/ξ min. Generally 
speaking, it follows ξ = ξmin for flexible piles, ξ = ξmax for rigid piles, and 
ξmin ≤ ξ ≤ξmax for upper rigid (in sliding layer) and lower (in stable layer) 
flexible piles.

The thrust H2 is correlated to stable layer properties by the normalized H2
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The steps for the prediction using P-EP solution are as follows:

 1. Obtain parameters ALi, L1, k2, and λ2 (n1 = 0, and n2 = 1.0).
 2. Stipulate ξ = 0~0.8 for flexible piles or ξ = 3–6 for rigid piles.
 3. Determine normalized slip depth xp2 using H1 (from Equation 12.8) = 

H2 (from Equation 12.20) for each soil movement ws.
 4. Calculate H2, wg2, and θg2 using Equations 12.20, 12.9, and 12.10, 

respectively for the given set of ALi and ni and the xp2 gained.
 5. Calculate Mo1, eo2, ξmin, and ξmax using Equations 12.15, 12.16, 12.19, 

and 1/ξmin, respectively.
 6. Determine distribution profiles of the displacement, rotation, moment, 

and shear force in stable layer using Equations 12.13 and 12.14 and 
the EP solutions provided in Table 9.1 (Chapter 9, this book).

 7. Ensure a smooth transition of the obtained moment profile over the 
dragging zone, otherwise repeating steps 3 through 7 for a new stipu-
lated value of ξ (ξmin ≤ ξ ≤ ξmax). The prediction is readily done using 
Mathcad.

Using the EP solutions, the depth x2 should be replaced with x2 − L1 + eo2 
(sliding layer), as the depth xi is measured from the depth L1 (see Figure 
12.1); and the rigid rotation angle θo (= −θg2) and the loading zone L1 – xs [= 

(ws − wg2)/⎜θg2⎜] are readily calculated.

12.3.3 EP solutions for stable layer

The elastic-plastic solutions of Table 9.1 (Chapter 9, this book) are used to 
gain the response profiles of the pile portion in stable layer such as QA2(x2), 
MA2(x2), wA2(x2) and θA2(x2) at depth x2 (≤xp2) and QB2(x2), MB2(x2), wB2(x2) 
and θB2(x2) at depth x2 (> xp2). The maximum bending moment Mmax2 and 
its depth xmax2 depend on the normalized depth xmax2 (= xmax2λ2).
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At n2 = 1, simple Equation 12.22 and Equation 12.13 or 12.14 are noted for 
calculating xmax2 and Mmax2, respectively:

 x
x

x x
p

p p
max tan2

2

1 2
2

2
2

2

1 2 3

2 3 6
= − −

+ +













−

λ
 (12.22)

If xmax2< 0, the Mmax2 occurs at the depth xmax2 in plastic zone and is given by
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Otherwise, if xmax2 ≥ 0, the Mmax2 occurs in elastic zone (see Chapter 9, this 
book) and is given by
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(12.24)

The solution neglects the coupling impact among soil layers and any 
friction on sliding interface. It stipulates a uniform soil movement profile 
(Figure 12.1d), although modifying Equation 12.6 will render other pro-
files to be accommodated.

The impact of dragging on piles is captured through the eccentricity eo2 
and the parameter ξ. Conversely, three values of ALi (or H2), θo (or θg2), and 
ξ may be deduced by matching predicted with measured profiles of bend-
ing moment, shear force, and pile deflection (for a particular ws) using the 
solutions. The eo2 may then be back-estimated from measured Mo1 and H1 at 
sliding level using Equation 12.16. They may be compared with the E-E pre-
diction to examine the effect of plasticity (ξ and xp2), dragging (eo2), and the 
nonhomogeneous pu2 against the P-EP solution (underpinned by the pu2 and 
a constant k2). The use of this solution is elaborated on in Example 12.5.

Example 12.1 Nonhomogeneous pu2 versus k 
(numerical)-based solutions

The current P-EP solutions are underpinned by a nonhomogeneous pu2 
and a uniform k2, which are different from some numerical solutions 
based on a nonhomogeneous k2 and a uniform pu2 (Poulos 1995; Chow 
1996). The impact of this difference on a pile in normal sliding Case 
12.1 is examined next.

Esu and D’Elia (1974) reported a reinforced concrete pile installed 
in a sliding clay slope (Case 12.1). The pile has an outside diame-
ter d of 0.79 m, a length L of 30 m, and a bending stiffness EpIp 
of 360  MNm2. The measured “ultimate” shear forces, bending 
moments, and deflections along the pile are plotted in Figure 12.5. 
Chen and Poulos (1997) conducted boundary element analysis (BEA) 
on the pile using Ei = 0.533x (MPa, x depth from ground level, and 
n2  = 1.0), sui = 40 kPa, pu1 = 3dsu1, pu2 = 8dsu2, and ws = 110 mm 
uniform from ground level to a sliding depth of 7.5 m. The predicted 
bending moments, deflections, and shear forces are plotted in Figure 
12.5 along with the measured data.

The following parameters were determined: AL1 = 94.8 kN/m (= 3 × 
40 × 0.79 kPa, Ng1 = 3.0), AL2 = 52 kPa (Ng2 = 1.3), ξ = 0.5, k1  = 
2.5 MPa, and k2 = 7 MPa, together with n1 = 0, n2 = 1.0. The low 
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pu2 (compared to pu1) is based on that for embankment piles (Stewart 
et al. 1994), as is used again in Cases 12.7 and 12.8. The ki is equal 
to 3.65Gi and Gi = 54.8 sui, for which the ki/Gi is estimated using k1i = 
1.5 (in Equation 3.54, for eoi/d = 2~3), γi = 0.164, and Ep/Gi = 8,589. 
The critical length Lci is estimated as 8.1 m (>7.7 m obtained using ki/
Gi = 3, see Table 12.1). With the parameters, the P-EP (via GASMove) 
predictions and E-E solutions were obtained and are plotted in Figure 
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Figure 12.5  Predicted (using θo = −θg2) versus measured (Esu and D’Elia 1974) responses 
(Case 12.I). (a) pu profile. (b) Pile deflection. (c) Bending moment. (d) Shear 
force. (After Guo, W. D., Int. J. of Geomechanics, in press)
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12.5. They agree well with the measured data and the BEA. Note with 
L1 < Lc1, the pile deflection is equal to the sum of the deflection wg2 and 
the rigid rotation θo(L1-x).

Guo (2003b), in light of the P-EP solution and assuming ξ = 0 and 
no resistance to the depth xs, predicted the profiles for the stable layer 
using three pairs of parameters AL2/n2 (= 120/0, 51/0.5, and 25/1.0) 
and a uniform subgrade modulus k2. Each prediction agrees well 
with the BEA and with the measured profiles of deflection, rotation, 
and bending moment, respectively. However, the shear force profile 

Table 12.1 Input properties and parameters for E-E solutions

Piles Soil Sliding parameters References

d
t

(mm)
Ep 

(GPa)

L

L
1

2

(m)

N

s / s
i

u u
a

1 2

L

L
c1

c 2

(m)b

k

k
1

2

(MPa)
θ0

(× 10–3)
H 

(kN) Cases

790
395

20 7 5
22 5

.
.

−
40 40/

 
7 7
7 7
.
.

8 0
8 0
.
.

13 296 (Esu and 
D’Elia 1974)

12.1

318 5
6 9

.
.

210 11 2
12 8

.

.
7 9 12 6. / .

−
6 3
5 6
.
.

5 0
8 0
.
.

26c 150 Hataosi-2 
(Cai and 
Ugai 2003)

12.2

318 5
6 9

.
.

210 8 0
9 0
.
.

7 9 23 6. / .
−

6 3
4 9
.
.

5 0
15 0

.
.

4c 70 Hataosi-3 
(Cai and 
Ugai 2003)

12.3
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6 9

.
.

210 6 5
7 5
.
.
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−

6 3
5 6
.
.
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8 0
.
.

−8c 300 Kamimoku-4 
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Ugai 2003)
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.
.

210 4 0
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.
.
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.
.
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.
.
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(Cai and 
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12.6

1200
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.
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.
15
15
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(Carrubba 
et al. 1989)

12.7
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28.45 2 5
10 0

.
.

23 1
23 1

.

.
14 4
28 8

.
.

0.5 60 Leung (2.5 m) 12.8
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315

28.45 2 5
10 0

.
.

23 1
23 1

.

.
14 4
28 8

.
.

0.5 85 Leung (3.5 m) 12.8
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315

28.45 2 5
10 0

.
.

23 1
23 1

.

.
14 4
28 8

.
.

0.5 100 Leung (4.5 m) 12.8

Source: Guo, W. D., Int. J. of Geomechanics, in press.  With permission of ASCE.
a sui (in kPa).
b Gi = ki/3 (ki in Table 12.6) for estimating Lci using Equation 3.53, Chapter 3, this book.
c Calculated using measured pile deflection profiles (Cai and Ugai 2003). 
d Sliding layer su1 = 30 kPa.
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is only well replicated using n2 = 1.0, with which the BEA solutions 
were obtained. The use of “n2 = 1.0” is legitimate as it yields the low-
est thrust (otherwise H2 = 458.6 at n2 = 0.5). A typical calculation is 
elaborated in Example 12.5.

12.4 PU-BASED SOLUTIONS (RIGID PILES)

Using the p profile of Equations 12.4 and 12.5, see Figure 12.2b, solutions 
for the passive rigid piles were newly deduced here and are provided in 
Table 12.2. Independent of overall relative pile-shear box movement during 
a shear test (see Chapter 13, this book), the solutions are, as tabulated in the 
table, (1) intended to capture local pile–soil interaction for either a constant 
k or a Gibson k; (2) underpinned by the aforementioned load transfer model 
and the observed on-pile force profile p between depth zm and l of Equation 
12.5; and (3) confined to pre-tip yield state. The solutions, referred to as 
pu-based solutions hereafter, are adequate, as the tip-yield is unlikely to be 
reached under a dominantly dragging movement. For instance, with a uni-
form k, the normalized zm is determined, using Equation 12T5, as

 z zm o= −1 2/ ( ) (12.25)

where zm = zm/l and zo = zo/l. Normalized mudline displacement, rotation 
angle, and maximum bending moment are given, respectively, by
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A l
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m o
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2[ ]
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Table 12.2 p-Based solutions (local interaction)

Gibson k (m = 1) Constant k (m = 0) Equation
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Note: Bar “—” denotes depths normalized with pile embedment length l.
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M

A dl
z zm

r
o m3

21
6

=  (12.28)

The zm is first obtained using Equation 12.25 for a specified zo, which ren-
ders the values of ugk/Arl, ωk/Ar, and Mm/(Ardl3) using Equations 12.26, 
12.27, and 12.28, respectively.

Equations 12.4 and 12.5 allow the on-pile force profile p to be con-
structed by linking the adjacent points of (0, 0), (zoArd, zo), (0, zr), (−pm, zm), 
and (pm, l), in which pm = kd(ωzm + ug), and zr = −ug/ω (note ω < 0). As an 
example, the p profiles for zo/l of 0.05, 0.15, 0.3 and 0.45 were obtained, 
and the p and z normalized by zoArl and l, respectively. These predicted 
profiles, as shown in Figure 12.3c, are independent of k profiles and gener-
ally agree with the measured ones depicted in Figure 12.3a and b.

The pu-based solutions permit the normalized moment Mm/(Ardl3), 
depth zm/l, and mudline deflection ugko/(Arl1-m) to be predicted for each 
zo/l. The predicted moments and displacements for a series of zo/l are plot-
ted in Figure 12.6a and b. The figures show the impact of the k profiles 
on the predicted Mm and ug. Especially, the solutions for laterally loaded 
piles (termed as H-l solutions, see Chapter 8, this book) are also provided. 
The normalized force was obtained using H-zm solutions deduced using 
the similarity between active and passive piles. The latter is not explained 
herein, but it is very similar to that estimated using the shear force profile 
based on the pu profile.

As with flexible piles, the response profiles of shear force and bending 
moment are derived for a linear distributed pu profile for rigid piles. They 
consist of three typical zones: 

 1. In the slip zone of depth z (≤zo), the shear force Q(z) and bending 
moment M(z) are given by

Q z A dzr( ) .= 0 5 2 M z A dzr( ) /= 3 6 (12.29a, b)

 2. Between the depths zo and zm (i.e., z = zo ~ zm), the Q(z) and M(z) are 
expressed as

Q z A dz kd z z u z zr o o g o( ) . [( ) . ( ) ]= + − + −0 5 0 52 2 2 ω  (12.30a)

M z kd z z
u z z A z z z

o
g o r o o( ) ( ) ( ) ( )

= − +
+







 +

−2
2

2

2

6

3 2ω
66  (12.30b)

 3. Below the depth zm (i.e., z = zm ~ l), the Q(z) and M(z) are described by

Q z A dz z
z z

z z
l z

l zr o m
m

o m m
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( )

( )
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=
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−
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M z
A dz z lz z z z lz lz z z l zr o m m o o m m m m( )
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=
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2 6 32 2 2 −−
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2 3z

z z l zo m m
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The absolute pile displacement at any depth z, u(z) is described by

 u z u z
M

k
zg

m( ) = + +ω  (z = 0~l) (12.32a)

where Mm = the maximum bending moment at the depth zm; and kϕ = pile 
rotational (constraining) stiffness about the head (e.g., the kϕ for the model 
tests in Chapter 13, this book, is about 0.005kd in kNm/rad; i.e., kd (in 
kPa) × m3/rad). The total pile slope (rotation) is equal to the sum of ω and 
Mm/kϕ (compared to θo in Equation 12.6). The deflection u consists of rela-
tive movement w(z) about a depth in sliding layer of

 w z u zg( ) = + ω  (z = 0~zm) (12.32b)

and relative rotation of Mmz/kϕ about the pile-head, which is originated 
from the moment Mm in depth zm and does not contribute to force and 
moment equilibrium of the pu-based solutions. The pu solutions are not 
directly related to soil movement but through the H-l based solutions, as 
shown next.

Example 12.2 Analysis of a typical pile–arc profile

Shear tests of a pile installed in the shear box (in Chapter 13, this book) 
were conducted using an arc-shaped loading block to induce soil move-
ment to a depth of 200 mm at a distance of 500 mm from a model pile 
700 mm in length. The values of Mm, ω, and ug were measured (dur-
ing the shear frame movement ws) and are depicted in Figure 12.7. The 
evolution of Mm with the frame movement ws reflects the overall shear 
box-pile interaction, whereas the relationships of ug~ω, and ug~Mm (dur-
ing the movement ws) indicate the local pile–soil interaction within the 
box. These two aspects of the interaction require different moduli of kod 
(overall) and kd (local) to be modeled, but a similar or identical pu profile.

Input parameters Ar (overall or local), kod (overall), and kd (local) 
were deduced using H~l and pu-based solutions and the measured 
response of the model piles at various ws to assess impact of soil move-
ment profiles on passive piles.

The parameters Ar and k for the test AS50-0 were deduced against the 
measured values of Mm, ω, and ug in Figure 12.7. Initial values of Ar, kod, 

and kd were calculated as follows: (1) with ′γ s  = 16.27 kN/m3 and ϕ′ = 
38°, the Ar was calculated as 134.7 kPa/m (= 0.46γs′Kp

2) for either aspect; 
(2) assuming �G= 6.52 kPa (Chen and Poulos 1997), and with kod(0.5l) = 
2.85 �G, the kod (overall) was calculated as 53.2 kPa/m; and (3) the G 
(local) was taken as 493 kPa (Hansen 1961; Guo 2006; Guo 2008) in 
view of a low shear strain (similar to active piles). The associated kd and 
k (local) were calculated as 1,407.4 kPa and 28,148 kPa/m, respectively, 
with kd = 2.85G and d = 50 mm. These values of Ar, kod, and kd actually 
offer best match with measured response as elaborated next.
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12.2.1 H-l–based solutions

H-l–based solutions refer to those developed in Chapter 8, this book, 
for a laterally loaded rigid pile. The solutions for Gibson k and con-
stant k may be used to deduce parameters for overall and local interac-
tion, respectively.

 1. For overall sliding, the Ar and kd were deduced by matching the 
Gibson k (H-l) solutions with the measured ws~Mm curve. For 
instance, at zo = 0 m and e = 0 m, the solutions of Equations 12T10, 
and 12T11 in Table 12.3 offer H(Ardl2) = 0.0556 and ugko/Ar = 1, 
respectively. The condition of zm > zo renders zm/l = 0.4215 and Mm/
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(Ardl3) = 0.0144 in light of Equations 12T9 and 12T8, respectively. 
Therefore, with a measured Mm of 33.36 Nm, the Ar was deduced 
as 134.7 kPa/m, and further with a measured ug

all of 126.6 mm, 
the kod was deduced as 53.2 kPa/m. Note the corresponding ficti-
tious H of 183.3N and zm of 0.295 m are generally not equal to 
the maximum shear force and the depth of Mm in the pile, which 
should be based on local interaction (see later pu-based solutions).

 2. For local interaction, the kd was deduced by fitting the constant 
k–based H-l solutions (see Table 8.1, Chapter 8, this book) with 
the measured ug~ω and ug~Mm curves. The same H/(Ardl2) of 
0.0556 (from overall sliding) now corresponds to a new zo/l of 
0.25, as determined using Equation 8.1g (Chapter 8, this book). 

Table 12.3 Solutions for an active rigid pile (H-l–based solutions)

Gibson k (m = 1) Equation

u z ug= +ω  and z l u lr g/ / ( )= − ω 12T1
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Source: Guo, W. D., Can Geotech J, 45, 5, 2008.

Note: u, ug, ω, z, zo, zr, e, and l are defined in Figure 8.1 (Chapter 8, this book); γb = k1ro/l; ro = an outside 
radius of a cylindrical pile; k1 increases hyperbolically from 2.14 to 3.8 as e increases from 0 to ∞; k = 
ko for constant k (m = 0); Ki(γb) = modified Bessel function of second kind of i-th order; �G  = average 
shear modulus G[FL-2] over pile embedment. The expresssions are used directly along with e = 0 for 
H-l–based solutions.
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Accordingly, the ugk/(lAr) and ωk/Ar were estimated as 0.396 and 
0.5933, respectively, using Equations 8.2g and 8.3g (Chapter 8, 
this book). With l = 0.7m, Ar = 134.7kPa/m and a measured ug of 
1.3 mm, the k(local) was deduced as 28,148 kPa (see Table 12.4). 
This k allows a ω of 0.0028 to be predicted, which compares well 
with the measured data.

 3. Calculations for various ws were performed. The measured and 
predicted pile deflection ug was 1.3~1.6 mm from the local inter-
action; as such, the ws was equal to 127.9~128.2 mm (≈ug

all + 
1.3~1.6 mm). Nevertheless, it is sufficiently accurate to take ug

all ≈ 
ws, as presented in Table 12.4 under “Overall Sliding (Gibson k)”.

The back-estimation verified the calculated values of Ar, �G, and G. The 
values of Ar = 134.7kPa/m, �G(overall) = 6.52 kPa, and G (local) = 493 
kPa were thus employed to predict Mm, ug, and ω for other zo/l (or ws). 
The predicted ws~Mm curve (overall) and the ws~ω, ug~ω, and ug~Mm 
curves (local) are provided in Figure 12.7a, b, c, and d, respectively, 
which agree with the respective measured data. The Ar, �G(kod), and G 
(kd) are further justified against the entire nonlinear response. Typical 
results are tabulated in Table 12.4 for measured ws of 120, 130, and 
140 mm. In particular, Figure 12.7a shows the elastic interaction from 
(wi, 0) to (126.6, 33.36) (i.e., Mm = 33.36 Nm at ws = 126.6 mm) and neg-
ligible pile response for ws ≤ wi = 40 mm (Guo and Qin 2010). Note that 
if Equation 12T7 for zm ≤ zo were incorrectly used, the ratio H/(Ardl2) and 
the fictitious force H would be deduced as 0.062 and 205.2 N, respec-
tively. Figure 12.7b demonstrates a good capture of the step raises in the 
rotation as well, using the force H (up to 218.9 N) via the ratio of zo/l.

Using a fictitious load H, the solutions for a lateral pile may be used to 
analyze the rigid, passive pile, see Figure 12.2b. This is underpinned by 
two principles: (1) the value and location of H must be able to replicate the 
featured on-pile force distribution (Figure 12.3), and the rigid pile deflec-
tion; and (2) the resulting solutions must compare well with the newly 
established pu-based solutions (next section). They are satisfied, respec-
tively, by (1) substituting l with zm, in view of negligible total net resistance 
over the depth of zm~l; and (2) by taking e/l as zo/(3zm) that offers best 
agreement with the pu-based solutions. It should be stressed that the ficti-
tious H locates at a distance 0~l/3 above ground surface rather than at the 
centroid of the sliding force to balance the additional bending moment 
Mm induced at depth zm. The H~zm solutions are thus formulated from the 
H~l solutions. The solutions are plotted in Figure 12.6a and b.

12.2.2 pu-based solutions

The Ar, k and kϕ were deduced using the pu-based solutions against the 
measured ug~ω and ug~Mm curves (see Figure 12.7c and d), with a zo/l 
of 0.058. The ratios of ugk/(lAr), Mm/(Ardl3), and ωk/Ar were obtained 
as 0.074, 0.00256, and 0.270, respectively, by using pu-based, right 
Equations 12T2, 12T4, and 12T3 in Table 12.2, respectively. Using the 
Ar and k deduced above, we have ug = 1.49 mm, Mm = 32.0 Nm, and 
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ω = −0.00781. The difference between this calculated ω and the mea-
sured ω of −0.0031 allows the kϕ to be obtained as 6.28 kNm = [32.0 × 
0.001/(−0.0031 + 0.00781), i.e., kϕ = 0.005kd].

In light of pu-based solutions, the response profiles of test AS50-0 
were predicted for the two typical values of zo/l of 0.0171 (ws = 80 mm) 
and 0.058 (120 mm), which compare well with the measured profiles 
of force per unit length, shear force, and bending moment as shown in 
Figure 12.8a through d. Figure 12.8b and c indicate a maximum shear 
force Qm of −39.2 kN and 39.2 kN (ws = 60 mm), and −140.7 kN and 
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Figure 12.8  Current prediction (pu-based solutions) versus measured data (AS50-0) 
at typical “soil” movements. (a) p profiles. (b) Shear force profiles. (c) Pile 
deflection profiles. (d) Bending moment profiles.

www.engbasics.com



430 Theory and practice of pile foundations

141.1 kN (120 mm), respectively, which are slightly higher than the mea-
sured (absolute) values of 38.7 and 36.1 kN, and 121.3 and 127.1 kN, 
respectively. A sufficient accuracy of the kϕ in gaining deflection profiles 
is also observed for the test TD32-0 at zo/l = 0.243 (ws = 80 mm) and 
0.358 (= 120 mm) (not shown here).

Using Ar = 729 kPa/m (= 2.5γs′Kp
2, reflecting sand densification), and 

kd = 1,260 kPa (k = 25.2 MPa/m), the zm/l, ug, and Mm were predicted 
for seven typical values of zo/l and are provided in Table 12.5. The 
ug~ω and ug~Mm curves are plotted in Figure 12.7. They agree well 
with the measured ones, justifying the deduced parameters Ar, kd, and 
kϕ. As anticipated, the Ar of 134.7 kPa/m in the H-l–based solutions 
(local) increases to 729 kPa/m in the pu-based solutions, in spite of 
a similar G of 442~493 kPa for either solution. Similar study on 14 
model tests will be presented elsewhere.

12.5  E-E, EP-EP SOLUTIONS (DEEP 
SLIDING–FLEXIBLE PILES)

12.5.1 EP-EP solutions (deep sliding)

Contrary to the normal sliding, the condition of L1 > 1.2Lc1 + xp1 warrants a 
deep (soil-carrying piles) sliding mode to occur (see Figure 12.1e). Equation 
12.6 may be used by neglecting rigid movement [i.e., (L1 − xs)θo≈ 0] and load-
ing eccentricity (eo2 ≈ 0). The mode is characterized by H1(xp1) = ⎪−H2(xp2)⎪and 
ws = wg1(xp1) + wg2(xp2), which may be resolved to gain the slip depth xp1 and xp2 
(thus H2, wgi, and θgi, etc.) for the ws, thus the pile response. The force Hi and 
deflection wgi are estimated using elastic-plastic (EP) solutions for sliding and 
stable layer [thus called EP (sliding layer)-EP (stable layer) solutions]. The input 
parameters resemble those for an active pile discussed in Chapter 9, this book.

12.5.2  Elastic (sliding layer)–elastic 
(stable layer) (E-E) solution

Assuming an elastic pile–soil interaction simulated by load transfer model, 
the deflection wBi at depth zi for an infinitely long pile in ith layer with a 
constant ki (see Figure 12.1e) (Guo 2006) is resolved as

 w z e C z C zBi i
z

i i i i i i
i i( ) ( cos sin )= +−α β β5 6  (12.33)

Table 12.5 pu-Based solutions (AS50-0)

zo/l 0.01 0.0171 0.035 0.058 0.07 0.15 0.25
zm/l 0.503 0.504 0.509 0.515 0.518 0.541 0.571

ug (mm) 0.21 0.37 0.82 1.49 1.9 5.82 16.0

Mm (Nm) 5.3 9.1 18.9 32.0 39.2 91.3 170

Note: e = 0 m, and values of k are listed; Ar = 729 kPa/m and k = 25.2 MPa/m. The values for AS50-294 
are identical to those presented here for AS50-0, except for a slight increase in ug.
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where

 α λi i pi p pN E I= +2 4( ) β λi i pi p pN E I= −2 4( ) (12.34)

The four equations of Equation 12.11 for sliding interface were expanded 
and resolved to yield the four constants C51, C52, C61, and C62, which are 
condensed into C5i and C6i:

 C
H

Ei
i i j i i j

i i j j i p
5

2 2 2

2 2 2
1

4

2 2
= −

+ − +

+
( )

( )

α α α λ λ

λ α λ α λ IIp

o i i j

i i j j i

+
−

+
θ α λ λ

λ α λ α λ2

2 2 2 2

2 2 2

( )

( )
 (12.35)
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i
i i i i j j i i

i i
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2 2 2 2 2

2
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2 3 2
= −

− + + −
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(

α α λ λ α α λ
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o i i i j

i i i jE I2 2

2 2 2

22

2 3

+
+

−

)

( )

( 22 2+ α λj i )
 (12.36)

where i = 1, j = 2 or i = 2, j = 1, respectively. Equation 12.33 implies the 
similarity of the profiles of shear force QBi(zi), bending moment MBi(zi), 
and slope θBi(zi) in either layer to those of active piles (e.g., Guo 2006). 
This solution incorporates the coupled effect (with Npi ≠ 0) among differ-
ent soil layers and is termed the “E-E (coupled)” solution. It reduces to the 
(uncoupled) E-E solution (Cai and Ugai 2003) assuming Npi = 0 [thus λi = αi = 
βi from Equation 12.34]. Unfortunately, the input values of H2 and θo for 
the E-E solutions are not directly related to soil movement ws.

Example 12.3 Derivation of C5i and C6i

The rotation angle (slope), bending moment, and shear force are gained 
from the first, second, and third derivatives of Equation 12.33, respec-
tively, as shown in Table 7.1 (Chapter 7, this book). The pile responses 
at the sliding interface (zi = 0) satisfy the following conditions:

 1. Slope condition of −θg1 + θo = −θg2. With θgi = −θi(zi), and θgi = 
−αiC5i + βiC6i, it offers

− − + = −( )α β θ α β1 51 1 61 2 52 2 62C C C Co  (12.37)

 2. Moment equilibrium of Mo1 = Mo2. With − ′′wBi (zi) = Moi/EpIp = 
(αi

2 − βi
2)C5i − 2αiβiC6i, the equality becomes:

α α β β α α β β1
2

51 1 1 61 1
2

51 2
2

52 2 2 62 2
2

522 2C C C C C C− − = − −  (12.38)

 3. Force equilibrium. The equations of −EpIp ′′′wB1
(0) = H1 = H, and 

−EpIp ′′′wB2 (0) = H2 = −H, are written as

( )α α β α β β1
3

51 1
2

1 61 1 1
2

61 1
3

613 3C C C C E I Hp p− − + =  (12.39)
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( )α α β α β β2
3

52 2
2

2 62 2 2
2

62 2
3

62 23 3C C C C E I H Hp p− − + = = −  (12.40)

Equations 12.37, 12.38, 12.39, and 12.40 were resolved together to 
obtain the four factors, which were then combined into C5i and C6i of 
Equations 12.35 and 12.36. The depth of maximum bending moment 
zmaxi occurs at QBi(zmaxi) = 0 and is given by

 z
C C

i
i

i i i i i i i i
max tan

( ) ( )

(
=

− − + −−1 3 31
2 2

5
2 2

6

β
α α β α β β
33 32 2

5
2 2

6α β β α α βi i i i i i i iC C− + −











) ( )
 (12.41)

Using the Winkler model (assuming Npi = 0, uncoupled), the C5i, C6i, 
and zmaxi reduce to previous solutions, as shown in Example 12.4.

Example 12.4 C5i and C6i for E-E uncoupled solutions

Using the conventional Winkler model (Npi = 0, αi = βi = λi), the C5i and 
C6i of Equations 12.35 and 12.36 then reduce to

 C
H

E Ii
i i j

i j p p

o j

i i j
5 3

1
4 2

= −
+

+
+

( )
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λ λ
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 (12.42)
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λ λ

λ λ
θ λ

λ λ λ
 (12.43)

The expressions of C5i and C6i are essentially identical to those deduced 
previously (Cai and Ugai 2003). Accordingly, based on the elastic 
equations in Table 7.1 (see Chapter 7, this book), the rotation, bending 
moment, and shear force at depth z are respectively given by

θ λ λλ
Bi i Bi i i

z
i i i iz w z e C C zi i( ) ( ) [( )cos= ′ = − +−

5 6 ++ − −( )sin ]C C zi i i i5 6 λ  

(12.44)

− = ′′ = −−M z E I w z e CBi i p p Bi i i
z

i i
i i( ) ( ) { cos2 2

6λ λλ zz C zi i i i+ 5 sin }λ  
(12.45)

− = ′′Q z E I w zBi i p p Bi i( ) ( )

== + − −−2 3
5 6 5 6λ λ λλ

i
z

i i i i i i i ie C C z C C zi i {[ ]cos [ ]sin }
 

(12.46)

The zi is measured from sliding interface. Finally, the depth of Mmaxi 
is simplified to

 z
C C

C Ci
i

i i

i i
max tan=

+
−









−1 1 5 6

5 6λ
 (12.47)

In summary, the E-E (coupled) and P-EP solutions are underpinned by 
the compatible conditions of Equation 12.11 and L2 > Lc2 + xp2; otherwise, 
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pu-based solutions are applicable. The solutions were all entered into 
a program called GASMove operating in the mathematical software 
MathcadTM. The GASMove was used to gain numeric values presented 
subsequently.

12.6 DESIGN CHARTS

Slope stabilizing piles predominately exhibit the normal sliding mode. The 
piles may be designed initially by using the P-EP solution (assuming n1 = 
0, n2 = 1.0, eoi = 0, and ξ = 0 for nondragging case). Given a defined rela-
tive layer stiffness (AL2/AL1)/λ2

n2, for each normalized soil movement ws(=
w k As

n
L2 2 2

2λ / ), Equations 12.8 and 12.20 are resolved to find xp2, and there-
after the displacement ratio ws/wg2 via Equation 12.9, the normalized load 
H2 via Equation 12.20, moment Mmax2 [=M n

max2 2
22λ + /AL2 via Equation 12.23 

or 12.24], and slope θg2
 via Equation 12.10. The calculation is repeated for 

a series of ws to gain the nonlinear response for each of the six layer stiff-
nesses of 1, 2, 4, 6, 8, or 10. They are plotted in Figure 12.9a, b, c, and 
d as the curves of ws~ws/wg2, H2~ws/wg2, −θg2

~ws/wg2, and Mmax2~ws/wg2, 
respectively. These figures may overestimate the wg2 and H2 at sliding level 
without the dragging impact (eo2 = 0), but they are on safe side, and may be 
employed to calculate the pile response for a known ws. The use of n1 = 0 
has limited impact on the overall prediction, but it allows the shape of mea-
sured moment profiles to be well modeled.

Example 12.5 A design example using P-EP solution

Response of the pile in Example 12.1 is predicted using the design 
charts for ξ = 0. With EpIp = 360 MNm2, ki = 8MPa, and ws = 110 mm, 
it follows λi = 0.273 [= (8/4 × 360)0.25], (AL2/AL1) × λ2

(n1-n2) = 2.01, and 
ws = 4.62 (= 0.11 × 8,000 × 0.273/52).

The layer stiffness and ws offer ws/wg2 = 1.836 (see Figure 12.9a), 
and thus H2 = 0.49 (Figure 12.9b), θg2

= −2.136 (Figure 12.9c), and 
Mmax2 = 0.32 (Figure 12.9d). Consequently, at ws of 110 mm, the pile 
responses are H = 342 kN, wg2 = 59.9 mm, Mmax2 = 816.8 kNm, and 
θg2 = −0.0139, which are ~15% larger than 316.15 kN, 52.1 mm, 739.0 
kNm, and θg2 = −0.012, obtained using ξ = 0.5 and GASMove, and on 
the safe side. The accuracy of ξ is not critical, which is noted later in 
all other cases.

The response profiles are obtained using P-EP solutions (Chapter 8, 
this book), with θo = 0.012, θg2 = −0.012, H1 = 316.15 kN, AL1 = 94.8 kPa 
(thrust), and ξ = 0.5 (resistance). The depth xs is calculated as 2.78 m 
using Equation 12.7, and the Mo1 and the eo2 as 253.07 kNm and 0.93 m 
using Equations 12.15 and 12.16, respectively. The bending moment 
and shear force profiles in sliding layer are obtained using Equations 
12.13 and 12.14. The pile movement is taken as wg2 + θg2(L1-x), as is 
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adopted in the GASMove prediction (see Figure 12.5b). With n2 = 1 
and AL2 = 52 kPa, the slip xp2 was estimated as 2.96 m using Equation 
12.20. Pertinent expressions in Table 9.1 (Chapter 9, this book) may be 
estimated to give F(2,0) = F(1,0) = 0, ′′wp2 = 1.976 × 10-3, ′′′wp2 = 2.443 × 
10-4, and thereby

 w z e z zB
z

2 2 2 2 2 2
2 2 0 01926 0 01325( ) ( . cos . sin )= −−λ λ λ  (12.48)

− = × + ×− − −M z E I e zB p p
z

2 2
3

2 2
2 2 1 976 10 2 871 10( ) [ . cos .λ λ 33

2 2sin ]λ z  

(12.49)
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Figure 12.9  Normalized pile response in stable layer owing to soil movement ws (n2 = 1, 
n1 = 0, eo2 = 0, ξ = 0). (a) Soil movement. (b) Load. (c) Slope. (d) Maximum 
moment. (After Guo, W. D., Int. J. of Geomechanics, in press.)
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These equations offer wB2(0) = wg2 = 52.1 mm at z2 = 0 of the stable 
layer; and Mmax2 = −739.04 kNm that occurred at 3.631 m (= xp2 of 
2.963 + zmax2 of 0.669). The bending moment (also shear force) profile 
obtained is subsequently shifted upwards by replacing x2 with x2 − L1 + 
eo2 (stable layer, z2 = x2 − xp2). This results in smooth bending moment 
and shear force profiles (across the sliding interface).

12.7 CASE STUDY

The E-E and P-EP solutions were utilized to study seven instrumented piles 
(i.e., Cases 12.2 through 12.8). The pile and soil properties are provided 
in Table 12.1, including the outside diameter d, wall thickness t, Young’s 
modulus Ep, thicknesses of sliding layer L1/stable layer L2, and SPT blow 
counts Ni and/or undrained shear strength sui. All tests provide the profiles 
of bending moment and deflection, but only Cases 12.6 and 12.7 (also Case 
12.1 studied earlier) furnish the shear force profiles. They are plotted in 
Figures 12.10 through 12.12. The critical lengths Lc1/Lc2 were calculated 
using ki = 3Gi. The angle θo and the thrust H were deduced using the E-E 
solution and the measured response. They are tabulated in Table 12.1 as 
well. The input parameters ALi, ki, ws, and ξ (n1 = 0, and n2 = 1) for the 
P-EP solution are given in Table 12.6, together with the calculated values 
of eo2, xs, xp2, H2, θo, wg2, λ2, ξmin, and ξmax. An example of a calculation 
using pu-based solutions and H-l solutions is presented in Figure 12.13 for 
an equivalent rigid pile. Each case is briefly described next.

Example 12.6  Sliding depth, long/short piles, and 
θo (Cases 12.2 through 12.5)

Steel pipe piles (termed as Cases 12.2 through 12.5) used in stabilizing 
Hataosi and Kamimoku Landslide all have d = 318.5 mm, t = 6.9 mm, 
EP = 210 GPa, and respective measured values of H2 and θo (Cai and 
Ugai 2003). Using ki = 0.64Ni and ALi = (3.4~8.5)Ni kN/m (see Table 
12.6), the P-EP predictions were made as is shown next.

The Hataosi Landslide adopts two rows of the piles (at a center-
center spacing of 12.5d) installed to 24 m deep, to stabilize the active 
slide that occurred at L1 = 11.2 m (Case 12.2) and to 17 m (= L) at 
another location with the slide at L1 = 8m (Case 12.3). The predicted 
values of H2 = 139.1 kN and θo = 0.029 (Case 12.2) (at a uniform ws 
of 153 mm) agree well with the measured 150 kN and 0.026, respec-
tively. The predicted H2 of 69.6 kN and θo of 0.0085 (at ws = 27 mm, 
Case 12.3) again compare well with the measured 70 kN and 0.004, 
respectively.

The Kamimoku Landslide utilizes piles with column spacing of 4 m 
and row spacing of 2 m. They were installed to 14 m deep to arrest 
the slide at L1 = 6.5m at one location of Kamimoku-4 (Case 12.4). 
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The predicted H2 of 123.3 kN at ws = 150 mm agrees with 139.1 kN 
noted in the similar Case 12.2, otherwise the H2 is “overestimated” 
as 300 kN using an “abnormal” negative θo (Cai and Ugai 2003). At 
another location of Kamimoku-6 (Case 12.5), the piles were installed 
to a depth of 10 m to arrest the sliding at L1 = 4 m. The predicted H2 
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Figure 12.10  Predicted versus measured pile responses: (a) moment and (b) deflection for 
Cases 12.2, 12.3, 12.4, and 12.5. (After Guo, W. D., Int. J. of Geomechanics, in press.)
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of 253.7 kN and θo of 0.054 at ws = 320 mm match well with the mea-
sured 250 kN and 0.04, respectively, despite the pile being classified as 
short in both layers.

The predicted bending moment and deflection profiles for each 
case are plotted in Figure 12.10a and b, respectively. Note rotation 
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is excluded in the deflection profile for the deep sliding pile of the 
Kamimoku-4. Impact of sliding depth on the responses is observed 
from the figures.

Example 12.7 Diameter and plastic hinge (Cases 12.6 and 12.7)

During the Katamachai Landslide (Case 12.6), reinforced piles (with 
d = 300 mm, t = 60 mm, and L = 10 m) failed at L1 = 7.3 m. The soil has 
su1 = 30 kPa and N2 (SPT) = 16.7, which give k1 = 200su1, k2 = 0.6N2, 

Table 12.6 P-EP Solutions for Cases 12.1 through 12.9 (H = H1 = −H2, n1/n2 = 0/1.0) 

Input Data Output Meas Case

A

A
L1

L 2

(kN/mni+1)

k

k
1

2

 

(MPa)

ws

(mm)
ξ

eo2
a

(m)

x

x
s

p 2

(m)

H(kN)b

o
-3( 10 )θ ×

wg 2

2

b
(mm)

λ

ξ
ξ

min

max

M

H
max 2

2

(kNm)

(kN)

94 8
52 0

.

.
2 5
8 0
.
.

c 110
0 50.

0 78
0 93
.
.

2 78
2 96
.
.

316 2
12 3

.
.

52 1
0 273

.
.

0 105
9 556
.
.

903
310

12.1

50 2
80 4

.

.
5 0
8 0
.
.
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0 05.

0 75
0 77
.
.

8 03
1 73

.
.

139 1
29 0

.
.

 61 0
0 584

.
.

0 05
24 45

.
.

165 2.
− −

12.2

50 2
80 4

.

.
5 0

15 0
.
.

27 0
0 02

.
.

0 35
0 42
.
.

6 45
1 07

.
.

69 6
8 47

.
.

 14 1
0 683

.
.

0 022
44 85
.
.

65 7.
− −
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.
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.
.
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−
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.
.
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.
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.
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.

.
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.
.

0 09
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.
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.
.
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.
.
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.
.
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1 15

.
.
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.
.
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.
.
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.

.
12.8
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.
.
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.
.
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.
.

53 1
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.
12.8

Source: Guo W. D., Int J of Geomechanics, in press. With permission of ASCE.
a eo2, denominator and numerator calculated using Equations 12.16 and 12.17, respectively.
b θo = −θg1 − θg2, with θo = −θg2 for rigid rotation when L1 < 1.2Lc1 + xp1.
c Lc1, Lc2 = 10.35 and 8.0 m.
d Use of positive θo rather than −0.008 (see Table 12.1); short piles, elastic analysis is only 

approximate.
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Figure 12.13  Current predictions versus measured data (Smethurst and Powrie 2007). 
(a) ws~Mm and ug~H. (b) ws~ω and ug~ω. (c) Soil movement ws and pile 
deflection u(z). (d) Bending moment profile. (e) p profiles (day 42). (f) p 
profiles (day 1,345). (After Guo, W. D., Int. J. of Geomechanics, in press.)
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Ng1 = 2.2, and AL2 = 2.37N2 kN/m2. The P-EP solution thus predicts 
H2 = 59.1 kN and θo = 0.0234 at ws = 135 mm, which are in close 
proximity to the measured 51 kN and 0.025, respectively, in spite of 
underestimating the pile deflection (see Figure 12.11). (Note some por-
tion of rigid movement may exist in the measured pile deflection.) The 
predicted profiles of bending moment (M), shear force (Q), and pile 
deflection (w) are provided in nondimensional form in Figure 12.11 to 
compare with a large diameter (Case 12.7).

Carrubba et al. (1989) reported tests on a large diameter, reinforced 
concrete pile (d = 1.2 m and L = 22 m, Case 12.7) utilized to stabilize 
a slope with an undrained shear strength sui of 30 kPa (similar to 
Case 12.6). The pile had a plastic hinge at a depth of 12.5 m after 
a slide occurred at L1 = 9.5 m and with a 2 m transition layer (see 
Figure 12.11). The P-EP prediction was made using (Chen and Poulos 
1997). (1) ki ≈ 15 MPa (= 500sui); (2) EpIp = 2,035.8 MNm2; (3) AL1 = 
198 kN/m (Ng1 = 5.5) and AL2 = 79.6 kN/m2 (Ng2 = 2.65); and (4) a 
uniform ws of 95 mm to a depth of 7.5 m. The pile observes normal 
sliding mode (see Table 12.6), and the P-EP prediction compares well 
with the measured response including the depth of the plastic hinge 
(at the Mmax).

Figure 12.11 indicates the large diameter pile was subjected to much 
lower normalized values of bending moment, shear force, and deflec-
tion, which is more effective than the normal diameter pile.

Example 12.8 Piles: Retaining wall excavation (Case 12.8)

Leung et al. (2000) conducted centrifuge tests on a model single pile 
located 3 m behind a retaining wall at 50 g, to simulate a bored pile, 
0.63 m in diameter, 12.5 m in length, and 220 MNm2 in flexural 
stiffness EpIp. The pile was installed in a sand that has a unit weight 
of 15.78 kN/m3, a relative density of 90%, an angle of internal fric-
tion of 43°, and an average E of 27 MPa (with Poisson’s ratio νs = 
0.4, E = 6x MPa) over a sliding depth of 4.5 m (at which sand moves 
significantly).

The input parameters were gained as AL1 = 37.8 kN/m, AL2 = 18.9 
kN/m2, ξ = 0, and L1 = 4.5 m (see Table 12.6). The P-EP predictions 
were thus made for ws = 4.5, 6.0, or 7.3 mm to simulate the impact of 
excavation to a depth of 2.5, 3.5, or 4.5 m, respectively, on the pile. 
Values of the free-field ws were determined using the measured ws 
(e.g., a linear reduction from 14 mm at the surface to zero at a depth 
of 7.5 m, as recorded at 3 m from the wall following the excavation 
to 4.5 m).

The predicted and measured bending moment and deflection pro-
files agree well with each other for each excavation depth (see Figure 
12.12). The slip depth xp2 reached 1.8~2.23 m, which indicates a 
limited impact of the pui (compared to the modulus ki) on the predic-
tion. The pile is rigid in either layer with Li < Lci (= 23.1 m), which 
explains the divergence between the predictions and the measured 
data.
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Example 12.9 Rigid pile subjected to trapezoid movement

Smethurst and Powrie (2007) observed the response of bored concrete 
piles used to stabilize a railway embankment. The piles were instru-
mented, with 10 m in length, 0.6 m in diameter, and a flexural rigid-
ity EpIp of 105 kNm2 (including the impact of cracking). They were 
installed at a center-to-center spacing of 2.4 m in a subsoil described 
as rockfill (depth 0~2 m with ϕ′ = 35°), embankment fill (depth 2~3.5m 
with ϕ′ = 25°), and weathered Weald clay (depth 3.5~4.5 m with ϕ′ = 
25°); followed by intact Weald clay that extended well below the pile 
tip (depth 4.5~10m, with ϕ′ = 30°).

The subsoil around the pile moved laterally 7 mm on day 42, and 
25 mm on day 1,345, uniform to a depth of 3.5 m, and then approxi-
mately linearly reduced to zero at around 7.5 m. This trapezoid ws 
profile induces the following response of Pile C as measured in situ: 
by day 42, pile-head movement ug

all (≈ ws), maximum moment Mm (at 
a depth zm of 5.6 m), and head rotation angle ω were 6–8 mm, 81.8 
kNm, and 0.67 × 10-4, respectively; and by day 1,345, it follows ug

all = 
35–38 mm, Mm = 170.7 kNm at zm = 5.8 m; and ω = 48.7 × 10-4. Mm 
was 70 kNm at ws = 5.5 mm.

Maximum thrust (sliding force) H may be gained from slope analy-
sis and then used to estimate the Ar by stipulating a linearly distributed 
net thrust over a sliding depth, or a uniform thrust on piles in clay 
(Viggiani 1981). A laterally loaded, flexible pile or an embankment pile 
may be analyzed as rigid (Sastry and Meyerhof 1994; Stewart et al. 
1994), with an equivalent length Le = 2.1ro(Ep/G)0.25 (≤ l). Assuming 
a Gibson pu, the force satisfies H > Ard2zo

2/2 [Figure 12.1c, i.e., Ar < 
2H/(d2zo

2)]. Instead of using slope analysis, the H (see Table 12.4) was 
deduced here as 28 kN using the measured Mm of 70 kNm at ws  = 
5.5 mm and e = 0 in Equation 12T7 (see Table 12.3). This H along with 
d = 0.6 m and zo = 3.5 m allow a net pressure Ar of less than 12.7 kPa 
[= 2 × 28/(0.62 × 3.52)] (or Ard = 7.62 kPa/m) to be obtained, although 
large pressures may be deduced on the front or the back pile surface.

More accurately, using the H-l–based solutions, the measured Mm 
at ws = 5.5 mm allows the Ar for a Gibson pu profile to be iteratively 
deduced as 6.61 kPa/m, and the ko (overall, Gibson k) as 1.552 MPa, 
and further with a measured ug of 4.3 mm, the k (local, constant k) 
was deduced as 9.31 MPa. These resemble the analysis on the AS50-0 
test as:

 1. Overall sliding: The H of 28 kN offers a ratio H/(Ardl2) of 0.0705. 
The zo/l was obtained as 0.169 using Equation 12T10, and ugko/
Ar = 1.291 using Equation 12T11. With the measured ug

all ≈ws (= 
5.5 mm), the ko was deduced as 1.552 MPa (= 1.291Ar/ug), which 
offers kod = 930.9 kPa/m and �G = 1.711 MPa (see Table 12.4).

 2. Local interaction: The H/(Ardl2) of 0.0705 (at ws = 5.5 mm) cor-
responds to a new ratio zo/l of 0.328 as gained using the “right” 
Equation 8.1g in Table 8.1 (Chapter 8, this book) (constant k 
and Gibson pu). As a result, the ugk/(Arl) and ω were calculated 
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as 0.62477 and 6.42 × 10-4, respectively, using Equations 8.2g 
and 8.3g. With an equivalent Ep of 1.572 × 107 kPa and G of 1.71 
MPa, the equivalent rigid length in either layer was calculated as 
6.17 m [= 2.1 × 0.3 × (1.572 × 107/1,710)0.25]. The total rigid pile 
length l was 9.67 m (i.e., 3.5 m in sliding layer and 6.17 m in 
stable layer). The measured ug

 of 4.3 mm and ug
 = 0.62477lAr/k, 

together with l = 9.67 m, allow the k(local) to be deduced as 9.31 
MPa/m (kd = 5.586 MPa and G = 2.052 MPa). Note the use of 
the smaller �G= 1.171 MPa for gaining the equivalent length is 
justified.

Slope stability analysis (Smethurst and Powrie 2007) indicates that 
a concentrated force of 60 kN is required to arrest the failing embank-
ment by a factor of safety of 1.3. With the deduced Ar and ko (or k), a 
typical maximum shear force Qm (= H) of 50.5 kN (< 60 kN) would 
induce a bending moment Mm of 170.7 kNm at ws = 26 mm (H-l solu-
tions, overall sliding). The corresponding zo/l (local, Table 12.4) is 
0.684, thus ug = 36.3 mm and ω = 0.0046. Likewise, a set of forces 
H (< 60 kN) were selected to gain Mm, ws, ug, and ω, which yielded 
the nonlinear ws~Mm and ug~H curves depicted in Figure 12.13a and 
the ws~ω and ug~ω curves in Figure 12.13b. The curves agree well 
with the measured data on day 42 and day 1,345 (see also Table 12.4), 
respectively.

The pu-based solutions were obtained in the same manner as that 
for test AS50-0. To determine pu and kϕ, a similar pile subjected to 
lateral spreading (Dobry et al. 2003) is compared here. The pile with 
l = 8 m and d = 0.6 m was embedded in “sand” with ϕ′ = 34.5°, and 
c = 5.1 kPa. It was well modeled using a uniform pu = 10.45 kN/m, 
and kϕ = 5738 kNm/rad via simple expressions. Thereby, the pu based 
solutions for the embankment pile was obtained by assuming Ar = 
12.7 kPa (i.e., 1.22 times 10.45 kPa) and kϕ = 7447.2 kNm/rad (1.298 
times 5,738 kNm/rad). For ws = 5.5 mm and 26 mm, the predicted 
profiles of deflection, bending moment, and on-pile force per unit 
length (at day 42 and day 1,345) are plotted in Figure 12.13c, d, e, 
and f, respectively. They agree well with the measured data, but for 
the net on-pile force p (Figure 12.13e). At the low ws of 5.5 mm, the 
p is sensitive to pile flexibility and constantly underestimated against 
the measured data, whereas at the large ws of 26 mm, it becomes 
nearly independent of the flexibility, and it is thus well predicted (see 
Figure 12.13f). The predicted maximum Mm and shear force Qm are 
87.3 kNm and 26.16~31.32 kN (ws = 5.5 mm) and 187.77 kNm and 
66.17~74.20 kN (ws = 26 mm), respectively, which yield a ratio of 
Mm/(Qml) of 0.29~0.35 and 0.26~0.29, individually. They agree well 
with 0.15~0.39 deduced from eight in situ piles (Guo and Qin 2010).

The embankment pile has an equivalent slenderness ratio l/d of 16 (= 
9.67/0.6) and was subjected to a sliding depth ratio Lm/l of 0.362~0.776 
(= 3.5~7.5/9.67), which are comparable to the UD tests on d50 model 
piles (see Chapter 13, this book) with l/d = 14 and Lm/l = 0.571. The cur-
rent G/ �G of 1.752 (= 2.052/1.71) and Mm/(Hl) of 0.262~0.345 are also 

www.engbasics.com



444 Theory and practice of pile foundations

comparable to 1.13~1.81 (= 37~59/32.6) and 0.357 of the model piles, 
respectively. The similarity in the response profiles between the current 
model piles and the in situ tested piles (Dobry et al. 2003; Smethurst 
and Powrie 2007; White et al. 2008) is anticipated and observed. The 
current approach should be useful to relevant design.

12.7.1 Summary of example study

Response of eight passive piles (flexible) was studied. The critical values of 
Mmax2, H2, λ2, k2, n2 (see Table 12.6), and θg2 (not shown here, but can be 
deduced from Table 12.6) were obtained for each case. They offer the pairs 
of Mmax2 versus H2 and Mmax2

 versus φg2 as plotted in Figure 12.14a and b, 
respectively, which compare well with the P-EP predictions.

Tables 12.1 and 12.6 indicate slightly different thrust H and slope θo 
between the E-E and P-EP solution for all piles in normal sliding mode. 
The main features of the instrumented piles (Cases 12.1 through 12.6) are 
as follows:

 1. Response of Case 12.4 pile exhibits deep sliding mode. It can be well 
predicted using the E-E solution (the only case with Mmax1 > Mmax2).

 2. All piles but Case 12.4 exhibit normal sliding mode, which shows:
•	 rigid rotation in sliding layer (in Cases 12.2 and 12.6, see Tables 

12.1 and 12.6), which legitimizes the new critical length of 
1.2Lc1+xp1

•	 the sufficient accuracy of the P-EP solutions (n2 = 1.0) for predict-
ing the moments and deflections (Figures 12.10~12.12) by using 
θo = -θg2 (see Table 12.6, but for the deflection in Case 12.6) and 
the feature of Mmax1 < Mmax2

•	 the variation of ξ with ξ = ξmin if ξmax − ξmin > 20 (flexible piles), 
ξ = ξmax if ξmax- ξmin < 7 (“rigid” piles in both layer), and ξ = ξmin 
~ξmax if 7 ≤ ξ ≤20.

The values of ALi and ki (or Gi) may be determined in the same manner as 
those for active piles. The pui and ki resulted may differ from those adopted 
in other suggestions (Stewart et al. 1994; Chen et al. 2002; Cai and Ugai 
2003), but their impact is limited as long as they yield a similar total resis-
tance over the slip depths as with laterally loaded piles.

12.8 CONCLUSION

New E-E and P-EP solutions are established for passive piles and presented 
in closed-form expressions. The P-EP solutions are complied into a pro-
gram called GASMove and presented in nondimensional charts. Nonlinear 
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Figure 12.14  Predicted versus measured pile responses for all cases. (a) Normalized 
load versus moment. (b) Normalized rotation angle versus moment. 
(After Guo, W. D., Int. J. of Geomechanics, in press. With permission of 
ASCE.)
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response of passive rigid piles exhibits overall sliding and local interaction. 
It shows new components of on-pile force profile, free-head and constrain-
ing rotations compared to active piles. New pu-based solutions were devel-
oped to capture local interaction, and the H-l solutions are used to correlate 
the bending moment empirically with soil movement (overall interaction).

The solutions are used to study eight instrumented piles, which show the 
following:

 1. The proposed H and ws relationship of Equation 12.8 works well, 
although underpinned by a uniform soil movement profile. The 
obtained angle θo and shear force H are generally slightly different 
between the P-EP solution and the E-E solution, respectively.

 2. The P-EP solution well captures the pile response under normal slid-
ing mode (with L1 < Lc1 and L2 > Lc2); and the E-E solution works well 
for “deep sliding” mode, in light of input soil parameters Gi (for ki), 
ξ, ws, L1, and ALi (for pui). Similar predictions may be gained from 
different sets of pu and k profiles, as with laterally loaded piles.

 3. The solutions are readily evaluated using professional math programs 
(e.g., MathcadTM). The design charts allow nonlinear response to be 
hand-calculated.

The H-l and pu-based solutions well capture measured nonlinear response 
(Mm, ω, and ug) of 17 model piles and an in situ instrumented pile using 
the gradient Ar, moduli of subgrade reaction ko (overall) and k (local), and 
rotational stiffness kϕ, irrespective of the arc, triangular, or uniform pro-
files of soil movement. Input values of Ar and ko from overall sliding agree 
with other numerical studies on passive piles; whereas those of Ar, k, and kϕ 
for local interaction resemble those for laterally loaded piles. The impact of 
soil movement profiles on passive piles may be modeled by varying Ar and 
k. The current solutions are applicable to equivalent rigid piles in any soils 
exhibiting a linear pu profile. They are sufficiently accurate, as indicated by 
the examples, for back analysis and design of slope stabilizing piles. Finally, 
to improve our understanding about passive piles, pile tests should provide 
both bending moment and shear force profiles for each magnitude of soil 
movement ws.
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Chapter 13

Physical modeling 
on passive piles

13.1  INTRODUCTION

Centrifuge tests (Stewart  et  al. 1994; Bransby and Springman 1997; 
Leung et al. 2000) and laboratory model tests (Poulos et al. 1995; Pan et al. 
2002; Guo and Ghee 2004) were conducted to model responses of piles 
subjected to soil movement. The results are useful. The correlation between 
maximum bending moment (Mmax) and lateral thrust (i.e., shear force, 
Tmax) in a pile is needed in design (Poulos 1995), but it was not provided in 
majority of the model tests.

Theoretical correlation between Mmax and Tmax was developed using limit 
equilibrium solutions for piles in a two-layered cohesive soil (Viggiani 1981; 
Chmoulian 2004). It is also estimated using p-y curve–based methods in 
practice. However, the former is intended for clay, whereas the p-y method 
significantly overestimated pile deflection and bending moment (Frank and 
Pouget 2008). The correlation is also established using elastic (Fukuoka 
1977; Cai and Ugai 2003) and elastic-plastic solutions (Guo 2009). The 
solutions nevertheless cannot capture the effect of soil movement profiles 
coupled with an axial load on pile response. The measured correlation 
from in situ slope stabilizing piles (Esu and D’Elia 1974; Fukuoka 1977; 
Carrubba et al. 1989; Kalteziotis et al. 1993; Smethurst and Powrie 2007; 
Frank and Pouget 2008) is very useful and valuable. However, only small-
scale experiments can bring about valuable insight into pile–soil interaction 
mechanisms in an efficient and cost-effective manner (Abdoun et al. 2003).

Model tests were conducted under rotational soil movement (Poulos et al. 
1995; Chen  et  al. 1997), translational-rotational movement (Ellis and 
Springman 2001), and translational movement (Guo and Qin 2010). As 
reviewed later, the 1g (g = gravity) rotational tests provide useful results of 
ground level deflection yo, maximum bending moment Mmax, and pile rota-
tion angle ω for single piles and group piles. The translational-rotational 
centrifuge tests offer ultimate response for full-height piled bridge embank-
ment under two typical shallow and deep sliding depths. The translational 
tests provide the impact of pile diameter, soil movement profiles (Guo and 
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Qin 2005), sliding depth, and axial load on response of single piles in sand 
and reveal 3∼5 times increase in maximum bending moment from rota-
tional to translational soil movement (Guo and Qin 2010).

This chapter presents 19 model tests on single piles (14 under an inverse 
triangular loading block, with 2 diameters, and 5 under uniform) and 11 
tests on free-standing two-pile groups (5 under uniform and 6 under trian-
gular loading block). They were conducted under translational movement 
for two axial load levels, a few typical pile center-center spacings, and slid-
ing depths. The tests were studied to be establish: (1) relationships between 
maximum bending moment (Mmaxi) and thrust (sliding force Tmaxi) for single 
piles, and two-pile groups in sliding (i = 1) and stable (i = 2) layers for each 
frame (soil) movement wf; (2) a restraining bending moment of pile cap (Mo) 
that renders capped piles to be analyzed as free-head single piles; and (3) a 
model of response of passive piles with effective soil movement (we).

The model tests provide profiles of bending moment, shear force, and 
deflection along the pile for each typical soil (frame) movement and, 
accordingly, maximum thrust (Tmax) and maximum moment (Mmax). 
The Tmax∼Mmax plot allows the restraining moment Mo to be obtained. 
Theoretical correlations between Mmax and Tmax and between Tmax and we 
are established and compared with 22 model pile tests. Pile-pile interaction 
is assessed using the subgrade modulus of the soil k and the Mmax for piles 
in groups against pertinent tests on single piles and numerical results. The 
simple solutions (Guo and Qin 2010) were substantiated using tests under 
translational or rotational modes of soil movement. They are used to pre-
dict measured response of eight in situ test piles and one centrifuge test pile.

13.2  APPARATUS AND TEST PROCEDURES

13.2.1  Salient features of shear tests

The current model tests are described previously (Guo and Qin 2010) con-
cerning single piles. Focusing on two-pile groups, some salient features 
include:

 1. The apparatus (see Figure 13.1) mainly consists of a shear box and 
a loading system. The latter encompasses a lateral jack on the alu-
minum frames and vertical weights on the pile-cap. The jack pushes 
the rectangular (uniform) or triangular block to generate the transla-
tional soil movement profiles, and the weights give the desired verti-
cal loading. The pile-cap is equipped with two LVDTs. Each of two 
typical piles (see Figure 13.1b) was instrumented with ten pairs of 
strain gauges along its shaft. Readings from the strain gauges and the 
LVDTs during a test are recorded via a data acquisition system, from 
which measured responses are deduced (see Section 13.2.4).
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Figure 13.1  Schematic of shear apparatus for modeling pile groups. (a) Plan view. (b) 
Testing setup. (c) An instrumented model pile.
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 2. The shear box has internal dimensions of 1 × 1 m, and 0.8 m in 
height. Its upper portion is movable, consisting of a desired number 
of 25-mm-thick square laminar frames and is underlined by a fixed 
timber box 400 mm in height. The upper frames are forced to move 
by a triangular (with an angle of 16.7° from vertical line) or a rectan-
gular loading block (see Figure 13.1b) to generate soil movement to a 
depth of Lm (≤ 400 mm). The movement profiles actually vary across 
the shear box and with depth at the loading location. For instance, 
the triangular block induces a triangular soil movement profile to a 
depth of 3.33wf (wf = frame movement) until the pre-selected depth 
Lm (e.g., a sliding depth Lm of 200 mm is reached at wf = 60 mm). 
Further increase in wf causes a trapezoidal soil movement profile. The 
movement rate is controlled by a hydraulic pump and a flow control 
valve.

 3. The tests use oven-dried medium-grained quartz, Queensland sand, 
with an effective grain size D10 = 0.12 mm, D50 = 0.32 mm, a uni-
form coefficient Cu = 2.29, and a coefficient of curvature Cc = 1.15. 
The model sand ground was prepared using a sand rainer at a falling 
height of 600 mm, which has a dry density of 16.27 kN/m3 (or a rela-
tive density index of 0.89), and an internal frictional angle of 38°.

 4. The aluminum pipe piles tested were 1,200 mm in length and with 
two sizes of either (a) 32 mm in outer diameter (d), 1.5 mm in wall 
thickness (t), and a bending stiffness of 1.28 × 106 kNmm2 (referred 
to as d32 piles), or (b) d = 50 mm, t = 2 mm and a stiffness of 5.89 × 
106 kNmm2 (referred to as d50 piles).

A pile cap was fabricated from a solid aluminum block of 50 mm thick; 
into which two d ± 0.5 mm diameter holes were drilled at a center to cen-
ter spacing of 3d, 5d, 7d, or 10d. Two d32 or d50 piles were first sock-
eted into a cap and then jacked together into the model sand in the shear 
box (see Figure 13.1a). The tests were generally conducted without axial 
load, but for some tests using the uniform loading block. An axial load of 
294 N per pile was applied by using weights on the pile cap, or exerted at 
500 mm above the sand surface for single piles (Figure 13.1b). The load was 
∼10% the maximum driven resistance of 3∼4 kN (gained using the jack-in 
pressure) for a single pile.

13.2.2  Test program

A series of tests were conducted using the triangular or uniform load-
ing block. Each test is denoted by two letters and two numbers, such as 
“TS32-0 and TD32-294”: (1) the triangular loading block is signified as T 
(and U for uniform block); (2) the “S” and “D” refer to pre-selected sliding 
depths (Lm) of 200 mm and 350 mm, respectively (compared to SD = sliding 
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depth used later); (3) the “32” indicates 32 mm in diameter; and (4) the “0” 
or “294” denotes without (0) or with an axial load of 294 N.

 1. With the T block, 14 typical tests on single piles are presented. They 
are summarized in Table 13.1, which encompass three types of “Pile 
location,” “Standard,” and “Varying sliding depth” tests. The “Pile 
location” tests were carried out to investigate the effect of relative 
distance between the loading block and pile location. The “Standard” 
tests were performed to determine pile response to the two pre-selected 
final sliding depths of 200 mm and 350 mm; and the “Varying slid-
ing depth” tests were done to gain bending moment raises owing to 
additional movement beyond the triangular profile.

 2. Using the T block, five tests on groups of two piles in a row (see Table 
13.2) were conducted. They consist of tests T2, T4, and T6 on the 
capped piles located at a loading distance sb of 340, 500, or 660 mm 
from the initial position of loading block and with s/d = 3 (s = pile 
center-center spacing, d = 32 mm, outer diameter of the pile); and tests 
T8 and T10 on capped piles (centered at sb = 500 mm) with s/d = 5 and 
7. Two single pile tests of TS32-0 and TS32-294 at a sb = 500 mm (Guo 
and Qin 2010) are used as reference.

 3. Using the U block, the test program (see Table 13.3) includes six tests 
on two-pile in row groups (a) test U3 with s/d = 3 and without load, and 
test U4 with s/d = 3 and with a load of 596 N (some loading problem), 
respectively; (b) tests U5 and U6 without load, and at s/d = 5 and 10, 
respectively; and (c) tests U9 and U10 with s/d = 3 without load or with 
a load of 596 N, but at a new sliding depth of 400 mm, respectively. 
Two single d32 pile tests of US32-0 and US32-294 at sb = 500 mm 
are used as reference, along with three single d50 piles of US50(250), 
50(500), and 50(750) tested without load and located respectively at a 
distance sb of 250, 500, or 750 mm from the initial (left side) boundary.

The loading frames were enforced to translate incrementally by 10 mm 
to a total top-frame movement wf of 140 mm. It generally attained a final 
sliding depth (SD, Lm) of 200 mm (Lm/L = 0.286) for tests T2 through T10 
(i.e., tests T2, T4, T6, T8, and T10) and tests U3 through U6, although 
tests U9 and U10 were conducted to a sliding depth Lm of 400 mm (Lm/L = 
0.57). The tests are generally on d32 piles but for three single d50 piles. 
Excluding one problematic test U4 (explained later), 11 tests on capped pile 
groups were discussed here against 7 single piles.

13.2.3  Test procedure

To conduct a test, first the sample model ground was prepared in a way 
described previously to a depth of 800 mm. Second, the instrumented pile 
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was jacked in continuously to a depth of 700 mm below the surface, while 
the (driving) resistance was monitored. Third, an axial load was applied 
on the pile-head using a number of weights (to simulate a free-head pile 
condition) that were secured (by a sling) at 500 mm above the soil surface. 
Fourth, the lateral force was applied via the T (or U) block on the movable 
frames to enforce translational soil movement towards the pile. Finally, the 
sand was emptied from the shear box after each test. During the passive 
loading, the gauge readings, LVDT readings, and the lateral force on the 
frames were taken at every 10 mm translation of the top steel frame to a 
total frame movement wf of ∼150 mm. Trial tests prove the repeatability 
and consistency of results presented here.

13.2.4  Determining pile response

The data recorded from the 10∼20 strain gauges and the two LVDTs dur-
ing each test were converted to the measured pile response via a purposely 
designed spreadsheet program (Qin 2010). In particular, the first- and sec-
ond-order numerical integration (trapezoidal rule) of a bending moment 
profile along a pile offers rotation (inclination) and deflection profiles. Single 
and double numerical differentiations (finite difference method) of the 
moment profiles furnish profiles of shear force and soil reaction. The pro-
gram thus offers five “measured” profiles of bending moment, shear force, 
soil reaction, rotation, and deflection for each typical frame movement wf. 
The profiles provide the maximum shear force Tmax (i.e., thrust), the bend-
ing moment Mmax, depth of the moment dmax, the pile-rotation angle ω, and 
the pile deflection yo at model ground level. Typical values are furnished for 
single piles in Table 13.1 and for two-pile groups in Table 13.2 for tests T2 
through T10 and in Table 13.3 for tests U3 through U6, U9, and U10.

13.2.5  Impact of loading distance on test results

The current test apparatus allows non-uniform mobilization of soil movement 
across the shear box. The associate impact is examined by the “pile location” 
tests via the distance sb (see Figure 13.1) and in terms of the measured maxi-
mum bending moments and maximum shear forces. The d32 pile was installed 
at a loading distance sb (see Figure 13.1a) of 340 mm, 500 mm (center of the 
box), or 660 mm from the loading jack side. The loading block was driven at 
the pre-specified final sliding depth of 200 mm. The measured data indicate 
a reduction in Mmax of ∼32 Nm (at wf = 70∼80 mm) as the pile was relocated 
from sb = 340 mm to 500 mm (center), and a further reduction of ∼10 Nm from 
the center to sb of 660 mm. The reductions are 20∼70% compared to a total 
maximum moment of 45∼50 Nm for the pile tested at the center of the box.

The normalized moments and forces at sb = 340, 500, and 660 mm 
(T  block) (Qin 2010) are plotted in Figure 13.2, together with those at 
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sb = 250, 500, and 750 mm (U block), in which the parameters used are the 
gradient of the limiting force Ar (see Chapter 8, this book), pile embedment 
depth L, and the pile-pile interaction factor Fm. The moment decreases pro-
portionally with the distance sb and may be described by Mm/(FmArdL3) = 
0.067 − 0.0523(sb/L) (T block) or = 0.0386 − 0.0234(sb/L) (U block), which 
is subjected to 0 ≤ Mm/(FmArdL3) ≤ 0.0442 and Fm = 0.5. The values of Fm 
and Ar are explained in Section 13.4.4. The shear force variation for all tests 
may be described by Tult/(FmArdL2) = 0.188 − 0.149(sb/L) that is bracketed 
by 0 ≤ Tult/(FmArdL2) ≤ 0.13 (Tult = ultimate Tmax). The upper limits of 0.0442 
and 0.13 are gained using solutions for lateral piles at “yield at rotation 
point” (Chapters 3 or 8, this book). A normalized distance of sb/L > 1.29 
(T block) or 1.65 (U block) would render the moment and thrust negligibly 
small. The results presented for two-pile groups (d = 32 mm) are generally 
centered at sb = 500 mm and SD = 200 mm, except where specified.

13.3  TEST RESULTS 

13.3.1  Driving resistance and lateral force on frames

The total jack-in forces were monitored during the installation of six single 
piles and three two-pile groups using a mechanical pressure gauge attached 
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to the hydraulic pump (Ghee 2009). As shown in Figure 13.3, the driving 
force on the single piles increases with the penetration. At the final penetra-
tion of 700 mm, the average total forces of the same diameter piles reach 
5.4 kN (d = 50 mm piles) and 3.8 kN (d = 32 mm piles), respectively, with 
a variation of ∼ ±20%. Note the axial load of 294 N on the pile head (used 
later) is 7∼9% of this final jacking resistance. These results reflect possible 
variations in model ground properties, as the jack-in procedure was con-
sistent. The associated average shaft friction was estimated as 54 kPa (d = 
32 mm) and 49.1 kPa (d = 50mm), respectively, if the end-resistances was 
neglected on the open-ended piles. The average forces per pile obtained for 
the two-pile rows at s/d = 3, 5, and 10 are plotted in Figure 13.3 as well. 
They are quite consistent with the single piles, indicating consistency of the 
model sand ground for all group tests as well.

Total lateral forces on the shearing frames were recorded via the lateral 
jack during the tests at each 10 mm incremental frame movement (wf). They 
are plotted in Figure 13.4 for the six tests (T block) on single piles and eight 
tests on two-pile groups [T block (Qin 2010) and U block (Ghee 2009)]. 
The figure demonstrates the force in general increases proportionally with 
the frame movement until it attains a constant. This offers a shear modu-
lus G of 15∼20 kPa (see Example 13.1). Figure 13.5 provides evolution of 
maximum shear forces Tmax with the total lateral forces exerted on the 
shear box. The ultimate (maximum) shear resistance offered by the pile is 
∼0.6 kN, which accounts for ∼10% of the total applied forces of 5∼8 kN on 
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the shearing frames. The shear stress and modulus thus may be ∼10% less 
for the tests without the pile. The average overburden stress σv at a sliding 
depth of 200 mm is about 1.63 kPa (= 16.3 × 0.1). At this low stress level, 
sand dilatancy is evident during the tests, and appears as “heaves” (Guo 
and Qin 2010).

Example 13.1 Determining shear modulus

During the TS tests, the maximum shearing stress τ is estimated as 
4.5∼5.0 kPa (= 4.5∼5.0 kN on loading block/shear area of 1.0 m2). The 
maximum shear strain γ is evaluated as 0.25∼0.3 (= wf/Lm, with wf = 
50∼60 mm and Lm = 200 mm), assuming the shear force is transferred 
across the sliding depth Lm of 200 mm.

Figure 13.4 also indicates that the total lateral force (on frames) 
attained maximum either around a wf of ∼60 mm (TS series) or 
90∼120 mm (TD series) and dropped slightly afterwards. The latter 
indicates residue strength after the dilating process, which is evident 
by the gradual formation of heaves mentioned earlier. As shown later, 
the pile response, however, attained maximum at a higher wf of either 
70∼90 mm (TS series) or 120 mm (TD series), indicating ∼30 mm 
movement loss in the initial wf (denoted as wi later) (i.e., wi ≈ 30 mm in 
transferring the applied force to the pile). As for the two-pile groups, 
Figures 13.4 and 13.5 demonstrate the maximum force per pile is close 
to single piles, which is 2∼2.5 kN at a wf of 60 mm (T2∼T10, T block 
at various sb or s/d = 3–7) or 1.8∼2 kN at 20 mm (U block at s/d = 3–10) 
for all piles at a final SD = 200 mm; and the G is 13∼16 kPa, which 
is also comparable to 15∼20 kPa for single piles (Guo and Qin 2010) 
using the T block, but it is ∼50% of 20∼35 kPa (with τ = 3.5 kPa at γ = 
0.1) using the U block.

As seen in Figure 13.5, the induced forces of Tmax in the single d32 
piles are 168 N (without P) ∼295 N (with P = 294 N) in the TS tests. 
The total resistance Tmax of two-piles is 246 N (without P). Overall, 
a two-pile group offers ∼25% higher resistance than that offered by 
the single d32 pile. A factor of safety (FS) owing to two-piles, defined 
as resistance over the sliding force, is thus close to 1.37 (= 1.25 × 1.1), 
considering the ∼10% increase in resistance of a single pile to sliding 
over the “no pile” case. The two piles increase the resistance to sliding 
by 37%.

Example 13.2 Determining Tmax

The induced shear force in each pile Tmax was overestimated signifi-
cantly (not shown here) using the plasticity theory (Ito and Matsui 
1975). In contrast, this force was underestimated by using Tmax = 
0.2916δFγsLm

2 (Ellis et al. 2010). The current tests have a unit weight 
γs of 16.27 kN/m3 and Lm

 = 0.2 m. Using δF = 0.37 (T block), the Tmax 
was estimated as 70.2 N, which is 25∼50% of the measured 168∼295 N 
(for sb = 500 mm, in Figure 13.5). With δF = 0.2 for the U block tests, 
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the Tmax was estimated as 37.6 N, which is only 17∼52% the measured 
Tmax of 72∼216 N for the two-pile groups at s/d = 3∼10.

A sliding depth ratio RL is defined herein as the ratio of thickness 
of moving soil (Lm) over the pile embedment (i.e., L = Lm + Ls). For 
instance, in the TS test series, a wf of up to 60 mm (or up to a sliding 
depth Lm of 200 mm) corresponds to a triangular profile, afterwards, 
the wf induces a trapezoid soil movement profile (with a constant 
RL = 0.29).

13.3.2  Response of Mmax, yo, ω versus wi (wf)

The pile deflection at sand surface yo and the rotation angle ω are measured 
during the tests. Using the T block, the yo∼wf and yo∼ω curves are depicted 
in Figure 13.6a and using the U block in Figure 13.6b. These curves mani-
fest the following features:

•	 An initial movement wf (i.e., the wi mentioned earlier) of 37∼40 mm 
(triangular) or of 0∼10 mm (uniform) causes negligible pile response; 
and an effective frame movement we (= wf − wi) is used later on. This 
wi alters with the loading distance sb and the pile center-center spac-
ing (Figure 13.6a), irrespective of single piles or two-pile groups. The 
wi indicates the extent and impact of the evolution of strain wedges 
carried by the loading block, as is vindicated by the few “sand heaves” 
mentioned earlier.

•	 The single piles and two-pile rows observe, to a large extent, the theo-
retical law of ω = 1.5yo/L (pure lateral loading) or ω = 2yo/L (pure 
moment loading) (Guo and Lee 2001) (see Figure 13.6a and b), which 
are salient features of a laterally loaded, free-head, floating base pile 
in a homogeneous soil.

•	 The ratio of yo/we varies from 0.12∼0.32 in the T block tests (see 
Figure 13.6a) to 0.25∼0.8 (single) or 0.5 (s/d = 3∼5) in the U block 
tests (see Figure 13.6b).

The overall interaction between shear box and pile of yo∼wf and local 
interaction between pile and soil of yo∼ω are evident. These features pro-
vide evidence for the similarity in deflection between active and passive 
piles. Next the response of maximum bending moment Mmax is discussed, 
whereas the measured Tmax is provided in form of 0.357LTmax to examine 
the accuracy of Mmax = 0.357LTmax (discussed later).

First, as an example, the profiles of ultimate bending moment and shear 
force for single piles are presented in Figure 13.7a1 and b1 together with 
those for d50 piles. They were deduced from the two tests on the d32 piles 
without axial load (TS32-0) and with a load of 294 N (TS32-294) and at 
wf = 70∼90 mm. Second, the evolution of the maximum Mmax and shear 
force Tmax (T block) with the movement wf is illustrated in Figure 13.8a, 
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together with those for d50 piles. The figures indicate a wi of ∼37 mm; a 
linear increase in Mmax for all tests at wf = 37∼80 mm (RL = 0.17∼0.29); 
and a nearly constant Mmax for a wf beyond 80∼90 mm (which is associated 
with a trapezoid soil movement at Lm = 200 mm). As for the tests using the 
U block, the evolution of Mmaxi and Tmaxi (i = 1 and 2 for sliding layer and 
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stable layer) in a single pile as the frame advances is shown in Figure 13.8b. 
They exhibit similar features to T block tests. Overall, the correlation of 
Mmax = 0.357LTmax seems to be sufficiently accurate for any wf of either T 
or U block tests.

As for two-pile groups, under the T block, the development of maximum 
moment Mmax2 and shear force Tmax2 with the effective we are depicted in 
Figure 13.9a (wi = 35∼42 mm). It indicates the impact of the loading dis-
tance sb (see Section 13.2.5) and a higher Mmax2 for a larger spacing s/d = 
5∼7 than s/d = 3. Table 13.2 shows Mmax = 49.7 kNmm (at wf = 70 mm or 
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we ≈ 30 mm) for a single pile; and that only 62% the Mmax (i.e., 31.0 Nm, 
or Fm = 0.56) is mobilized along the piles in the 2-pile rows (Figure 13.9a) at 
we = 15∼40 mm. Using the U block, the evolution in pile A (see Figure 13.1) 
is plotted in Figure 13.9b for the capped 2- piles with s/d = 3 and 5, respec-
tively. Note the “abnormal” reduction in Mmax with increase in s/d resem-
bles previous report by Chen and Poulos (1997), and may be attributed to 
difficult testing conditions. These results would not affect the conclusions 
drawn herein. These figures indicate a we of 20∼30 mm (wi = 0∼8 mm) is 
required to mobilize the ultimate Mmax for a single pile and 2-piles in a row. 
The Mmax for the single d32 pile is ∼25.3 kNmm (w/o load) and ∼39.2 kNmm 
(with load) at wf = 70 mm, which are ∼50% of 49.7 Nm and 77.6 Nm, 
respectively under T block tests. About 70% (Fm = 0.7) the Mmax of the single 
pile (∼ 35.0 kNmm) is mobilized in the piles in a row, with values of Mmax = 
23∼24 kNmm at s/d = 3 and wf = 140 mm (without axial load).

Now let’s examine the impact of a higher sliding depth on the Mmax. At 
a large sliding depth of 350 mm, the moment and shear force profiles for 
the d32 piles and the d50 piles (Guo and Qin 2006) at the maximum state 
(wf = 120 mm) are depicted in Figure 13.7a2 and b2, respectively (T block). 
The evolution of the maximum moments and shear forces with the advance 
of the T block and the frames is illustrated in Figure 13.10. In comparison 
with aforementioned results for SD = 200 mm, these figures show (1) a 
reduced wi with increase in diameter from wi = 30 mm (d = 50 mm) to 
37  mm (d = 32 mm); (2) a nearly constant bending moment down to a 
depth of 200 mm owing to axial load (Figure 13.7a2), otherwise a simi-
lar moment distribution to that from TS tests (Figure 13.7a1); (3) a slight 
increase in Mmax to ∼143 kNmm (see Figure 13.7a2) that occurs at a depth 
dmax of 0.465 m owing to the load; (4) a consistently close match between 
0.357LTmax and Mmax; and (5) higher values of Tmax and Mmax may attain 
if wf exceeds 140 mm, showing moment raises, as is further explored next. 

13.3.3  Mmax raises (T block)

The evolution of Mmax is now re-plotted against the normalized sliding 
depth RL in Figure 13.11 to highlight the moment raises at either RL = 0.29 
or 0.5 caused by uniform movement beyond the triangular movement. The 
raises at RL = 0.179, 0.357, 0.429, and 0.5 were also determined from four 
more tests on the d32 piles (without axial load) to the pre-selected final 
sliding depths of 125(RL = 0.179), 250(0.357), 300(0.429), and 350 mm 
(0.5), respectively. The values of Mmax obtained were 5.2, 62.6, 115.3, and 
118.1 Nm upon initiating the trapezoid profile, and attained 5.7, 123.5, 
175.0, and 140.0 (not yet to limit) Nm at the maximum wf, respectively. 
These values are plotted in Figure 13.11 against the RL, together with the 
TS32-0 test. The raises are 0.5, 60.9, 59.3, and 21.9(?) kNmm, respectively. 
The trapezoidal movement doubled the values of Mmax at a RL = 0.357, 
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although it has negligible impact at RL = 0.179. The Mmax along with dmax, 
Tmax, and yo are also provided in Table 13.1. Note that the Mmax and Tmax from 
T32-0 (Lm = 350 mm at wf = 120 mm) are 1.2% and ∼5% less than those from 
TD32-0, showing the repeatability and accuracy of the current tests.

13.4  SIMPLE SOLUTIONS

As it is mentioned before, a correlation between the Mmax and Tmax is evi-
dent, which is explored theoretically next.

13.4.1  Theoretical relationship 
between Mmax and Tmax

Chapter 12, this book, demonstrates the use of analytical solutions for lat-
erally loaded (active) piles to study passive piles by taking the lateral load H 
as the maximum sliding force, Tmax, induced in a pile. This is approximately 
corroborated by the ratio of deflection over rotation (yo/ω) mentioned ear-
lier. Next, the use is substantiated from the measured relationships between 
Mmax and Tmax and between the effective we and Tmax.

Elastic solutions for a free-head, floating-base, laterally loaded, rigid pile 
offer (Scott 1981)

 Mmax = (0.148∼0.26)HL and dmax = (0.33∼0.42)L (13.1)

where H = lateral load applied at pile-head level and dmax = depth of maxi-
mum bending moment. The coefficients of 0.148/0.33 are deduced for a 
uniform k and 0.26/0.42 for a Gibson k. Furthermore, elastic-plastic solu-
tions provide at any stress state (Guo 2008)

 M d e Hmax max= +






2
3  (13.2)

where e = the real or fictitious free-length of the lateral load above the 
ground surface. The ratios of Mmax/HL are equal to (1) 0.183 with a con-
stant k and pu at tip-yield state; (2) 0.208 using either k at yield at rota-
tion point (YRP); (3) 0.319 adopting Gibson k and pu at tip-yield state; (4) 
0.322 (based on constant k and Gibson pu at tip-yield state); and (5) 0.34 
assuming a Gibson pu and either k at YRP. In brief, elastic-plastic solutions 
offer a value of Mmax/HL = 0.148∼0.34. Moreover, model tests on passive 
piles show dmax = (0.5∼0.6)L and Mmax = (0.33∼0.4)LTmax for the passive 
piles (see Figure 13.7a1 and a2); and Mmax = 0.357TmaxL (see Figures 13.8 
through 13.10). In other words, the ratio of 0.357 is slightly higher than 
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0.34 for YRP state, perhaps owing to dragging moment. By taking H = 
Tmax, Equation 13.1 may be modified for passive piles as

 Mmax = (0.148∼0.4)TmaxL (13.3)

13.4.2  Measured Mmax and Tmax and 
restraining moment Moi

Table 13.3 provides the critical values of maximum bending moment 
Mmax2, shear force Tmaxi, and maximum pile deflection yo, wi and k at wf = 
60∼140 mm. The measured Mmax2∼Tmax2 curves are plotted, respectively, for 
T block tests in Figure 13.12a and for U block tests in Figure 13.12b. This 
reveals that an interceptor Moi at Tmaxi = 0 of the Mmaxi∼Tmaxi line for stable 
and sliding layer may emerge, compared to Moi = 0 for the single piles (e.g., 
Figure 13.12a and b)

 M T L Mi i si oimax max /= +α  (13.4)

The Moi is termed as restraining bending moment, as it captures the impact 
of the cap rigidity, P-δ effect, and sliding depth. The values of Moi for typical 
pile groups were determined and are tabulated in Table 13.4. For instance, 
at SD = 200 mm, the Mo1 of U3 tests is –3 Nm [= ∼ 6.7%, the Mmax2 (Pile 
A or B)], and Mo2 is 0.

The linear relationships between Mmaxi and Tmaxi are evident and are char-
acterized by (1) αs1 = −(6.75∼30), showing impact of cap fixity (see Tables 
13.4 and 13.5); (2) αs2 = 2.8 (T block) and 2.76∼2.83 (U block) for stable 
layer; and (3) nonzero moments Mo1 and Mo2 for U block, see Figure 13.12b, 
but for Mo2 = 0 for the T block (Figure 13.12a). The difference in ratios of 
Mmaxi/Tmaxi is negligible between single piles and piles in the two-pile groups.

The Mmax measured for piles in groups at wf = 60∼70 mm (see Tables 13.2 
and 13.3 for d32 piles without axial load) is 13.6∼33.6 Nm (uniform, s/d = 
3∼5) and 15.3∼54.6 Nm (triangular, s/d = 3∼7), which are largely a frac-
tion of 31.1∼71.6 Nm (Chen et al. 1997), despite of a similar scale. These 
differences are well captured using simple calculations, as shown later in 
Examples 13.6 and 13.7.

The aforementioned Tests U3–U6 and T2–T10 were generally conducted 
to a final sliding depth (SD) of 200 mm on two piles capped in a row (Guo 
and Ghee 2010). An increase in SD to 400 mm leads to: (1) reverse bending 
(from negative to positive Mmax1) and 20% reduction in the positive Mmax2; 
(2) near-constant bending moment and shear force to a depth of 200 mm 
(at wf = 110∼140 mm); (3) a high ratio of yo/we of 0.81 (wi = 0) during the 
test without (w/o) axial load (see Table 13.3) (∼1.62 times yo/we = 0.5 for SD = 
200 mm), or a ratio of 0.7 (wi = 10 mm) with the axial load; (4) shifting of 
depth of Mmax2 towards sand surface and generation of restraining moment 
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(Mo1 = −7 Nm) under an axial load of 294 N per pile; (5) on-pile force pro-
files shown in Figure 13.13; and finally (6) a ratio of Mmax2/Tmax2L = 1/2.8, 
concerning SD = 200∼400 mm.

13.4.3  Equivalent elastic solutions for passive piles

The effective frame movement we (= wf − wi) causes the groundline deflec-
tion yo (local interaction) during the passive loading process of overall 

Table 13.4 Prediction of model pile groups and response (Uniform Soil Movement)

Test no. Group Pile

Tmax

max

2

2 2

L

M Mo−

T L

M Mo1

max

max

1

1 − Moi (Nm)

L2 layer L1 layer L1 layer L2 layer

Without axial load
US32-0 Single 2.8 −28.0a 0 0
U3 1×2

In row
A 2.83 −6.75 −3.0 0
B 2.76 −6.75 0 0

U9 1×2 
(SDc = 
400 mm)

A 2.8 −17.0 0 0
B 2.8 −(17~28) 0 0

With axial load
U2 Single 2.8 −10.8 0 0
U4b 1×2 

In row
A − − − −
B − − − −

U10 1×2
(SDc = 
400 mm)

A 2.8 −6.75 −7 0

B 2.8 −6.75 −14 0

a This should be −∝ if the loading eccentricity was zero.
b Results are not presented owing to unfit pile and cap connection.
c Sliding depth (SD = Lm) is 200 mm except where specified.

Table 13.5 yo, Moi, and Mmaxi relationships for any wf

Items

y kL

T
o

maxi

a T L (M M )maxi maxi oi

b− k

k
single

group

a

Piles in line Pile in row

Tests
U3–U10

Sliding layer 3 4.5~6.75 −(6.75~28)c 0.64~1.08 (0.84)
Stable layer 4 2.8

Tests
T2–T20

Sliding layer 1 10~30  — 0.4~1.4 
Stable layer 4 2.8

a ksingle = (2.4~3)G, modulus of subgrade reaction for a single isolated pile obtained using 
Equation 3.62, which is the kd defined previously (Guo 2008); k = ksingle = 45~60 kPa for 
d = 50 mm, and k = 28.8 ~ 38.4 kPa for d = 32 mm.

b Theoretically = 3.85 (a linear k with depth) and 6.75 (a uniform k) for free-head piles 
in elastic medium. Moi relies on cap stiffness, fixity, etc.

c It depends on loading eccentricity e, which is ∝ for e = 0 and free-head pile.
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pile–soil movement. The correlation of yo ≈ αwe may be established. The yo 
may be related to sliding thrust Tmax using elastic theory for a lateral pile in 
a homogeneous soil (see Chapter 7, this book) by

 yo = 4Tmax/(kL) (13.5)

where k = (2.4∼3)G and is approximately proportional to pile diameter d 
(Guo 2008). Alternatively, with Equation 13.3, we have

 Tmax = α(wf – wi)kL/4 (13.6)

 Mmax = α(wf - wi)kL2/(10∼27) (13.7)

During deep sliding tests, pile–soil relative rigid movement may be 
incorporated into the wi and modulus of subgrade reaction k. Thus, α 
may be taken as unity. The initial frame movement wi depends on the 
position sb, pile diameter, and loading manner: wi = 0.03∼0.037 m (the 
current translational tests), and wi = 0.0 for the rotational tests reported 
by Poulos et al. (1995). A denominator of 15.38∼27 corresponds to elas-
tic interaction for Gibson∼constant k, a value of 11.2 reflects plastic 
interaction as deduced from tests, and 11.765 for YRP state. Later on, 
all “elastic calculation” is based on a denominator of 15.38 (Gibson k) 
unless specified. The length L is defined as the smallest values of Li (pile 
embedment in ith layer, i = 1, 2 for sliding and stable layer, respectively) 
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www.engbasics.com



472 Theory and practice of pile foundations

and Lci. Without a clear sliding layer, the length L for the model piles was 
taken as the pile embedment length. The Lci is given by Equation 3.53 in 
Chapter 3, this book, using Young’s modulus of an equivalent solid cyl-
inder pile Ep and average shear modulus of soil over the depth of ith layer 
�G. It must be stressed that the modulus k deduced from overall sand–
pile-shear box interaction should not be adopted to predict groundline 
yo and those provided in Table 13.1, as it encompasses impact of “rigid” 
movement between shear box and test pile(s). The Tmax and Mmax must be 
capped by ultimate state.

Example 13.3 Determining Tmax from yo

Two local-interaction cases are as follows: 

 1. The deflection at groundline yo was measured as 46 mm for 
TD32-0 under wf = 110 mm. Given the measured Tmax = 0.4 kN, 
k = 50 kPa, and L = 0.7 m, Equation 13.5 yielded a similar 
deflection yo of 45.7 mm to the measured one. 

 2. The yo at wf = 110 mm was calculated as 63.5 mm for TD32-
294, in light of the measured Tmax = 0.5 kN, k = 45 kPa, and 
L = 0.7 m, which also compares well with the measured yo of 
62.5 mm. The k is 45∼50 kPa for the local interaction.

13.4.4  Group interaction factors Fm, Fk , and pm

Interaction among piles in a group is captured by a group bending factor, 
Fm, and a group deflection factor Fk defined, respectively, as Fm = Mmg/Mms 
(Chen and Poulos 1997), and Fk = kgroup/ksingle (Qin 2010) under an identical 
effective soil movement. Note that the subscripts g and s in Mmg and Mms 

indicate the values of Mmax induced in a pile in a group and in the standard 
single pile under same vertical loading and lateral soil movement (Table 
13.2), respectively. The factors Fm and Fk exhibit similar trends with the dis-
tance sb (two piles), and the normalized pile spacing (s/d), respectively. The 
values of Fm were determined for laboratory test results and/or numerical 
simulations under various head/base constraints (Chen 1994; Chen et al. 
1997; Pan et al. 2002; Jeong et al. 2003; Qin 2010). The linear relation-
ships between Mmaxi and Tmaxi (Chen and Poulos 1997) and between Tmaxi 
and k render resemblance between values of Fm and Fk for the same tests, 
but for the impact of Moi. Moreover, the Fm, and Fk are compared with the 
p-multiplier (pm) for laterally loaded piles (Brown et al. 1988; Rollins et al. 
2006; Guo 2009) calculated using pm = 1 − a(12 − s/d)b in which a = 0.02 + 
0.25 Ln(m); b = 0.97(m)−0.82 (Guo 2009). The calculated pm with m = 1 and 
1.2 (based on curve fitting) largely brackets the aforementioned values of 
Fm and Fk, indicating pm ≈ Fm ≈ Fk. This group interaction is illustrated in 
the soil reaction profiles in Figures 13.13 and 13.14.
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13.4.5  Soil movement profile versus 
bending moments

Soil movement profiles alter the evolution of maximum bending moment 
and shear force. For instance, under the U block, the “ultimate” bending 
moments induced in free-head single piles are 15∼91% those under the T 
block, depending on s/d, sb and loading level (see Tables 13.2 and 13.3). In 
other words, under same conditions, a uniform soil movement has a 1.1∼6.6 
times higher factor of safety than a triangular profile, which grossly agrees 
with the numerical findings (Jeong et al. 2003).

Example 13.4 Limiting yo
* and pu profiles

The Tmaxi and Mmaxi should be capped by the limiting force per unit 
length pu, or by the upper elastic limiting deflection yo

* (= pu/k. N.B. the 
asterisk denotes upper limit herein). Study on 20 laterally loaded piles 
in sand indicates pu = Ardz at depth z with Ar = sgγsKp

2, sg = 0.4∼2.5 and 
an average sg of 1.29 (Chapter 9, this book). The current tests have γs = 
16.27kN/m3, ϕ = 38°, d = 32 mm, and an “average” condition initially 
with sg = 1.29. As discussed previously, the jacked-in operation of the 
piles causes the resistance increase by 37%. This renders the sg revised 
as 1.77 (= 1.29 × 1.37). The Ar is thus estimated as 177.545 kN/m3 with 
Kp = tan2(45 + 38°/2), and the pu at the pile tip (z = 0.7 m) is 3.98/Nmm. 
This offers the bold lines of limiting force profiles of pu = ± 177.545dz 
in Figure 13.13, which serve well as the upper bounds of the measured 
data. The yo

* was calculated as 6∼12 mm under a sliding depth of ∼200 
mm (see Figure 13.6). Otherwise, yo

* at Lm = 400 mm was indeterminate 

700

600

500

400

300

200

100

0

D
ep

th
 (m

)

–4 –3 –2 –1 0 1 2 3 4
(b)

 Single pile
1) d = 32 mm: 

 with P 
 w/o P

2) d = 50 mm 
w/o load,
sb = mm: 

250
500
750

Soil reaction (N/m)

2-pile in row,
w/o P,
d/sb = 32/500 mm
and s/d = 

3, 5
10

–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 2.0 2.5700

600

500

400

300

200

100

0

(a)

  Single pile:
sb = 500 mm

 with P 
 w/o P
 w/o P

      (repeated)
2-pile in row, s/d = 3,
w/o P and sb = mm:

340, 660

D
ep

th
 (m

)

Soil reaction (N/m)

2-pile in row
w/o P,
sb = 500 mm
and s/d = 

 3
 5
 7

Figure 13.14  Soil reaction. (a) Triangular block. (b) Uniform block.

www.engbasics.com



474 Theory and practice of pile foundations

(see Table 13.3), as the deep sliding results in continual increase in yo 
with wf. The yo

* allows the ultimate Mmax2
* to be calculated as 

yo
*kL2/11.2 + Mo2, as deduced from Equations 13.4 and 13.7.

Example 13.5 Limiting Tmaxi and Mmaxi

With respect to actively loaded piles, Guo (2008) shows Mmax/(ArdL3) 
≤ 0.036 and Tult/(ArdL2) ≤ 0.113 (linear increase k with depth, Gibson 
k) prior to the pile tip yield (i.e., reaching ultimate stress). The LFP 
on a passive pile (Figure 13.13) resembles that on an active pile, as do 
the profiles of on-pile force per unit length within a depth to maxi-
mum bending moment (e.g., 0.46 m for L = 0.7 m). With the normal-
ized Mmax of 0.036, the limiting values of Mmax upon tip-yield state 
is estimated as 70.1 Nm (= 0.036 × 177.545 × 0.73). This may be the 
ultimate state for the test without load (Guo and Ghee 2010). At 
the extreme case of pure moment loading and impossible state of 
yield along entire pile length (i.e., YRP), the ultimate Mmax, (rewrit-
ten as Mult) satisfies Mult/(Ar dL3) ≤ 0.075. During the tests with load 
and deep sliding depth, a passive pile is likely to be dragged forward 
and may be associated with a medium stress that has a normalized 
Mmax of ∼0.0555 (in between the tip-yield and YRP). The Mmax is 
thus equal to 108.1 Nm (= 0.0555 × 177.545 × 0.73), which agrees 
well with the measured value (Guo and Ghee 2010). Likewise, the 
Tmax is predicted. As tests (see Figure 13.6) generally exhibit behavior 
of free-head, floating base pile under pure lateral loading, limits of 
“yield at rotational point” were obtained using solutions of active 
piles and are shown in Figure 13.2.

13.4.6  Prediction of Tmaxi and Mmaxi

13.4.6.1  Soil movement profile versus bending moments

The evolution of Mmaxi and Tmaxi for typical piles with wf was modeled 
regarding tests on all the groups using Equations 13.5 through 13.7. The 
input values of Moi, k, and yo are provided in Tables 13.2, 13.3, and 13.4. 
They were synthesized and are provided in Table 13.5. The following fea-
tures are noted:

•	 In stable layer, all piles observe yokL/Tmax2 = 4, Tmax2L/(Mmax2 −Mo2) = 
2.4∼2.8, and yokL2/(Mmax2−Mo2) = 11.2 and Mo2 = 0, which are close 
to for free-head piles (Guo and Qin 2010).

•	 The moment Mmax1 (≈Tmax1L/4.5∼30) for all piles is less than Mmax2 (≈ 
Tmax2L/2.8), although Tmax1≈Tmax2, regardless of the cap fixity condi-
tion, etc. This is opposite of laterally loaded pile groups for which the 
Mmax normally occurs at pile-cap level.

•	 Comparison shows kgroup/ksingle = 0.4∼1.4 and yo/we = 0.25∼0.4 (wi = 
37∼40 mm).
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These are common features between T and U block tests. Using the U block, 
Tables 13.4 and 13.5 indicate the following special features:

•	 In sliding layer, piles in a row (without load) observe Tmax1L/(Mmax1−
Mo1) = − (6.75∼28), and with a positive moment Mmax1.

•	 The modulus reduces and kgroup/ksingle = 0.64∼1.08 (an average of 
0.84), as deduced by a good comparison between predicted and mea-
sured deflection yo. The ratio yo/we increases from 0.5 (SD = 200 mm) 
to 0.7∼0.8 (SD = 400 mm).

The Tmaxi and Mmaxi were calculated and are plotted together with the 
measured data in Figures 13.8 and 13.9 (note that we is taken as yo in 
Figure 13.8). They resemble those gained from U block tests but for yokL/
Mmax1 = 1. Equations 13.1, 13.5, and 13.6 were thus validated against the 
current model tests.

13.4.7  Examples of calculations of Mmax

In the current T block tests, the translational movement of the loading 
block results in increasing sliding depth to a pre-selected final SD. The 
previous model pile tests on free-head single piles and two, three, or four 
piles in a row (Poulos et al. 1995) were carried out, in contrast, by rotat-
ing loading block (rotational loading) about a constant sliding depth. The 
current T tests were generally associated with an effective soil movement 
of 30∼70 mm (see Table 13.6), which are rather close to the movement 
between 37 mm (RL < 0.5) and 60 mm (RL > 0.5) in the rotational tests 
(Poulos et al. 1995). Nevertheless, Figure 13.11 displays a 3∼5 times dispar-
ity in the measured moment Mmax between the current (with L = 700 mm 
and d = 32 mm) and the previous tests (L = 675 mm and d = 25 mm). 
This difference was examined using Equations 13.6 and 13.7 and is elabo-
rated in Examples 13.6 for translational movement and 13.7 for rotational 
moment, respectively.

Example 13.6 Translational movement

13.6.1 TS, TD Tests, and k

The measured Mmax∼wf and Tmax∼wf curves (see Figures 13.8 and 
13.10) were modeled regarding the pre-specified final sliding depths 
of 200 mm (TS tests) and 350 mm (TD tests), respectively. With k/G = 
2.841 (d = 50 mm) and 2.516 (d = 32 mm) (Guo 2008), and G = 15∼21 
kPa (deduced previously), the k is obtained as 45∼60 kPa (d = 50 mm). 
With d = 32 mm, the k reduces to 25∼34 kPa, as a result of the reduc-
tion to 28.8∼38.4 kPa (from change in d), and decrease in ratio of k/G 
by 0.8856 (= 2.516/2.841) times. Given wi = 30 mm (TD50-294) or 
37 mm (TS50-294), the moment is calculated using Mmax = (wf − wi)
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kL2/11.2. The results agree well with the measured data, as indicated 
in the figures for d32 piles. The values of k are good for the d = 32 and 
50 mm. Equation 13.4 is sufficiently accurate for the shallow sliding 
case as well.

13.6.2  Translational loading with variable 
sliding depths (Constant L)

The measured Mmax of the piles TD32-0 and T32-0 (Lm = 350, 
Table 13.1) tested to a final sliding depth of 350 mm is presented in 
Table 13.6. Using Mmax = (wf − 0.037)kL2/11.2 and k = 34 kPa, the 
Mmax was estimated for a series of wf (or RL) (see Table 13.6) and is 
plotted in Figure 13.12a. The RL was based on actual observation 
during the tests, which may be slightly different from theoretical 
RL = 0.33wf/L. The calculated Mmax is also plotted in Figure 13.12b. 
The moment raise at RL = 0.5 was estimated using an additional 
movement of 30 mm (beyond the wf of 120 mm) to show the capped 
value. Table 13.6 shows the calculated value agrees with the two 
sets of measured Mmax, in view of using a single wi of 37 mm for 
either test.

13.6.3 A capped pile 

As an example, the Mmaxi and Tmaxi for a capped pile with yo = 0.5we 
(s/d = 3) were calculated by three steps: (1) k/G = 2.1∼2.37 (L = 
0.7 m and d = 32 mm) using Equation 3.62, Chapter 3, this book; 

Table 13.6 “Translating” pile tests TD32-0 and T32-0 

Movement Calculateda 
Measured 

Mmax(kNmm)

wf (mm) RL

Tmax 
(kN)

Mmax 
(kNm) T32-0 TD32-0

30 0.1270 0 0 0.86 3.66
40 0.1693 0.018 4.62 2.78 8.80
50 0.2116 0.080 20.04 11.68 26.37
60 0.2540 0.142 35.45 21.69 44.42
70 0.2963 0.203 50.86 38.47 56.56
80 0.3386 0.265 66.27 63.96 57.50
90 0.3809 0.327 81.68 84.23 68.40
100 0.4233 0.388 97.09 97.51 85.17
110 0.4656 0.450 112.50 106.98 96.56
120 0.6398 0.512 127.92 118.12 119.50

150b 0.7997 0.697 174.15 139.78

Source: Guo, W. D., and H. Y. Qin, Can Geotech J, 47, 2, 2010.
a wi = 37 mm, γb = 0.048, k/G = 2.516, L = 0.7 m, d = 32 mm, G = 14.0 kPa
b Trapezoid movement profile.
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(2) G  =  15∼21 kPa, and k = 30∼50 kPa, respectively (Guo and Qin 
2010); and (3) Tmaxi calculated using Equation 13.6, with yo = 0.5we 
and wi = 0 (see Table 13.3) or the pu.

For instance, the ultimate sliding force per unit length pu was esti-
mated as 1.11 kN/m at a depth of 0.2 m, which gives a total sliding 
resistance Tmax

* of 111.0 N (= 0.5pu × 0.2). On the other hand, with 
yo

* = 22.2 mm (= 0.5wf
*, wf

* = 44.3 mm measured), the Tmax
* was esti-

mated as 116.6 N (= 22.2 × 0.001 × 30 × 0.7/4), using k = 30 kPa (see 
Table 13.3). The two estimations agree with each other. The Mmax2 
was calculated as Tmax2 L/2.8 (with Mo2 = 0) with a limited Mmax2

* of 
70.1 Nm. The estimated Tmax2 and Mmax2 agree well with the measured 
values (Guo and Ghee 2010).

As sliding depth increases to 400 mm, the same parameters offer 
Tmax

*  =  0.444 kN (= 0.5 × 2.22 × 0.4), and Mmaxi = 111.0 Nm 
(=  0.7Tmax

*/2.8), respectively. The latter agrees with the measured 
value of 118.12 Nm (Guo and Ghee 2010). Likewise, the Mmaxi and 
Tmaxi

 were calculated for all other groups, which also agree with mea-
sured data (see pertinent figures).

Example 13.7 Rotational movement (Chen et al. 1997)

13.7.1 Rotational loading about a fixed sliding depth (single piles)

The Mmax was obtained in model pile tests by loading with rotation 
about a fixed sliding depth (thus a typical RL) (Poulos  et  al. 1995). 
The results for a series of RL were depicted in Figure 13.11 and are 
tabulated in Table 13.7. This measured Mmax is simulated via the fol-
lowing steps:

•	 The ratio of k/G was obtained as 2.39∼2.79 (Guo and Lee 2001), 
varying with d/L. The shear modulus G (in kPa) was stipulated 
as 10z (z = Ls+Lm in m).

•	 With wi = 0 (as observed), the Tmax was estimated using Equation 
13.6 for wf = 37 mm (RL < 0.5) or wf = 60 mm (RL > 0.5), respec-
tively The Mmax was calculated as wfkL2/10 (Equation 13.7).

The test piles are of lengths 375∼675 mm, and the G was 3.75∼6.75 
kPa. The values of the Mmax calculated for the 10 model single piles are 
provided in Table 13.7. They are plotted against the ratio RL in Figure 
13.11, which serve well as an upper bound of all the measured data.

13.7.2  Rotational loading about a fixed 
sliding depth (piles in groups)

Each group was subjected to a triangular soil movement with a fixed 
sliding depth of 350 mm (Chen et al. 1997). Under a frame movement 
we

* = 60 mm (wi = 0), it was noted that (1) yo
*≈ 0.5we

*, with measured 
pile displacement yo

* of 24∼30 mm of the groups, resembling the cur-
rent two piles in a row (see Table 13.1 and Figure 13.6); (2) an angle 
of rotation ω of 3.5∼4.5°; and (3) a maximum moment Mmax of largely 
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32.9∼44.1 Nm (between 31.0 and 71.6 Nm) induced in two, three, and 
four piles in a row.

The study on the single pile tests shows k (single) = 16.13 kPa (k/G = 
2.39, G = 6.75 kPa). With kgroup = (0.64∼1.0)ksingle, the kgroup is calculated 
as 10.32∼16.13 kPa. With Mmax = yokL2/11.2, the Mmax at yo = 24 mm is 
calculated as 40.3∼63.01Nm (= 10.32∼16.13 × 0.024 × 0.6752/2.8). This 
estimation compares well with the measured values of 40∼55 Nm. The 
angle was estimated as 3.1∼3.82° [= 1.5 × (24∼30)/675/π × 180°] using 
free-head solution of ω = 1.5yo/L. The estimation agrees with the measured 
values of 3.5∼4.5°. The free-standing pile groups under the rotational 
soil movement thus also exhibit features of free-head, floating-base piles.

Overall, Equations 13.5 and 13.6 offer good estimations of Mmax 
(thus Tmax) for all the current model piles (e.g., Table 13.6) and the pre-
vious tests (e.g., Table 13.7). With regard to single piles, the 3∼5 times 
difference in the Mmax is owing to the impact of the pile dimensions (via 
L and k/G), the subgrade modulus k, the effective movement we, and 
the loading manner (wi). As for piles in groups, the high magnitude yo

* 
in Chen’s tests principally renders a higher Mmax (of 31.0∼71.6 Nm) 
than the current values (15.3∼54.6 Nm, triangular, see Table 13.2).

13.4.8  Calibration against in situ test piles

The simple correlations of Equation 13.4 are validated using measured 
response of eight in situ test piles (see Chapter 12, this book) and one cen-
trifuge test pile subjected to soil movement. The pile and soil properties are 
tabulated in Table 13.8, along with the measured values of the maximum 
bending moment Mmax. The shear force Tmax, however, was measured for 

Table 13.7 Calculation for “rotating” tests 

Input data Calculated Measureda

Embedded 
length L 
(mm)

wf
(mm)

G 
(kPa) RL

Factor γb 
(= 1.05d/L) k/G

Tmax 
(kN) 

Mmax 
(Nm)

Mmax 
(Nm)

525 37 5.25 0.38 0.05000 2.54 0.0648 13.62 8.0
575 37 5.75 0.43 0.04565 2.48 0.0760 17.47 17.4
625 37 6.25 0.48 0.04200 2.43 0.0879 21.97 25.0
675 60 6.75 0.52 0.03889 2.39 0.1631 44.03 44.2
625 60 6.25 0.56 0.04200 2.43 0.1425 35.63 36.1
575 60 5.75 0.61 0.04565 2.48 0.1232 28.33 25.5
525 60 5.25 0.67 0.05000 2.54 0.1051 22.08 15.8
475 60 4.75 0.74 0.05526 2.61 0.0884 16.79 7.1
425 60 4.25 0.82 0.06176 2.69 0.0729 12.39 3.0

375 60 3.75 0.93 0.07000 2.79 0.0588 8.82 0.8

Source: Guo, W. D., and H. Y. Qin, Can Geotech J, 47, 2, 2010.
a Poulos et al. 1995
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three of the nine piles. The Tmax for the other six piles was thus taken as that 
deduced using elastic and elastic-plastic theory (Cai and Ugai 2003; Guo 
2009). Modulus of subgrade reaction ki, and equivalent length of rigid pile 
Lci were calculated previously (Guo 2009). The length L for each pile was 
taken as the smallest values of Li and Lci. This allows the ratio Mmax/(TmaxL) 
for each case to be evaluated. The results are tabulated in Table 13.8 and 
are plotted in Figure 13.15. The ratios all fall into the range of the elastic 
solutions capitalized on constant k to the plastic solution of Equation 13.3. 
The slightly higher ratio for the exceptional Katamachi-B pile is antici-
pated (Guo 2009). It may argue that the four piles with a ratio of 0.26–0.4 
exhibit elastic-plastic pile–soil interaction and with an eccentricity greater 
than 0 (or dragging moments).

The ratio Mmax/(TmaxL) is independent of loading level for either the model 
tests or the field test. Figure 13.12 shows that the ratio Mmax/(TmaxL) from 
model tests stays almost invariably at 0.357, regardless of loading level. 
Figure 13.16 indicates the ratio for the in situ pile in sliding layer (Frank and 
Pouget 2008) stays around 0.25 for the 16 year test duration, although a low 
ratio is noted for stable layer (not a concern for practical design).

Determination of Tmax depends on pile-head or base constraints (Guo 
and Lee 2001): yo = Tmax/(kL) or yo = (1∼4)Tmax/(kL) for fully fixed head or 
semi-fixed head, long piles, respectively.

Example 13.8 Determining Tmax (free-head piles)

The in situ pile (Frank and Pouget 2008) at pre-pull-back situation is 
evaluated using the free-head solution. The k obtained was 15 MPa 
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Figure 13.15  Calculated versus measured ratios of Mmax/(TmaxL). (Revised from Guo, 
W. D., and H. Y. Qin, Can Geotech J 47, 22, 2010.)
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(= 150su, undrained shear strength, su = 100kPa). At a groundline deflec-
tion yo of 32 mm (recorded on 05/07/1995), the Tmax was estimated as 816 
kN (= yokL/4). This Tmax agrees well with the measured load of 845 kN. 
Note the measured pile deflection increases approximately linearly from 
groundline to a depth of 6.8∼8.0m, exhibiting “rigid” characteristics.

Example 13.9 Determining Tmax (fixed-head piles)

The deflection and bending moment are calculated for the two-row 
piles used to stabilize a sliding slope (Kalteziotis et al. 1993). The steel 
piles had a length of 12 m, an external diameter of 1.03 m, a wall thick-
ness t of 18 mm, and a flexural stiffness EpIp of 1,540 MNm2. Given 
k = k1 = 15 MPa (Chen and Poulos 1997) and an equivalent rigid pile 
length L = L1 = 4 m (sliding depth), the Tmax was calculated as 45 kN 
(= yokL/4) at yo = 0.003 m. This Tmax compares well with the measured 
40∼45 kN. The Tmax gives a uniform on-pile force per unit length of 
10–11.25 kN/m. The moment is thus estimated as 80∼90 kNm [= 0.5 × 
(10∼11.25) × 42] about the sliding depth, and as 180∼202.5 kNm about 
the depth 6 m. The average moment agrees well with the measured 
150 kNm, considering that the depth of sliding may be 4–6 m (Chow 
1996; Chen and Poulos 1997).

13.5  CONCLUSION

An experimental apparatus was developed to investigate the behavior of 
vertically loaded piles and two-pile groups in sand undergoing lateral soil 
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movement. A large number of tests have been conducted to date. Presented 
here are nineteen typical tests on single piles and eleven tests on capped two 
piles in a row under a triangular or uniform loading block. The results are 
provided regarding the total force on shear frames, the induced shear force, 
bending moment, and deflection along the piles. The tests enable simple 
solutions to be proposed for predicting the pile response.

The following features are noted from the model tests:

•	 Maximum bending moment increases by 60% (d = 32 mm piles) or by 
30% (d = 50 mm piles), and its depth by ∼50% upon applying a static 
load of 7–9% the maximum driving force.

•	 The ratio of yo/ω of two-pile rows exhibits features of free-head, float-
ing-base rigid piles.

•	 Shear force Tmax (thrust) in each pile may reach ∼0.6δFγsLm
2; ultimate 

Mmax2 (uniform) reaches (0.15∼0.9)Mmax2 (triangular); and limiting 
force per unit length pu reaches sgγsKp

2dz.
•	 Ultimate Mmax and Tmax are capped by the limits gained using solu-

tions of laterally loaded piles at yield at rotation point, but for the 
increase (∼5% for model piles) in Mmax due to dragging moment. 
Response of the piles becomes negligible, once the relative distance sb 
(between loading block and pile center) exceeds ∼1.7L.

•	 A constant ratio of pile deflection yo over soil movement we for each 
single or capped pile is noted, despite of rigid movement in we. yo/we is 
0.2∼0.8, with low values for a low SD. The pile rows manifest a rigid 
free-head rotation; as such the deflection is related to bending moment 
by Mmax2 − Mo2 = kyoL2/11.2, and Mmax/(ArdL3) ≤ 0.036∼0.055 (for 
SD = 0.29L∼.57L).

•	 The moment Mmaxi is largely proportional to the thrust Tmaxi in sta-
ble layer and moving layer, with Mmax2 − Mo2 = Tmax2L/2.4∼2.8 and 
Tmax1L/(Mmax1 − Mo1) = 4∼30.

•	 The reduction in subgrade modulus k for piles in group resembles the 
p-multiplier for laterally loaded piles, and kgroup/ksingle = 0.4∼1.4. The 
shear modulus around piles is higher under a uniform loading block 
than a triangular one. The ratio yokL/Tmax1 changes from 3 (uniform 
block) to 1 (triangular block).

With respect to the solutions, the following conclusions can be drawn:

•	 Equation 13.7 may be used to estimate the maximum bending moment 
Mmax, for which the sliding thrust Tmax is calculated using Equation 
13.6 and capped by ultimate plastic state (gained using limiting force 
profile). The estimation should adopt an effective frame movement of 
wf − wi, in which the wi depends on the pile diameter, pile position, 
and loading manner.
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•	 The subgrade modulus k may be estimated using the theoretical ratio 
of k/G and the shear modulus G (varying with diameter). The G 
increases from overall pile–soil–shear box interaction to local pile–
soil interaction.

•	 The proposed solutions offer good prediction of the translational 
and rotational tests, in which 3∼5 times the current Mmax are noted, 
despite of similar dimensions; and correct ranges of Mmax/(TmaxL) for 
eight in situ test piles and a centrifuge test pile. The Moi depends on 
pile-cap relative stiffness, fixity/connection, and loading eccentricity. 
Under unsymmetrical loading or even unfit connection between piles 
and pile cap, the thrust and moment relationship are still valid. The 
Mmax2 (>Mmax1) may be employed to design passive piles.

The parameter α correlated soil movement with yo depends on soil move-
ment profiles and location of movement against pile location, which need 
to be examined using more in situ tests.
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